
Exercise Problem Sets 5
Oct. 15. 2021

Problem 1. Let (F,+, ¨,ď) be an ordered field satisfying the monotone sequence property, b P F
and b ą 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if r, s in Q, then br+s = br ¨ bs.

(b) if r, s in Q, then br¨s = (br)s.

2. For x P F, let B(x) =
␣

bt P F
ˇ

ˇ t P Q, t ď x
(

. Show that supB(x) exists for all x P F, and
br = supB(r) if r P Q.

3. Define bx = supB(x) for x P F. Show that B(x) ą 0 for all x P F and the law of exponents
(for exponents in F)

(a) if x, y in F, then bx+y = bx ¨ by , (b) if x, y ą 0, then bx¨y = (bx)y ,

are also valid.

4. Show that if x1, x2 P F and x1 ă x2, then bx1 ă bx2 . This implies that if x1, x2 are two numbers
in F satisfying bx1 = bx2 , then x1 = x2.

5. Let y ą 0 be given. Show that if u, v P F such that bu ă y and bv ą y, then bu+1/n ă y and
bv´1/n ą y for sufficiently large n.

6. Let y ą 0 be given, and A Ď F be the set of all w such that bw ă y. Show that supA exists
and x = supA satisfies bx = y. The number x (the uniqueness is guaranteed by 4) satisfying
bx = y is called the logarithm of y to the base b, and is denoted by logb y.

Hint: Make use of Problem 2 in Exercise 3.

Proof. We note that F also satisfies the Archimedean Property and the least upper bound property
because of a Proposition and a Theorem that we talked about in class.

1. Note that the exponential law holds if the exponents are integers; that is,

bn+m = bn ¨ bm and bnm = (bn)m @n,m P Z .

For m,n P N, we “define” b
n
m as the n-th power of b 1

m ; that is, b n
m =

(
b

1
m

)n. Then for m,n P N,[(
b

1
m

)n]m
=

(
b

1
m

)mn
= b

mn
m = bn

which implies that (b
1
m

)n is the m-th root of bn if m,n P N. Moreover,
(
b

1
mn

)n
= b

1
m and(

b
1

mn

)m
= b

1
n ; thus we establish that

b
n
m =

(
b

1
m

)n
= (bn)

1
m and b

1
mn =

(
b

1
m

) 1
n @m,n P N . (♠)



Suppose that r =
q1
p1

and s =
q2
p2

, where p1, p2, q1, q2 P N. Then (♠) implies that

(br)s =
(
b

q1
p1

) q2
p2 =

(
b

1
p1

) q1q2
p2 =

[(
b

1
p1

) 1
p2

]q1q2 = (
b

1
p1p2

)q1q2 = b
q1q2
p1p2

and

br+s = b
p2q1+p1q2

p1p2 =
(
b

1
p1p2

)p2q1+p1q2 =
(
b

1
p1p2

)p2q1
¨
(
b

1
p1p2

)p1q2 = b
p2q1
p1p2 ¨ b

p1q2
p1p2 = br ¨ bs .

Therefore,
br+s = br ¨ bs and brs = (br)s @ r, s P Q and r, s ą 0 . (♡)

For r P Q and r ă 0, we define br = (b´r)´1. Then if r, s P Q and r, s ă 0, we have

br+s = (b´(r+s))´1 = (b´r ¨ b´s)´1 = (b´r)´1 ¨ (b´s)´1 = br ¨ bs

and
(br)s =

[
(b´r)´1

]s
2. First we show that x P F, B(x) is non-empty and bounded from above. By the Archimedean

Property, there exists n P N such that ´x ă n. Therefore, there exists a rational number ´n

such that ´n ă x; thus b´n P B(x) which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists m P N such that x ă m.
By the fact that

bt ď bs whenever t ď s and t, s P Q , (˚)

we conclude that bm is an upper bound for B(x). Therefore, B(x) is bounded from above. By
the least upper bound property, we conclude that supB(x) exists for all x P F.

Next we show that br = supB(r) if r P Q. To see this, we note that br P B(r) if r P Q. On
theother hand, (˚) implies that br is an upper bound for B(r); thus supB(r) = br.

3. We first show that
sup(cA) = c ¨ supA @ c ą 0 , (‹)

where cA =
␣

c ¨ x
ˇ

ˇx P A
(

. To see (‹), we observe that

x P A ñ x ď supA ñ c ¨ x ď c ¨ supA (by the compatibility of ¨ and ď) ;

thus every element in cA is bounded from above by c ¨ supA. Therefore,

sup(cA) ď c ¨ supA .

On the other hand, let ε ą 0 be given. Then there exists x P A and x ą supA ´
ε

c
. Therefore,

c ¨ x ą c ¨ supA ´ ε; thus
sup(cA) ě c ¨ x ą c ¨ supA ´ ε .

Since ε ą 0 is given arbitrarily, we find that sup(cA) ě c ¨ supA; thus (‹) is concluded.



Next we show that
sup

␣

bt
ˇ

ˇ t P Q, t ď x
(

= inf
␣

bs
ˇ

ˇ s P Q, s ě x
(

. (˛)

Let S(x) =
␣

bs
ˇ

ˇ s P Q, s ě x
(

. If bt P B(x), then bt is a lower bound for S(x). Therefore, B(x)

is a subset of the collection of all lower bounds for S(x). By Problem 3 of Exercise 2,

supB(x) ď sup
␣

y
ˇ

ˇ y is a lower bound for S(x)
(

= infS(x) .

Suppose that supB(x) ă infS(x). Since b
1
n Œ 1 as n Ñ 8 (Problem 4 of Exercise 1), there

exists n P N such that infS(x) ą b
1
n supB(x). By the fact that there exists r P Q and

x ď r ď x+
1

n
, we find that

infS(x) ą b
1
n supB(x) = sup

␣

br+
1
n

ˇ

ˇ r P Q, r ď x
(

= sup
␣

bs
ˇ

ˇ s P Q, s ď x+
1

n

(

ě br ě inf
␣

bs
ˇ

ˇ s P Q, s ě x
(

= infS(x) ,

a contradiction. Observe that

supA´1 =
(

infA
)´1 for every subset A of (0,8) ,

where A´1 =
␣

t´1
ˇ

ˇ t P A
(

and (0,8) is the collection consisting of positive elements in F.
Therefore, (˛) implies that for x P F,

b´x = sup
␣

bt
ˇ

ˇ t P Q, t ď ´x
(

= sup
␣

b´t
ˇ

ˇ t P Q, t ě x
(

=
[

inf
␣

bt
ˇ

ˇ t P Q, t ě x
(

]´1

= (bx)´1 .

Now we show the law of exponential

bx ¨ by = bx+y @x, y P F . (‹‹)

Let x, y P F be given. If t, s P Q and t ď x, s ď y, then t+ s P Q and t+ s ď x+ y; thus

bt ¨ bs = bt+s ď supB(x+ y) = bx+y .

For any given rational t ď x, taking the supremum of the left-hand side over all rational s ď y

and using (‹) we find that

bt ¨ by = bt ¨ sup
␣

bs
ˇ

ˇ s P Q, s ď y
(

ď bx+y .

Taking the supremum of the left-hand side over all rational t ď x, using (‹) again we find that

by ¨ bx = by ¨ sup
␣

bt
ˇ

ˇ t P Q, t ď x
(

ď bx+y ;

thus we establish that
bx ¨ by ď bx+y @x, y P F (˛˛)



Now, note that (˛˛) implies that for all x, y P F,

by = b´x+x+y ě b´x ¨ bx+y = (bx)´1 ¨ bx+y ě (bx)´1 ¨ bx ¨ by = by .

The inequality above is indeed an equality and we obtain that

by = b´xbx+y @x, y P F .

This is indeed (‹‹) because of that b´x = (bx)´1.

Next we show that (bx)y = supB(x ¨ y) for all x ą 0 and y P F. For z ą 0, define A(z) =
␣

s P

F
ˇ

ˇ s P Q, 0 ă s ď z
(

. Note that if z ą 0, then bz = supA(z). Since for x ą 0, we have bx ą 1;
thus for x, y ą 0,

(bx)y = sup
␣

(bx)t
ˇ

ˇ t P Q, 0 ă t ď y
(

= sup
tPA(y)

(bx)t = sup
tPA(y)

(
sup

sPA(x)

bs
)t
.

By Problem 4 of Exercise 2,

sup
tPA(y)

(
sup

sPA(x)

bs
)t

= sup
(t,s)PA(y)ˆA(x)

(bs)t = sup
(t,s)PA(y)ˆA(x)

bst = bsup(t,s)PA(y)ˆA(x) ts = bxy .

4. Let x1 ă x2 be given. Then AP implies that there exists r, s P Q such that x1 ă r ă s ă x2.
Therefore, B(x1) Ď B(r) Ď B(s) Ď B(x2); thus

bx1 = supB(x1) ď supB(r) ď supB(s) ď supB(x2) = bx2 .

Since B(r) = br and B(s) = bs, we must have B(r) ă B(s); thus 4 is concluded.

5. Since y

bu
ą 1 and bv

y
ą 1, by the fact that b

1
n Ñ 1 as n Ñ 8, there exist N1, N2 ą 0 such that

ˇ

ˇb
1
n ´ 1

ˇ

ˇ ă
y

bu
´ 1 whenever n ě N1 and

ˇ

ˇb
1
n ´ 1

ˇ

ˇ ă
bv

y
´ 1 whenever n ě N2 .

Let N = maxtN1, N2u. For n ě N , we have b
1
n ă

y

bu
and b

1
n ă

bv

y
or equivalently,

bu+
1
n ă y and bv´ 1

n ą y @n ě N .

6. Let A =
␣

w P F
ˇ

ˇ bw ă y
(

. Since b ą 1, 2 of Problem 4 in Exercise 1 implies that

bn ą 1 + n(b ´ 1) whenever n ě 2 . (‹‹‹)

By AP, there exists N ě 2 such that 1 +N(b ´ 1) ą y; thus A is bounded from above by N .
Moreover, there exists M ě 2 such that

1 +M(b ´ 1) ą
1

y
;

thus (‹‹‹) implies that b´M ă y or ´N P A. Therefore, A is non-empty. By LUBP, we
conclude that supA exists.



Let x = supA. Then x+
1

n
R A; thus bx+

1
n ě y for all n P N. Since b

1
n Ñ 1 sa n Ñ 8, we find

that
bx = bx lim

nÑ8
b

1
n = lim

nÑ8
bx+

1
n ě y .

On the other hand, 4 implies that x ´
1

n
P A; thus bx´ 1

n ą y for all n P 8 and we have

bx = bx lim
nÑ8

b´ 1
n = lim

nÑ8
bx´ 1

n ď y .

Therefore, bx = y. ˝

Problem 2. Let (F,+¨,ď) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Intermediate Value Theorem:

Let f : [a, b] Ñ F be continuous (at every point of [a, b]); that is,

lim
nÑ8

f(xn) = f
(

lim
nÑ8

xn

)
for all convergent sequence txnu8

n=1 Ď [a, b].

If f(a)f(b) ă 0, then there exists c P [a, b] such that f(c) = 0.

Complete the following.

1. W.L.O.G, we can assume that f(a) ă 0. Define the set S = tx P [a, b] | f(x) ą 0u. Show that
infS exists.

2. Let c = infS. Show that f(c) ě 0.

3. Conclude that f(c) ď 0 as well.

Hint:

1. Show that S is non-empty and bounded from below and note that MSP ô LUBP.

2. Show that there exists a sequence tcnu8
n=1 in S such that cn Ñ c as n Ñ 8.

3. Show that there exists a sequence tcnu8
n=1 in [a, c) such that cn Ñ c as n Ñ 8.

Proof. 1. Since f(b) ą 0, b P S. Moreover, a is a lower bound for S; thus S is non-empty and
bounded from below. Since MSP ô LUBP, infS P F exists.

2. Let c = infS. For each n P N, there exists cn ă c+
1

n
and cn P S. Then f(cn) ą 0 for all n P N

and
c ď cn ă c+

1

n
@n P N .

Then the Sandwich Lemma implies that cn Ñ c as n Ñ 8. By the continuity of f ,

f(c) = f
(

lim
nÑ8

cn
)
= lim

nÑ8
f(cn) ě 0 .



3. By 2, a ‰ c. Consider the sequence tcnu8
n=1 defined by cn = c ´

c ´ a

n
. Then tcnu8

n=1 Ď [a, c).
Moreover, by the fact that c = infS and cn ă c, cn R S for all n P N. Therefore, f(cn) ď 0 for
all n P N. Since cn Ñ c as n Ñ 8, by the continuity of f we find that

f(c) = f
(

lim
nÑ8

cn
)
= lim

nÑ8
f(cn) ď 0 . ˝

Problem 3. Let (F,+¨,ď) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Extreme Value Theorem:

Let a, b P F, a ă b and f : [a, b] Ñ F be continuous (at every point of [a, b]); that is,

lim
nÑ8

f(xn) = f
(

lim
nÑ8

xn

)
for all convergent sequence txnu8

n=1 Ď [a, b].

Then there exist c, d P [a, b] such that f(c) = sup
xP[a,b]

f(x) and f(d) = inf
xP[a,b]

f(x).

Complete the following.

1. Show that there exist sequences tcnu8
n=1 and tdnu8

n=1 in [a, b] such that

lim
nÑ8

f(cn) = sup
xP[a,b]

f(x) and lim
nÑ8

f(dn) = inf
xP[a,b]

f(x) .

2. Extract convergent subsequences tcnk
u8
k=1 and tdnk

u8
k=1 with limit c and d, respectively. Show

that c, d P [a, b].

3. Show that f(c) = sup
xP[a,b]

f(x) and f(d) = inf
xP[a,b]

f(x).

Hint: For 2, note that MSP ñ BWP.

Proof. It suffices to show the case of sup
xP[a,b]

f(x) since inf
xP[a,b]

f(x) = ´ sup
xP[a,b]

(´f)(x) by Problem 1 of

Exercise 2.

1. We first show that f([a, b]) is bounded. Suppose the contrary that f([a, b]) is not bounded.
Then for each n P N, there exists xn P [a, b] such that

ˇ

ˇf(xn)
ˇ

ˇ ą n. Since txnu8
n=1 Ď [a, b],

txnu8
n=1 is bounded. By the fact that MSP ñ BWP, there exists a convergent subsequence

txnk
u8
k=1 of txnu8

n=1. By the continuity of f ,
␣

f(xnk
)
(8

k=1
is also convergent; thus Proposition

1.39 in the lecture note implies that
␣

f(xnk
)
(8

k=1
is bounded, a contradiction to that

ˇ

ˇf(xnk
)
ˇ

ˇ ě

nk ě k for all k P N.

Since f([a, b]) is bounded, M = sup f([a, b]) = sup
xP[a,b]

f(x) exists. For each n P F, there exists

cn P [a, b] such that
M ´

1

n
ă f(cn) ď M .

By the Sandwich Lemma, lim
nÑ8

f(cn) = M = sup
xP[a,b]

f(x).



2. Since tcnu8
n=1 Ď [a, b], tcnu8

n=1 is bounded. By the fact that MSP ñ BWP, there exists a
convergent subsequence tcnk

u8
k=1 of tcnu8

n=1 with limit c. Since a ď cnk
ď b for all k P N, by a

Proposition that we talked about in class we conclude that a ď c ď b.

3. Since cnk
Ñ c as k Ñ 8, the continuity of f implies that

f(c) = f( lim
kÑ8

cnk
) = lim

kÑ8
f(cnk

) = sup
xP[a,b]

f(x) . ˝

Problem 4. Let txnu8
n=1 and tynu8

n=1 be sequences in R. Prove the following inequalities:

lim inf
nÑ8

xn + lim inf
nÑ8

yn ď lim inf
nÑ8

(xn + yn) ď lim inf
nÑ8

xn + lim sup
nÑ8

yn

ď lim sup
nÑ8

(xn + yn) ď lim sup
nÑ8

xn + lim sup
nÑ8

yn ;(
lim inf
nÑ8

|xn|
)(

lim inf
nÑ8

|yn|
)

ď lim inf
nÑ8

|xnyn| ď
(

lim inf
nÑ8

|xn|
)(

lim sup
nÑ8

|yn|
)

ď lim sup
nÑ8

|xnyn| ď
(

lim sup
nÑ8

|xn|
)(

lim sup
nÑ8

|yn|
)
.

Give examples showing that the equalities are generally not true.

Proof. 1. Let k P N be fixed. Note that for n ě k, we have

inf
něk

(xn + yn) ď xn + yn ď sup
něk

(xn + yn) .

Note that the LHS and the RHS are functions of k and is independent of n. Therefore,

inf
něk

[
inf
něk

(xn + yn) ´ yn

]
ď inf

něk
xn ď inf

něk

[
sup
něk

(xn + yn) ´ yn

]
which further shows that

inf
něk

(xn + yn) ´ sup
něk

yn ď inf
něk

xn ď sup
něk

(xn + yn) ´ sup
něk

yn .

Therefore,
inf
něk

(xn + yn) ď inf
něk

xn + sup
něk

yn ď sup
něk

(xn + yn) @ k P N ,

and the first inequality follows from the fact that

inf
něk

xn + inf
něk

yn ď inf
něk

(xn + yn) ď inf
něk

xn + sup
něk

yn ď sup
něk

(xn + yn) ď sup
něk

xn + sup
něk

yn

for each k P N.

2. Let k P N be fixed. Note that for n ě k, we have

inf
něk

[
|xn|

(
|yn| +

1

k

)]
ď |xn|

(
|yn| +

1

k

)
ď sup

něk

[
|xn|

(
|yn| +

1

k

)]
.

Note that the LHS and the RHS for functions of k and is independent of n. Therefore,

inf
něk

inf
něk

[
|xn|

(
|yn| +

1

k

)]
|yn| +

1

k

ď inf
něk

|xn| ď inf
něk

sup
něk

[
|xn|

(
|yn| +

1

k

)]
|yn| +

1

k

.



By the fact that
inf
něk

1

|yn| +
1

k

=
1

sup
něk

(
|yn| +

1

k

) ,
we find that

inf
něk

[
|xn|

(
|yn| +

1

k

)]
sup
něk

(
|yn| +

1

k

) ď inf
něk

|xn| ď inf
něk

sup
něk

[
|xn|

(
|yn| +

1

k

)]
sup
něk

(
|yn| +

1

k

) ;

thus
inf
něk

[
|xn|

(
|yn| +

1

k

)]
ď inf

něk
|xn| sup

něk

(
|yn| +

1

k

)
ď sup

něk

[
|xn|

(
|yn| +

1

k

)]
.

The second inequality follows from the fact that

inf
něk

|xn| inf
něk

(
|yn| +

1

k

)
ď inf

něk

[
|xn|

(
|yn| +

1

k

)]
ď inf

něk
|xn| sup

něk

(
|yn| +

1

k

)
ď sup

něk

[
|xn|

(
|yn| +

1

k

)]
ď sup

něk
|xn| sup

něk

(
|yn| +

1

k

)
for each k P N, and passing to the limit as k Ñ 8.

3. Let xn = 2 + sinn and yn = 2 + cosn. Then xn, yn ą 0, and

lim inf
nÑ8

xn = lim inf
nÑ8

yn = 1 , lim sup
nÑ8

xn = lim sup
nÑ8

yn = 3 .

By Problem 3, the set
␣

x P [0, 2π]
ˇ

ˇx = k (mod 2π) for some k P N
(

is dense in [0, 2π]; thus for
each θ P [0, 2π] there exists an increasing sequence tkju

8
j=1 Ď N such that xkj = kj (mod 2π)

and
␣

xkj

(8

j=1
converges to θ. This implies that for each θ P [´1, 1], there exists a subsequence

tcos kju8
j=1 such that

lim
jÑ8

cosnj = cos θ and lim
jÑ8

sinnj = sin θ .

Therefore, we have

lim inf
nÑ8

(xn + yn) = 4 ´
?
2 , lim sup

nÑ8

(xn + yn) = 4 +
?
2 ,

and
lim inf
nÑ8

xnyn =
9

2
´ 2

?
2 , lim sup

nÑ8

xnyn =
9

2
+ 2

?
2 .

Therefore,

lim inf
nÑ8

xn + lim inf
nÑ8

yn ă lim inf
nÑ8

(xn + yn) ă lim inf
nÑ8

xn + lim sup
nÑ8

yn

ă lim sup
nÑ8

(xn + yn) ă lim sup
nÑ8

xn + lim sup
nÑ8

yn

and

lim inf
nÑ8

xn ¨ lim inf
nÑ8

yn ă lim inf
nÑ8

(xnyn) ă lim inf
nÑ8

xn ¨ lim sup
nÑ8

yn

ă lim sup
nÑ8

(xnyn) ă lim sup
nÑ8

xn ¨ lim sup
nÑ8

yn .

Therefore, the equalities are generally not true. ˝



Problem 5. Prove that

lim inf
nÑ8

|xn+1|

|xn|
ď lim inf

nÑ8

n
a

|xn| ď lim sup
nÑ8

n
a

|xn| ď lim sup
nÑ8

|xn+1|

|xn|
.

Give examples to show that the equalities are not true in general. Is it true that lim
nÑ8

n
a

|xn| exists

implies that lim
nÑ8

|xn+1|

|xn|
also exists?

Proof. W.L.O.G. we can assume that lim inf
nÑ8

|xn+1|

|xn|
ą 0 and lim sup

nÑ8

|xn+1|

|xn|
ă 8. Let a = lim inf

nÑ8

|xn+1|

|xn|

and b = lim sup
nÑ8

|xn+1|

|xn|
, and ε ą 0 be given such that a ´ ε ą 0. Then there exists N ą 0 such that

a ´ ε ă
|xn+1|

|xn|
ă b+ ε @n ě N .

Therefore,
(a ´ ε)|xn| ă |xn+1| ă (b+ ε)|xn| @n ě N

which implies that if n ą N ,

|xn| ą (a ´ ε)|xn´1| ą (a ´ ε)2|xn´2| ą ¨ ¨ ¨ ą (a ´ ε)n´N |xN |

and
|xn| ă (b+ ε)|xn´1| ă (b+ ε)2|xn´2| ă ¨ ¨ ¨ ă (b+ ε)n´N |xN | .

The inequality above implies that

(a ´ ε)1´N
n

n
a

|xN | ă n
a

|xn| ă (b+ ε)1´N
n

n
a

|xN | ;

thus

lim inf
nÑ8

[
(a ´ ε)1´N

n
n
a

|xN |

]
ď lim inf

nÑ8

n
a

|xn| ď lim sup
nÑ8

n
a

|xn| ď lim sup
nÑ8

[
(b+ ε)1´N

n
n
a

|xN |

]
.

By Problem 4 of Exercise 1, lim
nÑ8

b
1
n = 1 for all b ą 0. Therefore,

lim inf
nÑ8

[
(a ´ ε)1´N

n
n
a

|xN |

]
= lim

nÑ8
(a ´ ε)1´N

n
n
a

|xN | = a ´ ε = lim inf
nÑ8

|xn+1|

|xn|
´ ε

and
lim sup
nÑ8

[
(b+ ε)1´N

n
n
a

|xN |

]
= lim

nÑ8
(b+ ε)1´N

n
n
a

|xN | = b+ ε = lim sup
nÑ8

|xn+1|

|xn|
+ ε .

Since the inequality above holds for all ε ą 0, we conclude that

lim inf
nÑ8

|xn+1|

|xn|
ď lim inf

nÑ8

n
a

|xn| ď lim sup
nÑ8

n
a

|xn| ď lim sup
nÑ8

|xn+1|

|xn|
.

Let txnu8
n=1 be a real sequence defined by

xn =

"

2´n if n is odd ,
4´n if n is even ,



or xn = (3 + (´1)n)´n. Then n
a

|xn| = 3 + (´1)n which shows that

lim inf
nÑ8

n
a

|xn| =
1

4
and lim sup

nÑ8

n
a

|xn| =
1

2
.

To compute the limit superior and limit inferior of |xn+1|

|xn|
, we define

yn =
|xn+1|

|xn|
=

(3 + (´1)n+1)´n´1

(3 + (´1)n)´n
=

1

3 ´ (´1)n

(3 ´ (´1)n

3 + (´1)n

)´n

and observe that lim
nÑ8

y2n = 0 and lim
nÑ8

y2n+1 = 8. Since yn P [0,8), we conclude that 0 is the
smallest cluster point of tynu8

n=1 and 8 is the largest “cluster point” of tynu8
n=1. This shows that

lim inf
nÑ8

|xn+1|

|xn|
= 0 and lim sup

nÑ8

|xn+1|

|xn|
= 8 . ˝

Problem 6. Find lim sup
nÑ8

cosn and lim inf
nÑ8

cosn.

Hint: First show that for all irrational α, the set

S =
␣

x P [0, 1]
ˇ

ˇx = kα (mod 1) for some k P N
(

is dense in [0, 1]; that is, for all y P [0, 1] and ε ą 0, there exists x P S X (y ´ ε, y + ε). Then choose
α =

1

2π
to conclude that

T =
␣

x P [0, 2π]
ˇ

ˇx = k (mod 2π) for some k P N
(

is dense in [0, 2π]. To prove that S is dense in [0, 1], you might want to consider the following set

Sk =
␣

x P [0, 1]
ˇ

ˇx = ℓα (mod 1) for some 1 ď ℓ ď k + 1
(

Note that there must be two points in Sk whose distance is less than 1

k
. What happened to (the

multiples of) the difference of these two points?

Proof. Define Sk =
␣

x P [0, 1]
ˇ

ˇx = ℓα (mod 1) for some 1 ď ℓ ď k + 1
(

. Let 1 ď ℓ1, ℓ2 ď k + 1, and
x, y P [0, 1] satisfying that x = ℓ1α (mod 1) and y = ℓ2α (mod 1). Then by the fact that α R Q,

x = y ô ℓ1α = ℓ2α (mod 1) ô (ℓ1 ´ ℓ2)α P Z ô ℓ1 ´ ℓ2 = 0 .

Therefore, there are (k + 1) distinct points in Sk (this also shows that each k P N corresponds to
different point x = kα (mod 1) in S). Moreover, x R Q if x P Sk. By the pigeonhole principle, there
exist x, y in Sk satisfying that 0 ă |x ´ y| ă

1

k
.

Let ε ą 0 be given. Then there exists n P N such that 1

n
ă ε. By the discussion above, there

exist x, y P Sn such that 0 ă |x ´ y| ă ε. Suppose that x = n1α (mod 1) and y = n2α (mod 1),
and define m = |n1 ´ n2|. The point z P [0, 1] satisfying z = mα (mod 1) has the property that
z P (0, ε) Y (1 ´ ε, 1). Therefore,

(@ ε ą 0)(D x P S)
(
x P (0, ε) Y (1 ´ ε, 1)

)
.



Let y P [0, 1] and ε ą 0 be given. The discussion above provides an x P (0, 1) such that x = kα

(mod 1) for some k P N and x P (0, ε) Y (1 ´ ε, 1). Then some constant multiple of x must belong
to (y ´ ε, y + ε). If ℓx P (y ´ ε, y + ε), then z = kℓα (mod 1) in (y ´ ε, y + ε). This shows that S is
dense in [0, 1].

Having established that S is dense in [0, 1], we find that T is dense in [0, 2π]. Therefore, for
each θ P [0, 2π] there exists an increasing sequence tmju

8
j=1 Ď N such that xmj

= mj (mod 2π)
and txmj

u8
j=1 Ď [0, 2π] converges to θ. In particular, for each θ P [0, 2π] there exists an increasing

sequence tmju
8
j=1 Ď N such that

lim
jÑ8

cosmj = cos θ and lim
jÑ8

sinmj = sin θ ;

thus we conclude that lim sup
mÑ8

cosm = 1 and lim inf
mÑ8

cosm = ´1. ˝


