Exercise Problem Sets 4

Oct. 08. 2021

Problem 1. Let A be a set, and $f, g: A \rightarrow \mathbb{R}$ be two functions. Let $h=\max \{f, g\}$; that is,

$$
h(x)=\max \{f(x), g(x)\} \quad \forall x \in A .
$$

Show that

$$
\sup _{x \in A} h(x)=\max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\} .
$$

Generalize the result above to the following: if $f_{1}, \cdots, f_{n}: A \rightarrow \mathbb{R}$ are real-valued functions, then

$$
\sup _{x \in A} \max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}=\max \left\{\sup _{x \in A} f_{1}(x), \sup _{x \in A} f_{2}(x), \cdots, \sup _{x \in A} f_{n}(x)\right\} .
$$

Can one conclude that if $f_{n}: A \rightarrow \mathbb{R}$ is a sequence of functions, then

$$
\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}=\sup \left\{\sup _{x \in A} f_{1}(x), \sup _{x \in A} f_{2}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} .
$$

Proof. First, by the definition of h,

$$
f(x) \leqslant h(x) \quad \forall x \in A \quad \text { and } \quad g(x) \leqslant h(x) \quad \forall x \in A .
$$

Therefore, by the fact that $h(x) \leqslant \sup _{x \in A} h(x)$, we find that

$$
f(x) \leqslant \sup _{x \in A} h(x) \quad \text { and } \quad g(x) \leqslant \sup _{x \in A} h(x) \quad \forall x \in A .
$$

The inequalities above shows that $\sup _{x \in A} h(x)$ is an upper bound for the range of f and g; thus

$$
\sup _{x \in A} f(x) \leqslant \sup _{x \in A} h(x) \quad \text { and } \quad \sup _{x \in A} g(x) \leqslant \sup _{x \in A} h(x) .
$$

Therefore,

$$
\max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\} \leqslant \sup _{x \in A} h(x) .
$$

Next, we show the revered inequality.

1. Suppose that $\sup _{x \in A} h(x)=\infty$. Then h is not bounded from above; thus f or g is not bounded from above. In fact, if $f(x) \leqslant M$ and $g(x) \leqslant N$ for all $x \in A$, then $h(x)=\max \{f(x), g(x)\} \leqslant$ $\max \{M, N\}$ for all $x \in A$ which shows that h is bounded from above, a contradiction. Therefore, $\sup _{x \in A} f(x)=\infty$ or $\sup _{x \in A} g(x)=\infty$ so that

$$
\max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\}=\infty
$$

which shows that

$$
\max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\} \geqslant \sup _{x \in A} h(x) .
$$

2. Suppose that $\sup _{x \in A} h(x)=M \in \mathbb{R}$. Let $\varepsilon>0$ be given. Then there exists $x_{0} \in A$ such that

$$
M-\varepsilon<h\left(x_{0}\right)=\max \left\{f\left(x_{0}\right), g\left(x_{0}\right)\right\} .
$$

Therefore, the fact $f\left(x_{0}\right) \leqslant \sup _{x \in A} f(x)$ and $g\left(x_{0}\right) \leqslant \sup _{x \in A} g(x)$ shows that

$$
M-\varepsilon<\max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\}
$$

The inequality above holds for all $\varepsilon>0$; thus

$$
\sup _{x \in A} h(x)=M \leqslant \max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\} .
$$

In either case we have shown that $\sup _{x \in A} h(x)=M \leqslant \max \left\{\sup _{x \in A} f(x), \sup _{x \in A} g(x)\right\}$; thus combining with (\star) we conclude the desired identity.

Next we show that

$$
\sup _{x \in A} \max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}=\max \left\{\sup _{x \in A} f_{1}(x), \sup _{x \in A} f_{2}(x), \cdots, \sup _{x \in A} f_{n}(x)\right\} .
$$

We note that for each $n \geqslant 3$,

$$
\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}=\max \left\{\max \left\{f_{1}(x), \cdots, f_{n-1}(x)\right\}, f_{n}(x)\right\} \quad \forall x \in A
$$

In fact, for a fixed $x \in A$ suppose that $f_{j}(x)=\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}$.

1. $j \neq n$: In this case $f_{j}(x)=\max \left\{f_{1}(x), \cdots, f_{n-1}(x)\right\}$ and $f_{j}(x) \geqslant f_{n}(x)$. Therefore,

$$
\begin{aligned}
\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\} & =f_{j}(x)=\max \left\{f_{j}(x), f_{n}(x)\right\} \\
& =\max \left\{\max \left\{f_{1}(x), \cdots, f_{n-1}(x)\right\}, f_{n}(x)\right\} .
\end{aligned}
$$

2. $j=n$: If this case $f_{n}(x) \geqslant \max \left\{f_{1}(x), \cdots, f_{n-1}(x)\right\}$; thus

$$
\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}=f_{n}(x)=\max \left\{\max \left\{f_{1}(x), \cdots, f_{n-1}(x)\right\}, f_{n}(x)\right\} .
$$

This establishes ($\star \star \star$).
Now we prove ($\star \star$). From the argument above we find that ($\star \star$) holds for the case $n=2$. Suppose that ($\star \star$) holds for the case $n=m$. If $n=m+1$, by ($\star \star \star$) we find that

$$
\max \left\{f_{1}(x), \cdots, f_{m+1}(x)\right\}=\max \left\{\max \left\{f_{1}(x), \cdots, f_{m}(x)\right\}, f_{m+1}(x)\right\} \quad \forall x \in A ;
$$

thus

$$
\begin{aligned}
\sup _{x \in A} \max \left\{f_{1}(x), \cdots, f_{m+1}(x)\right\} & =\sup _{x \in A} \max \left\{\max \left\{f_{1}(x), \cdots, f_{m}(x)\right\}, f_{m+1}(x)\right\} \\
& =\max \left\{\sup _{x \in A} \max \left\{f_{1}(x), \cdots, f_{m}(x)\right\}, \sup _{x \in A} f_{m+1}(x)\right\}
\end{aligned}
$$

and the assumption that ($\star \star$) holds for the case $n=m$ further implies that

$$
\begin{aligned}
\sup _{x \in A} \max \left\{f_{1}(x), \cdots, f_{m+1}(x)\right\} & =\max \left\{\max \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{m}(x)\right\}, \sup _{x \in A} f_{m+1}(x)\right\} \\
& =\max \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{m+1}(x)\right\} .
\end{aligned}
$$

Therefore, ($\star \star$) holds for the case $n=m+1$. By induction, ($\star \star$) holds for all $n \geqslant 2$.
Finally, we note that

$$
f_{j}(x) \leqslant \sup _{y \in A} f_{j}(y) \leqslant \sup \left\{\sup _{y \in A} f_{1}(y), \cdots, \sup _{y \in A} f_{n}(y), \cdots\right\} \quad \forall x \in A \text { and } j \in \mathbb{N} .
$$

This implies that

$$
\sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\} \leqslant \sup \left\{\sup _{y \in A} f_{1}(y), \cdots, \sup _{y \in A} f_{n}(y), \cdots\right\} \quad \forall x \in A ;
$$

thus

$$
\begin{aligned}
\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\} & \leqslant \sup \left\{\sup _{y \in A} f_{1}(y), \cdots, \sup _{y \in A} f_{n}(y), \cdots\right\} \\
& =\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} .
\end{aligned}
$$

Now we prove the reverse inequality. Let $S=\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}$.

1. $S \in \mathbb{R}$: Let $\varepsilon>0$ be given. By the definition of supremum, there exists $x \in A$ such that

$$
S \geqslant \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}>S-\frac{\varepsilon}{2} .
$$

Then $\sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\} \in \mathbb{R}$; thus there exists $j \in \mathbb{N}$ such that

$$
f_{j}(x)>\sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}-\frac{\varepsilon}{2}>S-\varepsilon .
$$

Therefore, $\sup _{x \in A} f_{j}(x) \geqslant S-\varepsilon$ which implies that

$$
\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} \geqslant S-\varepsilon .
$$

Since $\varepsilon>0$ is given arbitrarily, we find that

$$
\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} \geqslant S=\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\} .
$$

2. $S=\infty$: Let $M>0$ be given. Then there exists $x \in A$ such that

$$
\sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}>M
$$

which further implies that there exists $j \in \mathbb{N}$ such that $f_{j}(x)>M$. Therefore, $\sup _{x \in A} f_{j}(x) \geqslant M$; thus

$$
\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} \geqslant M
$$

Since M is given arbitrarily, we conclude that

$$
\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\}=\infty=S .
$$

In either case we establish that $\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\} \geqslant S$; thus

$$
\begin{equation*}
\sup _{x \in A} \sup \left\{f_{1}(x), \cdots, f_{n}(x), \cdots\right\}=\sup \left\{\sup _{x \in A} f_{1}(x), \cdots, \sup _{x \in A} f_{n}(x), \cdots\right\} . \tag{ㅁ}
\end{equation*}
$$

Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an Archimedean ordered field. A number $x \in \mathbb{F}$ is called an accumulation point of a set $A \subseteq \mathbb{F}$ if for all $\delta>0,(x-\delta, x+\delta)$ contains at least one point of A distinct from x. In logic notation,

$$
x \text { is an accumulation point of } A \quad \Leftrightarrow \quad(\forall \delta>0)(A \cap(x-\delta, x+\delta) \backslash\{x\} \neq \varnothing) .
$$

1. Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in \mathbb{F} so that $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$ and $A=\left\{x_{k} \mid k \in \mathbb{N}\right\}$, then x is an accumulation of A if and only if x is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
2. How about if the condition $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$ is removed? Is the statement in 1 still valid?

Proof. 1. We show that
x is an accumulation point of A if and only if $(\forall \delta>0)(\#(A \cap(x-\delta, x+\delta))=\infty)$.
The direction " \Leftarrow " is trivial since if $\#(A \cap(x-\delta, x+\delta))=\infty, A \cap(x-\delta, x+\delta)$ contains some point distinct from x.
(\Rightarrow) Let $\delta_{1}=1$, by the definition of the accumulation points, there exists $x_{1} \in A \cap\left(x-\delta_{1}, x+\delta_{1}\right)$ and $x_{1} \neq x$. Define $\delta_{2}=\min \left\{\left|x_{1}-x\right|, \frac{1}{2}\right\}$. Then $\delta_{2}>0$; thus there exists $x_{2} \in A \cap\left(x-\delta_{2}, x+\delta_{2}\right)$ and $x_{2} \neq x$. We continue this process and obtain a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq A \backslash\{x\}$ satisfying that

$$
x_{1} \in A \cap(x-1, x+1), \quad x_{n} \in A \cap\left(x-\delta_{n}, x+\delta_{n}\right) \text { with } \delta_{n}=\min \left\{\left|x-x_{n-1}\right|, \frac{1}{n}\right\} .
$$

By Archimedean property, $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x since $\left|x-x_{n}\right|<\delta_{n} \leqslant \frac{1}{n}$. Let $\delta>0$ be given. There exists $N>0$ such that $\frac{1}{N}<\delta$; thus

$$
A \cap(x-\delta, x+\delta) \supseteq A \cap\left(x-\frac{1}{N}, x+\frac{1}{N}\right) \supseteq\left\{x_{N}, x_{N+1}, x_{N+2}, \cdots\right\}
$$

Since $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$, we must have $\#(A \cap(x-\delta, x+\delta))=\infty$.
Problem 3. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathbb{F}. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges if and only if every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges.

Proof. By Proposition 1.60 in the lecture note, it suffices to prove the direction " \Leftarrow ". We show that if every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges, then every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to identical limit. Suppose the contrary that there exist two subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{x_{m_{j}}\right\}_{j=1}^{\infty}$ that converge to a and b and $a \neq b$, respectively. We construct a new subsequence $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$, as follows. Let $k_{1}=1$ and $y_{1}=x_{n_{k_{1}}}$. Let j_{1} be the smallest integer so that $m_{j_{1}}>n_{k_{1}}$, and define
$y_{2}=x_{m_{j_{1}}}$. Let k_{2} be the smallest integer so that $n_{k_{2}}>m_{j_{1}}$, and define $y_{3}=x_{n_{\ell_{2}}}$. We continue this process and obtain a sequence $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ satisfying that

$$
y_{\ell}=\left\{\begin{array}{cl}
y_{n_{k_{\ell+1}}} & \ell \text { is odd } \\
y_{m_{\frac{j_{2}}{2}}} & \ell \text { is even }
\end{array}\right.
$$

where k_{1}, k_{2}, \cdots and j_{1}, j_{2}, \cdots satisfy that $k_{1}=1$,

$$
j_{r}=\min \left\{j \in \mathbb{N} \mid m_{j}>k_{r}\right\} \quad \text { and } \quad k_{r+1}=\min \left\{k \in \mathbb{N} \mid n_{k}>m_{j_{r}}\right\} \quad \forall r \in \mathbb{N} .
$$

Then $\left\{y_{2 \ell-1}\right\}_{\ell=1}^{\infty}$, the collection of odd terms of $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$, is a subsequence of $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{y_{2 \ell}\right\}_{\ell=1}^{\infty}$, the collection of even terms of $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$, is a subsequence of $\left\{x_{m_{j}}\right\}_{j=1}^{\infty}$, and $\left\{y_{2 \ell-1}\right\}_{\ell=1}^{\infty}$ converges to a while $\left\{y_{2 \ell}\right\}_{\ell=1}^{\infty}$ converges to b, and $a \neq b$. By a Proposition we talked about in class, $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ does not converges, a contradiction.

Problem 4. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an Archimedean ordered field, and $f: \mathbb{F} \rightarrow \mathbb{F}$ be a function so that

$$
|f(x)-f(y)| \leqslant \alpha|x-y| \quad \forall x, y \in \mathbb{F},
$$

where $\alpha \in \mathbb{F}$ is a constant satisfying $0<\alpha<1$. Pick an arbitrary $x_{1} \in \mathbb{F}$, and define $x_{k+1}=f\left(x_{k}\right)$ for all $k \in \mathbb{N}$. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F}.
Proof. First we claim that if $0<\alpha<1$, then $\lim _{n \rightarrow \infty} \alpha^{n}=0$. In fact, we have $\frac{1}{\alpha}>1$; thus by the fact that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ (which is from Archimedean property), there exists $p>0$ such that

$$
1+\frac{1}{p}<\frac{1}{\alpha} .
$$

Therefore,

$$
\frac{1}{\alpha^{p}}>\left(1+\frac{1}{p}\right)^{p} \geqslant 1+C_{1}^{p} \frac{1}{p}=2
$$

which implies that

$$
0<\alpha^{p}<\frac{1}{2}
$$

By the fact that $2^{n} \geqslant n$ for all $n \geqslant \mathbb{N}$ (which can be shown by induction), we find from the Sandwich Lemma that

$$
\lim _{n \rightarrow \infty} \alpha^{p n}=0
$$

Let $\varepsilon>0$ be given. The identity above shows the existence of $N_{1}>0$ such that $\left|\alpha^{p n}\right|<\varepsilon$ whenever $n \geqslant N_{1}$. Let $N=p N_{1}$. Then if $n \geqslant N$,

$$
\left|\alpha^{n}\right| \leqslant\left|\alpha^{p N_{1}}\right|<\varepsilon .
$$

Therefore, $\lim _{n \rightarrow \infty} \alpha^{n}=0$.
Next by the fact that $|f(x)-f(y)| \leqslant \alpha|x-y|$ and $x_{k+1}=f\left(x_{k}\right)$ for all $k \in \mathbb{N}$, we have

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leqslant \alpha\left|x_{n}-x_{n-1}\right| \quad \forall n \geqslant 2 ;
$$

thus

$$
\left|x_{n+1}-x_{n}\right| \leqslant \alpha\left|x_{n}-x_{n-1}\right| \stackrel{(\text { if } n \geqslant 3)}{\leqslant} \alpha^{2}\left|x_{n-1}-x_{n-2}\right| \leqslant \cdots \leqslant \alpha^{n-1}\left|x_{2}-x_{1}\right|
$$

Therefore, if $n>m$,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+x_{n-2}-\cdots-x_{m+1}+x_{m+1}-x_{m}\right| \\
& \leqslant\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \\
& \leqslant \alpha^{n-2}\left|x_{2}-x_{1}\right|+\alpha^{n-3}\left|x_{2}-x_{1}\right|+\cdots+\alpha^{m-1}\left|x_{2}-x_{1}\right| \\
& =\left(\alpha^{n-2}+\alpha^{n-3}+\alpha^{m-1}\right)\left|x_{2}-x_{1}\right| \leqslant \frac{\alpha^{m-1}}{1-\alpha}\left|x_{2}-x_{1}\right| .
\end{aligned}
$$

Let $\varepsilon>0$ be given. Since $\lim _{n \rightarrow \infty} \alpha^{n}=0$, there exists $N>0$ such that

$$
\frac{\alpha^{n-1}}{1-\alpha}\left|x_{2}-x_{1}\right|<\varepsilon \quad \text { whenever } \quad n \geqslant N
$$

Then if $n>m \geqslant N$, by the fact that $\left|x_{n}-x_{m}\right| \leqslant \frac{\alpha^{m-1}}{1-\alpha}\left|x_{2}-x_{1}\right|$ we obtain that $\left|x_{n}-x_{m}\right|<\varepsilon$.

