Exercise Problem Sets 4

Problem 1. Let A be a set, and $f, g: A \to \mathbb{R}$ be two functions. Let $h = \max\{f, g\}$; that is,

$$h(x) = \max\left\{f(x), g(x)\right\} \qquad \forall x \in A$$

Show that

$$\sup_{x \in A} h(x) = \max\left\{\sup_{x \in A} f(x), \sup_{x \in A} g(x)\right\}.$$

Generalize the result above to the following: if $f_1, \dots, f_n : A \to \mathbb{R}$ are real-valued functions, then

$$\sup_{x \in A} \max\left\{f_1(x), \cdots, f_n(x)\right\} = \max\left\{\sup_{x \in A} f_1(x), \sup_{x \in A} f_2(x), \cdots, \sup_{x \in A} f_n(x)\right\}.$$

Can one conclude that if $f_n: A \to \mathbb{R}$ is a sequence of functions, then

$$\sup_{x \in A} \sup \left\{ f_1(x), \cdots, f_n(x), \cdots \right\} = \sup \left\{ \sup_{x \in A} f_1(x), \sup_{x \in A} f_2(x), \cdots, \sup_{x \in A} f_n(x), \cdots \right\}$$

Proof. First, by the definition of h,

$$f(x) \leq h(x) \qquad \forall x \in A \qquad \text{and} \qquad g(x) \leq h(x) \qquad \forall x \in A$$

Therefore, by the fact that $h(x) \leq \sup h(x)$, we find that

$$f(x) \leq \sup_{x \in A} h(x)$$
 and $g(x) \leq \sup_{x \in A} h(x)$ $\forall x \in A$.

The inequalities above shows that $\sup_{x \in A} h(x)$ is an upper bound for the range of f and g; thus

$$\sup_{x \in A} f(x) \leq \sup_{x \in A} h(x) \quad \text{and} \quad \sup_{x \in A} g(x) \leq \sup_{x \in A} h(x).$$

Therefore,

$$\max\left\{\sup_{x\in A} f(x), \sup_{x\in A} g(x)\right\} \leqslant \sup_{x\in A} h(x).$$
(*)

Next, we show the revered inequality.

1. Suppose that $\sup_{x \in A} h(x) = \infty$. Then h is not bounded from above; thus f or g is not bounded from above. In fact, if $f(x) \leq M$ and $g(x) \leq N$ for all $x \in A$, then $h(x) = \max\{f(x), g(x)\} \leq \max\{M, N\}$ for all $x \in A$ which shows that h is bounded from above, a contradiction. Therefore, $\sup_{x \in A} f(x) = \infty$ or $\sup_{x \in A} g(x) = \infty$ so that

$$\max\left\{\sup_{x\in A} f(x), \sup_{x\in A} g(x)\right\} = \infty$$

which shows that

$$\max\left\{\sup_{x\in A}f(x),\sup_{x\in A}g(x)\right\} \ge \sup_{x\in A}h(x).$$

2. Suppose that $\sup_{x \in A} h(x) = M \in \mathbb{R}$. Let $\varepsilon > 0$ be given. Then there exists $x_0 \in A$ such that

$$M - \varepsilon < h(x_0) = \max\left\{f(x_0), g(x_0)\right\}$$

Therefore, the fact $f(x_0) \leq \sup_{x \in A} f(x)$ and $g(x_0) \leq \sup_{x \in A} g(x)$ shows that

$$M - \varepsilon < \max\left\{\sup_{x \in A} f(x), \sup_{x \in A} g(x)\right\}$$

The inequality above holds for all $\varepsilon > 0$; thus

$$\sup_{x \in A} h(x) = M \leqslant \max\left\{\sup_{x \in A} f(x), \sup_{x \in A} g(x)\right\}.$$

In either case we have shown that $\sup_{x \in A} h(x) = M \leq \max \left\{ \sup_{x \in A} f(x), \sup_{x \in A} g(x) \right\}$; thus combining with (\star) we conclude the desired identity.

Next we show that

$$\sup_{x \in A} \max\left\{f_1(x), \cdots, f_n(x)\right\} = \max\left\{\sup_{x \in A} f_1(x), \sup_{x \in A} f_2(x), \cdots, \sup_{x \in A} f_n(x)\right\}.$$
 (**)

We note that for each $n \ge 3$,

$$\max\left\{f_1(x),\cdots,f_n(x)\right\} = \max\left\{\max\left\{f_1(x),\cdots,f_{n-1}(x)\right\},f_n(x)\right\} \quad \forall x \in A. \quad (\star\star\star)$$

In fact, for a fixed $x \in A$ suppose that $f_j(x) = \max \{ f_1(x), \cdots, f_n(x) \}.$

1. $j \neq n$: In this case $f_j(x) = \max \{f_1(x), \cdots, f_{n-1}(x)\}$ and $f_j(x) \ge f_n(x)$. Therefore,

$$\max \{f_1(x), \cdots, f_n(x)\} = f_j(x) = \max \{f_j(x), f_n(x)\} = \max \{\max \{f_1(x), \cdots, f_{n-1}(x)\}, f_n(x)\}.$$

2. j = n: If this case $f_n(x) \ge \max \{f_1(x), \cdots, f_{n-1}(x)\}$; thus

$$\max\{f_1(x), \cdots, f_n(x)\} = f_n(x) = \max\{\max\{f_1(x), \cdots, f_{n-1}(x)\}, f_n(x)\}$$

This establishes $(\star\star\star)$.

Now we prove $(\star\star)$. From the argument above we find that $(\star\star)$ holds for the case n = 2. Suppose that $(\star\star)$ holds for the case n = m. If n = m + 1, by $(\star\star\star)$ we find that

$$\max\{f_1(x), \cdots, f_{m+1}(x)\} = \max\{\max\{f_1(x), \cdots, f_m(x)\}, f_{m+1}(x)\} \quad \forall x \in A;$$

thus

$$\sup_{x \in A} \max \{ f_1(x), \cdots, f_{m+1}(x) \} = \sup_{x \in A} \max \{ \max \{ f_1(x), \cdots, f_m(x) \}, f_{m+1}(x) \}$$
$$= \max \{ \sup_{x \in A} \max \{ f_1(x), \cdots, f_m(x) \}, \sup_{x \in A} f_{m+1}(x) \}$$

and the assumption that $(\star\star)$ holds for the case n = m further implies that

$$\sup_{x \in A} \max \left\{ f_1(x), \cdots, f_{m+1}(x) \right\} = \max \left\{ \max \left\{ \sup_{x \in A} f_1(x), \cdots, \sup_{x \in A} f_m(x) \right\}, \sup_{x \in A} f_{m+1}(x) \right\}$$
$$= \max \left\{ \sup_{x \in A} f_1(x), \cdots, \sup_{x \in A} f_{m+1}(x) \right\}.$$

Therefore, $(\star\star)$ holds for the case n = m + 1. By induction, $(\star\star)$ holds for all $n \ge 2$.

Finally, we note that

$$f_j(x) \leq \sup_{y \in A} f_j(y) \leq \sup \left\{ \sup_{y \in A} f_1(y), \cdots, \sup_{y \in A} f_n(y), \cdots \right\} \quad \forall x \in A \text{ and } j \in \mathbb{N}.$$

This implies that

$$\sup\left\{f_1(x),\cdots,f_n(x),\cdots\right\} \leqslant \sup\left\{\sup_{y\in A}f_1(y),\cdots,\sup_{y\in A}f_n(y),\cdots\right\} \qquad \forall x\in A;$$

thus

$$\sup_{x \in A} \sup \left\{ f_1(x), \cdots, f_n(x), \cdots \right\} \leq \sup \left\{ \sup_{y \in A} f_1(y), \cdots, \sup_{y \in A} f_n(y), \cdots \right\}$$
$$= \sup \left\{ \sup_{x \in A} f_1(x), \cdots, \sup_{x \in A} f_n(x), \cdots \right\}.$$

Now we prove the reverse inequality. Let $S = \sup_{x \in A} \sup \{f_1(x), \cdots, f_n(x), \cdots\}$.

1. $S \in \mathbb{R}$: Let $\varepsilon > 0$ be given. By the definition of supremum, there exists $x \in A$ such that

$$S \ge \sup \{f_1(x), \cdots, f_n(x), \cdots\} > S - \frac{\varepsilon}{2}$$

Then sup $\{f_1(x), \cdots, f_n(x), \cdots\} \in \mathbb{R}$; thus there exists $j \in \mathbb{N}$ such that

$$f_j(x) > \sup \{f_1(x), \cdots, f_n(x), \cdots\} - \frac{\varepsilon}{2} > S - \varepsilon$$

Therefore, $\sup_{x \in A} f_j(x) \ge S - \varepsilon$ which implies that

$$\sup\left\{\sup_{x\in A}f_1(x),\cdots,\sup_{x\in A}f_n(x),\cdots\right\} \ge S-\varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that

$$\sup\left\{\sup_{x\in A}f_1(x),\cdots,\sup_{x\in A}f_n(x),\cdots\right\} \ge S = \sup_{x\in A}\sup\left\{f_1(x),\cdots,f_n(x),\cdots\right\}.$$

2. $S = \infty$: Let M > 0 be given. Then there exists $x \in A$ such that

$$\sup\left\{f_1(x),\cdots,f_n(x),\cdots\right\}>M$$

which further implies that there exists $j \in \mathbb{N}$ such that $f_j(x) > M$. Therefore, $\sup_{x \in A} f_j(x) \ge M$; thus

$$\sup\left\{\sup_{x\in A}f_1(x),\cdots,\sup_{x\in A}f_n(x),\cdots\right\} \ge M$$

Since M is given arbitrarily, we conclude that

$$\sup\left\{\sup_{x\in A}f_1(x),\cdots,\sup_{x\in A}f_n(x),\cdots\right\}=\infty=S.$$

In either case we establish that $\sup_{x \in A} \sup \{f_1(x), \cdots, f_n(x), \cdots\} \ge S$; thus

$$\sup_{x \in A} \sup \left\{ f_1(x), \cdots, f_n(x), \cdots \right\} = \sup \left\{ \sup_{x \in A} f_1(x), \cdots, \sup_{x \in A} f_n(x), \cdots \right\}.$$

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field. A number $x \in \mathbb{F}$ is called an *accumulation point* of a set $A \subseteq \mathbb{F}$ if for all $\delta > 0$, $(x - \delta, x + \delta)$ contains at least one point of A distinct from x. In logic notation,

- x is an accumulation point of $A \quad \Leftrightarrow \quad (\forall \, \delta > 0) (A \cap (x \delta, x + \delta) \setminus \{x\} \neq \emptyset)$.
- 1. Show that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{F} so that $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ and $A = \{x_k \mid k \in \mathbb{N}\}$, then x is an accumulation of A if and only if x is a cluster point of $\{x_n\}_{n=1}^{\infty}$.
- 2. How about if the condition $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if $(\forall \delta > 0) (\#(A \cap (x - \delta, x + \delta)) = \infty)$.

The direction " \Leftarrow " is trivial since if $\#(A \cap (x - \delta, x + \delta)) = \infty$, $A \cap (x - \delta, x + \delta)$ contains some point distinct from x.

 (\Rightarrow) Let $\delta_1 = 1$, by the definition of the accumulation points, there exists $x_1 \in A \cap (x - \delta_1, x + \delta_1)$ and $x_1 \neq x$. Define $\delta_2 = \min\{|x_1 - x|, \frac{1}{2}\}$. Then $\delta_2 > 0$; thus there exists $x_2 \in A \cap (x - \delta_2, x + \delta_2)$ and $x_2 \neq x$. We continue this process and obtain a sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{x\}$ satisfying that

$$x_1 \in A \cap (x - 1, x + 1), \quad x_n \in A \cap (x - \delta_n, x + \delta_n) \text{ with } \delta_n = \min\{|x - x_{n-1}|, \frac{1}{n}\}.$$

By Archimedean property, $\{x_n\}_{n=1}^{\infty}$ converges to x since $|x - x_n| < \delta_n \leq \frac{1}{n}$. Let $\delta > 0$ be given. There exists N > 0 such that $\frac{1}{N} < \delta$; thus

$$A \cap (x - \delta, x + \delta) \supseteq A \cap \left(x - \frac{1}{N}, x + \frac{1}{N}\right) \supseteq \left\{x_N, x_{N+1}, x_{N+2}, \cdots\right\}.$$

Since $x_i \neq x_j$ for all $i, j \in \mathbb{N}$, we must have $\#(A \cap (x - \delta, x + \delta)) = \infty$.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{F} . Show that $\{x_n\}_{n=1}^{\infty}$ converges if and only if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.

Proof. By Proposition 1.60 in the lecture note, it suffices to prove the direction " \Leftarrow ". We show that if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges, then every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges to identical limit. Suppose the contrary that there exist two subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{x_{m_j}\}_{j=1}^{\infty}$ that converge to a and b and $a \neq b$, respectively. We construct a new subsequence $\{y_\ell\}_{\ell=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$, as follows. Let $k_1 = 1$ and $y_1 = x_{n_{k_1}}$. Let j_1 be the smallest integer so that $m_{j_1} > n_{k_1}$, and define $y_2 = x_{m_{j_1}}$. Let k_2 be the smallest integer so that $n_{k_2} > m_{j_1}$, and define $y_3 = x_{n_{\ell_2}}$. We continue this process and obtain a sequence $\{y_\ell\}_{\ell=1}^\infty$ satisfying that

$$y_{\ell} = \left\{ egin{array}{cc} y_{n_{k_{rac{\ell+1}{2}}}} & \ell ext{ is odd }, \\ y_{m_{j_{rac{\ell}{2}}}} & \ell ext{ is even }, \end{array}
ight.$$

where k_1, k_2, \cdots and j_1, j_2, \cdots satisfy that $k_1 = 1$,

$$j_r = \min\left\{j \in \mathbb{N} \mid m_j > k_r\right\}$$
 and $k_{r+1} = \min\left\{k \in \mathbb{N} \mid n_k > m_{j_r}\right\}$ $\forall r \in \mathbb{N}$

Then $\{y_{2\ell-1}\}_{\ell=1}^{\infty}$, the collection of odd terms of $\{y_{\ell}\}_{\ell=1}^{\infty}$, is a subsequence of $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{y_{2\ell}\}_{\ell=1}^{\infty}$, the collection of even terms of $\{y_{\ell}\}_{\ell=1}^{\infty}$, is a subsequence of $\{x_{m_j}\}_{j=1}^{\infty}$, and $\{y_{2\ell-1}\}_{\ell=1}^{\infty}$ converges to awhile $\{y_{2\ell}\}_{\ell=1}^{\infty}$ converges to b, and $a \neq b$. By a Proposition we talked about in class, $\{y_{\ell}\}_{\ell=1}^{\infty}$ does not converges, a contradiction.

Problem 4. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, and $f : \mathbb{F} \to \mathbb{F}$ be a function so that

$$|f(x) - f(y)| \leq \alpha |x - y| \qquad \forall x, y \in \mathbb{F},$$

where $\alpha \in \mathbb{F}$ is a constant satisfying $0 < \alpha < 1$. Pick an arbitrary $x_1 \in \mathbb{F}$, and define $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F} .

Proof. First we claim that if $0 < \alpha < 1$, then $\lim_{n \to \infty} \alpha^n = 0$. In fact, we have $\frac{1}{\alpha} > 1$; thus by the fact that $\lim_{n \to \infty} \frac{1}{n} = 0$ (which is from Archimedean property), there exists p > 0 such that

$$1 + \frac{1}{p} < \frac{1}{\alpha}$$

Therefore,

$$\frac{1}{\alpha^p} > \left(1 + \frac{1}{p}\right)^p \ge 1 + C_1^p \frac{1}{p} = 2$$

which implies that

$$0 < \alpha^p < \frac{1}{2} \,.$$

By the fact that $2^n \ge n$ for all $n \ge \mathbb{N}$ (which can be shown by induction), we find from the Sandwich Lemma that

$$\lim_{n \to \infty} \alpha^{pn} = 0$$

Let $\varepsilon > 0$ be given. The identity above shows the existence of $N_1 > 0$ such that $|\alpha^{pn}| < \varepsilon$ whenever $n \ge N_1$. Let $N = pN_1$. Then if $n \ge N$,

$$\left|\alpha^{n}\right| \leqslant \left|\alpha^{pN_{1}}\right| < \varepsilon.$$

Therefore, $\lim_{n \to \infty} \alpha^n = 0.$

Next by the fact that $|f(x) - f(y)| \leq \alpha |x - y|$ and $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$, we have

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le \alpha |x_n - x_{n-1}| \qquad \forall n \ge 2;$$

thus

$$|x_{n+1} - x_n| \leq \alpha |x_n - x_{n-1}| \stackrel{\text{(if } n \geq 3)}{\leq} \alpha^2 |x_{n-1} - x_{n-2}| \leq \dots \leq \alpha^{n-1} |x_2 - x_1|.$$

Therefore, if n > m,

$$\begin{aligned} |x_n - x_m| &= |x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} - \dots - x_{m+1} + x_{m+1} - x_m| \\ &\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m| \\ &\leq \alpha^{n-2} |x_2 - x_1| + \alpha^{n-3} |x_2 - x_1| + \dots + \alpha^{m-1} |x_2 - x_1| \\ &= \left(\alpha^{n-2} + \alpha^{n-3} + \alpha^{m-1}\right) |x_2 - x_1| \leq \frac{\alpha^{m-1}}{1 - \alpha} |x_2 - x_1| \,. \end{aligned}$$

Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} \alpha^n = 0$, there exists N > 0 such that

$$\frac{\alpha^{n-1}}{1-\alpha}|x_2-x_1| < \varepsilon \quad \text{whenever} \quad n \ge N \,.$$

Then if $n > m \ge N$, by the fact that $|x_n - x_m| \le \frac{\alpha^{m-1}}{1-\alpha} |x_2 - x_1|$ we obtain that $|x_n - x_m| < \varepsilon$. \Box