
Exercise Problem Sets 4
Oct. 08. 2021

Problem 1. Let A be a set, and f, g : A Ñ R be two functions. Let h = maxtf, gu; that is,

h(x) = max
␣

f(x), g(x)
(

@x P A .

Show that
sup
xPA

h(x) = max
!

sup
xPA

f(x), sup
xPA

g(x)
)

.

Generalize the result above to the following: if f1, ¨ ¨ ¨ , fn : A Ñ R are real-valued functions, then

sup
xPA

max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

= max
!

sup
xPA

f1(x), sup
xPA

f2(x), ¨ ¨ ¨ , sup
xPA

fn(x)
)

.

Can one conclude that if fn : A Ñ R is a sequence of functions, then

sup
xPA

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

= sup
!

sup
xPA

f1(x), sup
xPA

f2(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

.

Proof. First, by the definition of h,

f(x) ď h(x) @x P A and g(x) ď h(x) @x P A .

Therefore, by the fact that h(x) ď sup
xPA

h(x), we find that

f(x) ď sup
xPA

h(x) and g(x) ď sup
xPA

h(x) @x P A .

The inequalities above shows that sup
xPA

h(x) is an upper bound for the range of f and g; thus

sup
xPA

f(x) ď sup
xPA

h(x) and sup
xPA

g(x) ď sup
xPA

h(x) .

Therefore,
max

!

sup
xPA

f(x), sup
xPA

g(x)
)

ď sup
xPA

h(x) . (‹)

Next, we show the revered inequality.

1. Suppose that sup
xPA

h(x) = 8. Then h is not bounded from above; thus f or g is not bounded
from above. In fact, if f(x) ď M and g(x) ď N for all x P A, then h(x) = maxtf(x), g(x)u ď

maxtM,Nu for all x P A which shows that h is bounded from above, a contradiction. Therefore,
sup
xPA

f(x) = 8 or sup
xPA

g(x) = 8 so that

max
!

sup
xPA

f(x), sup
xPA

g(x)
)

= 8

which shows that
max

!

sup
xPA

f(x), sup
xPA

g(x)
)

ě sup
xPA

h(x) .



2. Suppose that sup
xPA

h(x) = M P R. Let ε ą 0 be given. Then there exists x0 P A such that

M ´ ε ă h(x0) = max
␣

f(x0), g(x0)
(

.

Therefore, the fact f(x0) ď sup
xPA

f(x) and g(x0) ď sup
xPA

g(x) shows that

M ´ ε ă max
!

sup
xPA

f(x), sup
xPA

g(x)
)

.

The inequality above holds for all ε ą 0; thus

sup
xPA

h(x) = M ď max
!

sup
xPA

f(x), sup
xPA

g(x)
)

.

In either case we have shown that sup
xPA

h(x) = M ď max
!

sup
xPA

f(x), sup
xPA

g(x)
)

; thus combining with
(‹) we conclude the desired identity.

Next we show that

sup
xPA

max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

= max
!

sup
xPA

f1(x), sup
xPA

f2(x), ¨ ¨ ¨ , sup
xPA

fn(x)
)

. (‹‹)

We note that for each n ě 3,

max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

= max
!

max
␣

f1(x), ¨ ¨ ¨ , fn´1(x)
(

, fn(x)
)

@x P A . (‹‹‹)

In fact, for a fixed x P A suppose that fj(x) = max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

.

1. j ‰ n: In this case fj(x) = max
␣

f1(x), ¨ ¨ ¨ , fn´1(x)
(

and fj(x) ě fn(x). Therefore,

max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

= fj(x) = max
␣

fj(x), fn(x)
(

= max
!

max
␣

f1(x), ¨ ¨ ¨ , fn´1(x)
(

, fn(x)
)

.

2. j = n: If this case fn(x) ě max
␣

f1(x), ¨ ¨ ¨ , fn´1(x)
(

; thus

max
␣

f1(x), ¨ ¨ ¨ , fn(x)
(

= fn(x) = max
!

max
␣

f1(x), ¨ ¨ ¨ , fn´1(x)
(

, fn(x)
)

.

This establishes (‹‹‹).
Now we prove (‹‹). From the argument above we find that (‹‹) holds for the case n = 2. Suppose

that (‹‹) holds for the case n = m. If n = m+ 1, by (‹‹‹) we find that

max
␣

f1(x), ¨ ¨ ¨ , fm+1(x)
(

= max
!

max
␣

f1(x), ¨ ¨ ¨ , fm(x)
(

, fm+1(x)
)

@x P A ;

thus

sup
xPA

max
␣

f1(x), ¨ ¨ ¨ , fm+1(x)
(

= sup
xPA

max
!

max
␣

f1(x), ¨ ¨ ¨ , fm(x)
(

, fm+1(x)
)

= max
!

sup
xPA

max
␣

f1(x), ¨ ¨ ¨ , fm(x)
(

, sup
xPA

fm+1(x)
)



and the assumption that (‹‹) holds for the case n = m further implies that

sup
xPA

max
␣

f1(x), ¨ ¨ ¨ , fm+1(x)
(

= max
!

max
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fm(x)
)

, sup
xPA

fm+1(x)
)

= max
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fm+1(x)
)

.

Therefore, (‹‹) holds for the case n = m+ 1. By induction, (‹‹) holds for all n ě 2.
Finally, we note that

fj(x) ď sup
yPA

fj(y) ď sup
!

sup
yPA

f1(y), ¨ ¨ ¨ , sup
yPA

fn(y), ¨ ¨ ¨

)

@x P A and j P N .

This implies that

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

ď sup
!

sup
yPA

f1(y), ¨ ¨ ¨ , sup
yPA

fn(y), ¨ ¨ ¨

)

@x P A ;

thus

sup
xPA

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

ď sup
!

sup
yPA

f1(y), ¨ ¨ ¨ , sup
yPA

fn(y), ¨ ¨ ¨

)

= sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

.

Now we prove the reverse inequality. Let S = sup
xPA

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

.

1. S P R: Let ε ą 0 be given. By the definition of supremum, there exists x P A such that

S ě sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

ą S ´
ε

2
.

Then sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

P R; thus there exists j P N such that

fj(x) ą sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

´
ε

2
ą S ´ ε .

Therefore, sup
xPA

fj(x) ě S ´ ε which implies that

sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

ě S ´ ε .

Since ε ą 0 is given arbitrarily, we find that

sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

ě S = sup
xPA

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

.

2. S = 8: Let M ą 0 be given. Then there exists x P A such that

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

ą M

which further implies that there exists j P N such that fj(x) ą M . Therefore, sup
xPA

fj(x) ě M ;
thus

sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

ě M .

Since M is given arbitrarily, we conclude that

sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

= 8 = S .



In either case we establish that supxPA sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

ě S; thus

sup
xPA

sup
␣

f1(x), ¨ ¨ ¨ , fn(x), ¨ ¨ ¨
(

= sup
!

sup
xPA

f1(x), ¨ ¨ ¨ , sup
xPA

fn(x), ¨ ¨ ¨

)

. ˝

Problem 2. Let (F,+, ¨,ď) be an Archimedean ordered field. A number x P F is called an accu-
mulation point of a set A Ď F if for all δ ą 0, (x´ δ, x+ δ) contains at least one point of A distinct
from x. In logic notation,

x is an accumulation point of A ô (@ δ ą 0)
(
A X (x ´ δ, x+ δ)ztxu ‰ H

)
.

1. Show that if txnu8
n=1 is a sequence in F so that xi ‰ xj for all i, j P N and A =

␣

xk

ˇ

ˇ k P N
(

,
then x is an accumulation of A if and only if x is a cluster point of txnu8

n=1.

2. How about if the condition xi ‰ xj for all i, j P N is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if (@ δ ą 0)
(
#(A X (x ´ δ, x+ δ)

)
= 8

)
.

The direction “ð” is trivial since if #(AX (x´ δ, x+ δ)
)
= 8, AX (x´ δ, x+ δ) contains some point

distinct from x.

(ñ) Let δ1 = 1, by the definition of the accumulation points, there exists x1 P AX(x´δ1, x+δ1) and
x1 ‰ x. Define δ2 = min

␣

|x1 ´ x|,
1

2

(

. Then δ2 ą 0; thus there exists x2 P A X (x ´ δ2, x+ δ2)

and x2 ‰ x. We continue this process and obtain a sequence txnu8
n=1 Ď Aztxu satisfying that

x1 P A X (x ´ 1, x+ 1), xn P A X (x ´ δn, x+ δn) with δn = min
␣

|x ´ xn´1|,
1

n

(

.

By Archimedean property, txnu8
n=1 converges to x since |x´xn| ă δn ď

1

n
. Let δ ą 0 be given.

There exists N ą 0 such that 1

N
ă δ; thus

A X (x ´ δ, x+ δ) Ě A X
(
x ´

1

N
, x+

1

N

)
Ě txN , xN+1, xN+2, ¨ ¨ ¨ u .

Since xi ‰ xj for all i, j P N, we must have #
(
A X (x ´ δ, x+ δ)

)
= 8. ˝

Problem 3. Let (F,+, ¨,ď) be an ordered field, and txnu8
n=1 be a sequence in F. Show that txnu8

n=1

converges if and only if every proper subsequence of txnu8
n=1 converges.

Proof. By Proposition 1.60 in the lecture note, it suffices to prove the direction “ð”. We show that if
every proper subsequence of txnu8

n=1 converges, then every proper subsequence of txnu8
n=1 converges

to identical limit. Suppose the contrary that there exist two subsequence txnk
u8
k=1 and txmj

u8
j=1 that

converge to a and b and a ‰ b, respectively. We construct a new subsequence tyℓu
8
ℓ=1 of txnu8

n=1,
as follows. Let k1 = 1 and y1 = xnk1

. Let j1 be the smallest integer so that mj1 ą nk1 , and define



y2 = xmj1
. Let k2 be the smallest integer so that nk2 ą mj1 , and define y3 = xnℓ2

. We continue this
process and obtain a sequence tyℓu

8
ℓ=1 satisfying that

yℓ =

$

&

%

ynk ℓ+1
2

ℓ is odd ,

ymj ℓ
2

ℓ is even ,

where k1, k2, ¨ ¨ ¨ and j1, j2, ¨ ¨ ¨ satisfy that k1 = 1,

jr = min
␣

j P N
ˇ

ˇmj ą kr
(

and kr+1 = min
␣

k P N
ˇ

ˇnk ą mjr

(

@ r P N .

Then ty2ℓ´1u8
ℓ=1, the collection of odd terms of tyℓu

8
ℓ=1, is a subsequence of txnk

u8
k=1 and ty2ℓu

8
ℓ=1,

the collection of even terms of tyℓu
8
ℓ=1, is a subsequence of txmj

u8
j=1, and ty2ℓ´1u8

ℓ=1 converges to a

while ty2ℓu
8
ℓ=1 converges to b, and a ‰ b. By a Proposition we talked about in class, tyℓu

8
ℓ=1 does not

converges, a contradiction. ˝

Problem 4. Let (F,+, ¨,ď) be an Archimedean ordered field, and f : F Ñ F be a function so that

|f(x) ´ f(y)| ď α|x ´ y| @x, y P F ,

where α P F is a constant satisfying 0 ă α ă 1. Pick an arbitrary x1 P F, and define xk+1 = f(xk)

for all k P N. Show that txnu8
n=1 is a Cauchy sequence in F.

Proof. First we claim that if 0 ă α ă 1, then lim
nÑ8

αn = 0. In fact, we have 1

α
ą 1; thus by the fact

that lim
nÑ8

1

n
= 0 (which is from Archimedean property), there exists p ą 0 such that

1 +
1

p
ă

1

α
.

Therefore,
1

αp
ą

(
1 +

1

p

)p

ě 1 + Cp
1

1

p
= 2

which implies that
0 ă αp ă

1

2
.

By the fact that 2n ě n for all n ě N (which can be shown by induction), we find from the Sandwich
Lemma that

lim
nÑ8

αpn = 0 .

Let ε ą 0 be given. The identity above shows the existence of N1 ą 0 such that
ˇ

ˇαpn
ˇ

ˇ ă ε whenever
n ě N1. Let N = pN1. Then if n ě N ,

ˇ

ˇαn
ˇ

ˇ ď
ˇ

ˇαpN1
ˇ

ˇ ă ε .

Therefore, lim
nÑ8

αn = 0.

Next by the fact that |f(x) ´ f(y)| ď α|x ´ y| and xk+1 = f(xk) for all k P N, we have

|xn+1 ´ xn| = |f(xn) ´ f(xn´1)| ď α|xn ´ xn´1| @n ě 2 ;



thus
|xn+1 ´ xn| ď α|xn ´ xn´1|

(if n ě 3)
ď α2|xn´1 ´ xn´2| ď ¨ ¨ ¨ ď αn´1|x2 ´ x1| .

Therefore, if n ą m,

|xn ´ xm| = |xn ´ xn´1 + xn´1 ´ xn´2 + xn´2 ´ ¨ ¨ ¨ ´ xm+1 + xm+1 ´ xm|

ď |xn ´ xn´1| + |xn´1 ´ xn´2| + ¨ ¨ ¨ + |xm+1 ´ xm|

ď αn´2|x2 ´ x1| + αn´3|x2 ´ x1| + ¨ ¨ ¨ + αm´1|x2 ´ x1|

=
(
αn´2 + αn´3 + αm´1

)
|x2 ´ x1| ď

αm´1

1 ´ α
|x2 ´ x1| .

Let ε ą 0 be given. Since lim
nÑ8

αn = 0, there exists N ą 0 such that

αn´1

1 ´ α
|x2 ´ x1| ă ε whenever n ě N .

Then if n ą m ě N , by the fact that |xn ´ xm| ď
αm´1

1 ´ α
|x2 ´ x1| we obtain that |xn ´ xm| ă ε. ˝


