Exercise Problem Sets 2

Sept. 25. 2021

Problem 1. Complete the following.

1. Verify the Wallis's formula: if n is a non-negative integer, then

 $\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n+1} x \, dx = \frac{(2^n n!)^2}{(2n+1)!}$

and

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx = \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2}$$

- 2. Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Show that $\lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = 1$.
- 3. Let $s_n = \frac{n!}{n^{n+0.5}e^{-n}}$. Show that $\{s_n\}_{n=1}^{\infty}$ is a decreasing sequence; that is, $s_n \ge s_{n+1}$ for all $n \in \mathbb{N}$.

Hint:

- 2. Show that $I_{2n+2} \leq I_{2n+1} \leq I_{2n}$ for all $n \in \mathbb{N}$ and then apply the Sandwich lemma.
- 3. Consider the function $f(x) = \left(1 + \frac{1}{x}\right)^{x+0.5}$.

Proof. 1. Integrating by parts, we find that

$$\begin{split} \int_0^{\frac{\pi}{2}} \sin^n x \, dx &= -\sin^{n-1} x \cos x \Big|_{x=0}^{x=\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx \\ &= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1-\sin^2 x) \, dx \\ &= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx - (n-1) \int_0^{\frac{\pi}{2}} \sin^n x \, dx \, ; \end{split}$$

thus

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx$$

Therefore,

$$\int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x \, dx = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \int_{0}^{\frac{\pi}{2}} \sin^{2n-3} x \, dx = \cdots$$
$$= \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \frac{2n-4}{2n-3} \cdots \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \frac{2}{3} \cdot \frac{4}{5} \cdots \frac{2n}{2n+1}$$
$$= \frac{2^2 4^2 \cdots (2n)^2}{(2n+1)!} = \frac{(2^n n!)^2}{(2n+1)!}$$

and

$$\int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{2n-1}{2n} \int_{0}^{\frac{\pi}{2}} \sin^{2n-2} x \, dx = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \int_{0}^{\frac{\pi}{2}} \sin^{2n-4} x \, dx = \cdots$$
$$= \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdots \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin^{0} x \, dx = \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} \cdot \frac{\pi}{2}$$
$$= \frac{(2n)!}{2^{2}4^{2} \cdots (2n)^{2}} \cdot \frac{\pi}{2} = \frac{(2n)!}{(2^{n}n!)^{2}} \cdot \frac{\pi}{2}.$$

2. On the interval $\left[0, \frac{\pi}{2}\right], 0 \leq \sin x \leq 1$; thus

$$\sin^{2n+2} x \leqslant \sin^{2n+1} x \leqslant \sin^{2n} x \qquad \forall x \in \left[0, \frac{\pi}{2}\right].$$

Therefore, $I_{2n+2} \leq I_{2n+1} \leq I_{2n}$ so that

$$\frac{I_{2n+2}}{I_{2n}} \leqslant \frac{I_{2n+1}}{I_{2n}} \leqslant 1 \qquad \forall \, n \in \mathbb{N} \,.$$

Since $\frac{I_{2n+2}}{I_{2n}} = \frac{2n+1}{2(n+1)}$, the Sandwich Lemma implies that

$$\lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = 1.$$

3. Since $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+0.5} = e$ and $\frac{s_n}{s_{n+1}} = \frac{\frac{n!}{n^{n+0.5}e^{-n}}}{\frac{(n+1)!}{(n+1)^{n+1.5}e^{-n-1}}} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^{n+0.5}$, it suffices to show

that the function $f(x) \equiv \left(1 + \frac{1}{x}\right)^{x+0.5}$ is increasing on $[1, \infty)$. Nevertheless, this is the same as proving that the function $g(x) \equiv (1+x)^{\frac{1}{x}+\frac{1}{2}}$ is decreasing on (0, 1].

Differentiate g, we find that

$$g'(x) = g(x) \frac{\left[\ln(1+x) + \frac{2+x}{1+x}\right] 2x - 2(2+x)\ln(1+x)}{4x^2}$$
$$= \frac{2x + x^2 - 2(1+x)\ln(1+x)}{2x^2(1+x)}.$$

To see the sign of the denominator $h(x) = 2x + x^2 - 2(1+x)\ln(1+x)$ on (0, 1], we differentiate h and find that

$$h'(x) = 2 + 2x - 2\ln(1+x) - 2 = 2[x - \ln(1+x)]$$

and one more differentiation shows that

$$h''(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0 \qquad \forall x \in (0,1].$$

Therefore, h' in increasing on (0, 1] which implies that $h'(x) \ge h'(0) = 0$ for all $x \in (0, 1]$. This further implies that $h(x) \ge h(0) = 0$ for all $x \in (0, 1]$; thus $g'(x) \ge 0$ for all $x \in (0, 1]$.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field with Archimedean property, $I \subseteq \mathbb{F}$ be an interval, and $f: I \to \mathbb{F}$ be a function.

1. f is said to have a limit at c or we say that the limit of f at c exists if

- (a) there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c, and
- (b) $\lim_{n \to \infty} f(x_n)$ exists for all convergent sequences $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c.

Show that the limit of f at c exists if and only if there exists $L \in \mathbb{F}$ satisfying that for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in I$.

2. f is said to be continuous at a point $c \in I$ if

 $\lim_{n \to \infty} f(x_n) = f(c) \quad \text{for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \text{ with limit } c.$

Show that f is continuous at c if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

 $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$ and $x \in I$.

Proof. 1. (" \Rightarrow ") Suppose that the limit of f at c exists.

Claim: If $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = c$, then $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. **Proof of claim**: Define z_n by

$$z_n = \begin{cases} x_{\frac{n+1}{2}} & \text{if } n \text{ is odd}, \\ y_{\frac{n}{2}} & \text{if } n \text{ is even}. \end{cases}$$

Then $\lim_{n\to\infty} z_n = c$; thus by the assumption that the limit of f at c exists, we find that $\lim_{n\to\infty} f(z_n)$ exists. On the other hand, since $\lim_{n\to\infty} f(x_n)$ and $\lim_{n\to\infty} f(y_n)$ both exist, we must have

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} f(y_n).$$

Having established the claim, we find that there exists $L \in \mathbb{F}$ such that $\lim_{n \to \infty} f(x_n) = L$ whenever $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ is a convergent sequence with limit c.

Suppose the contrary that there exists $\varepsilon > 0$ such that for each $\delta > 0$ there exists $x \in I$ satisfying $0 < |x - c| < \delta$ and $|f(x) - L| \ge \varepsilon$. In particular, for each $n \in \mathbb{N}$, there exists $x_n \in I$ satisfying

$$0 < |x_n - c| < \frac{1}{n}$$
 and $|f(x_n) - L| \ge \varepsilon$.

Then $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ and Archimedean Property implies that $\lim_{n \to \infty} x_n = c$. Therefore, the claim shows that $\lim_{n \to \infty} f(x_n) = L$ which contradicts to the inequality $|f(x_n) - L| \ge \varepsilon$.

(" \Leftarrow ") Let $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ be a convergent sequence with limit c, and $\varepsilon > 0$ be given. By assumption, there exists $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in I$.

By the fact that $\lim_{n \to \infty} x_n = c$, there exists N > 0 such that

 $|x_n - c| < \delta$ whenever $n \ge N$.

Therefore, if $n \ge N$, then $0 < |x_n - c| < \delta$ and $x_n \in I$ so that $|f(x_n) - L| < \varepsilon$. This implies that $\lim_{n \to \infty} f(x_n) = L$; thus

 $\lim_{n \to \infty} f(x_n) \text{ exists for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\} \text{ with limit } c.$

2. (" \Rightarrow ") Suppose that f is continuous at a point $c \in I$; that is,

 $\lim_{n \to \infty} f(x_n) = f(c) \quad \text{for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \text{ with limit } c.$

In particular, for all convergent sequences $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c we have $\lim_{n \to \infty} f(x_n) = f(c)$. Therefore, 1 implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|f(x) - f(c)| < \varepsilon \text{ whenever } 0 < |x - c| < \delta \text{ and } x \in I).$$

We note that we must have $|f(c) - f(c)| < \varepsilon$; thus the statement above implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|f(x) - f(c)| < \varepsilon \text{ whenever } |x - c| < \delta \text{ and } x \in I)$$

(" \Leftarrow ") We note that the assumption in particular implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|f(x) - f(c)| < \varepsilon \text{ whenever } 0 < |x - c| < \delta \text{ and } x \in I);$$

thus 1 implies that

$$\lim_{n \to \infty} f(x_n) = f(c) \text{ for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\} \text{ with limit } c. \tag{0.1}$$

Now suppose the contrary that there exists a convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq I$ with limit c but $\lim_{n\to\infty} f(x_n) \neq f(c)$. Then (0.1) implies that

$$\#\{n \in \mathbb{N} \mid x_n = c\} = \infty.$$

- (a) If $\#\{n \in \mathbb{N} \mid x_n \neq c\} < \infty$, then there exists N > 0 such that $x_n = c$ for all $n \ge N$. This implies that $|f(x_n) f(c)| = 0 < \varepsilon$ whenever $n \ge N$, a contradiction to that $\lim_{n \to \infty} f(x_n) \neq f(c)$.
- (b) If $\#\{n \in \mathbb{N} | x_n \neq c\} = \infty$, then $\{n \in \mathbb{N} | x_n \neq c\} = \{n_j \in \mathbb{N} | j \in \mathbb{N}, n_j < n_{j+1}\}$ and $\{x_{n_j}\}_{j=1}^{\infty} \subseteq I \setminus \{c\}$ is a convergent sequence with limit c. Therefore, (0.1) implies that

$$\lim_{j \to \infty} f(x_{n_j}) = f(c) \,.$$

Let $\varepsilon > 0$ be given. The limit above shows that there exists J > 0 such that $|f(x_{n_j}) - f(c)| < \varepsilon$ whenever $j \ge J$. Let $N = n_J$. Then for all $n \ge N$, we have either $x_n = c$ or $x_n = x_{n_j}$ for some $j \ge J$; thus

$$|f(x_n) - f(c)| < \varepsilon$$
 whenever $n \ge N$

a contradiction to that $\lim_{n \to \infty} f(x_n) \neq f(c)$.