Exercise Problem Sets 2

Problem 1. Complete the following.

1. Verify the Wallis's formula: if n is a non-negative integer, then

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n+1} x d x=\frac{\left(2^{n} n!\right)^{2}}{(2 n+1)!}
$$

and

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \cdot \frac{\pi}{2}
$$

2. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$. Show that $\lim _{n \rightarrow \infty} \frac{I_{2 n+1}}{I_{2 n}}=1$.
3. Let $s_{n}=\frac{n!}{n^{n+0.5} e^{-n}}$. Show that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence; that is, $s_{n} \geqslant s_{n+1}$ for all $n \in \mathbb{N}$.

Hint:

2. Show that $I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 n}$ for all $n \in \mathbb{N}$ and then apply the Sandwich lemma.
3. Consider the function $f(x)=\left(1+\frac{1}{x}\right)^{x+0.5}$.

Proof. 1. Integrating by parts, we find that

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x & =-\left.\sin ^{n-1} x \cos x\right|_{x=0} ^{x=\frac{\pi}{2}}+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x d x \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x\left(1-\sin ^{2} x\right) d x \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x-(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x
\end{aligned}
$$

thus

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x .
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x & =\frac{2 n}{2 n+1} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} x d x=\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-3} x d x=\cdots \\
& =\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \cdot \frac{2 n-4}{2 n-3} \cdots \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \sin x d x=\frac{2}{3} \cdot \frac{4}{5} \cdots \frac{2 n}{2 n+1} \\
& =\frac{2^{2} 4^{2} \cdots(2 n)^{2}}{(2 n+1)!}=\frac{\left(2^{n} n!\right)^{2}}{(2 n+1)!}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x & =\frac{2 n-1}{2 n} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-2} x d x=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-4} x d x=\cdots \\
& =\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdot \frac{2 n-5}{2 n-4} \cdots \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin ^{0} x d x=\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n} \cdot \frac{\pi}{2} \\
& =\frac{(2 n)!}{2^{2} 4^{2} \cdots(2 n)^{2}} \cdot \frac{\pi}{2}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \cdot \frac{\pi}{2}
\end{aligned}
$$

2. On the interval $\left[0, \frac{\pi}{2}\right], 0 \leqslant \sin x \leqslant 1$; thus

$$
\sin ^{2 n+2} x \leqslant \sin ^{2 n+1} x \leqslant \sin ^{2 n} x \quad \forall x \in\left[0, \frac{\pi}{2}\right] .
$$

Therefore, $I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 n}$ so that

$$
\frac{I_{2 n+2}}{I_{2 n}} \leqslant \frac{I_{2 n+1}}{I_{2 n}} \leqslant 1 \quad \forall n \in \mathbb{N}
$$

Since $\frac{I_{2 n+2}}{I_{2 n}}=\frac{2 n+1}{2(n+1)}$, the Sandwich Lemma implies that

$$
\lim _{n \rightarrow \infty} \frac{I_{2 n+1}}{I_{2 n}}=1
$$

3. Since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+0.5}=e$ and $\frac{s_{n}}{s_{n+1}}=\frac{\frac{n!}{n^{n+0.5} e^{-n}}}{\frac{(n+1)!}{(n+1)^{n+1.5} e^{-n-1}}}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+0.5}$, it suffices to show that the function $f(x) \equiv\left(1+\frac{1}{x}\right)^{x+0.5}$ is increasing on $[1, \infty)$. Nevertheless, this is the same as proving that the function $g(x) \equiv(1+x)^{\frac{1}{x}+\frac{1}{2}}$ is decreasing on $(0,1]$.
Differentiate g, we find that

$$
\begin{aligned}
g^{\prime}(x) & =g(x) \frac{\left[\ln (1+x)+\frac{2+x}{1+x}\right] 2 x-2(2+x) \ln (1+x)}{4 x^{2}} \\
& =\frac{2 x+x^{2}-2(1+x) \ln (1+x)}{2 x^{2}(1+x)}
\end{aligned}
$$

To see the sign of the denominator $h(x)=2 x+x^{2}-2(1+x) \ln (1+x)$ on $(0,1]$, we differentiate h and find that

$$
h^{\prime}(x)=2+2 x-2 \ln (1+x)-2=2[x-\ln (1+x)]
$$

and one more differentiation shows that

$$
h^{\prime \prime}(x)=1-\frac{1}{1+x}=\frac{x}{1+x}>0 \quad \forall x \in(0,1] .
$$

Therefore, h^{\prime} in increasing on $(0,1]$ which implies that $h^{\prime}(x) \geqslant h^{\prime}(0)=0$ for all $x \in(0,1]$. This further implies that $h(x) \geqslant h(0)=0$ for all $x \in(0,1]$; thus $g^{\prime}(x) \geqslant 0$ for all $x \in(0,1]$.

Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field with Archimedean property, $I \subseteq \mathbb{F}$ be an interval, and $f: I \rightarrow \mathbb{F}$ be a function.

1. f is said to have a limit at c or we say that the limit of f at c exists if
(a) there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ with limit c, and
(b) $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists for all convergent sequences $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ with limit c.

Show that the limit of f at c exists if and only if there exists $L \in \mathbb{F}$ satisfying that for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta \text { and } x \in I
$$

2. f is said to be continuous at a point $c \in I$ if

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c) \quad \text { for all convergent sequences }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \text { with limit } c .
$$

Show that f is continuous at c if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta \text { and } x \in I .
$$

Proof. 1. $(" \Rightarrow ")$ Suppose that the limit of f at c exists.
Claim: If $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=c$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$.
Proof of claim: Define z_{n} by

$$
z_{n}=\left\{\begin{array}{cl}
x_{\frac{n+1}{2}} & \text { if } n \text { is odd } \\
y_{\frac{n}{2}} & \text { if } n \text { is even }
\end{array}\right.
$$

Then $\lim _{n \rightarrow \infty} z_{n}=c$; thus by the assumption that the limit of f at c exists, we find that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)$ exists. On the other hand, since $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right)$ both exist, we must have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right) .
$$

Having established the claim, we find that there exists $L \in \mathbb{F}$ such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ whenever $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ is a convergent sequence with limit c.

Suppose the contrary that there exists $\varepsilon>0$ such that for each $\delta>0$ there exists $x \in I$ satisfying $0<|x-c|<\delta$ and $|f(x)-L| \geqslant \varepsilon$. In particular, for each $n \in \mathbb{N}$, there exists $x_{n} \in I$ satisfying

$$
0<\left|x_{n}-c\right|<\frac{1}{n} \quad \text { and } \quad\left|f\left(x_{n}\right)-L\right| \geqslant \varepsilon .
$$

Then $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ and Archimedean Property implies that $\lim _{n \rightarrow \infty} x_{n}=c$. Therefore, the claim shows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ which contradicts to the inequality $\left|f\left(x_{n}\right)-L\right| \geqslant \varepsilon$.
(" \Leftarrow ") Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ be a convergent sequence with limit c, and $\varepsilon>0$ be given. By assumption, there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta \text { and } x \in I .
$$

By the fact that $\lim _{n \rightarrow \infty} x_{n}=c$, there exists $N>0$ such that

$$
\left|x_{n}-c\right|<\delta \quad \text { whenever } \quad n \geqslant N .
$$

Therefore, if $n \geqslant N$, then $0<\left|x_{n}-c\right|<\delta$ and $x_{n} \in I$ so that $\left|f\left(x_{n}\right)-L\right|<\varepsilon$. This implies that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$; thus

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right) \text { exists for all convergent sequences }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\} \text { with limit } c \text {. }
$$

2. (" \Rightarrow ") Suppose that f is continuous at a point $c \in I$; that is,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c) \quad \text { for all convergent sequences }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \text { with limit } c .
$$

In particular, for all convergent sequences $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\}$ with limit c we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(c)$. Therefore, 1 implies that

$$
(\forall \varepsilon>0)(\exists \delta>0)(|f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta \text { and } x \in I) .
$$

We note that we must have $|f(c)-f(c)|<\varepsilon$; thus the statement above implies that

$$
(\forall \varepsilon>0)(\exists \delta>0)(|f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta \text { and } x \in I) .
$$

(" \Leftarrow ") We note that the assumption in particular implies that

$$
(\forall \varepsilon>0)(\exists \delta>0)(|f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad 0<|x-c|<\delta \text { and } x \in I) ;
$$

thus 1 implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c) \text { for all convergent sequences }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I \backslash\{c\} \text { with limit } c . \tag{0.1}
\end{equation*}
$$

Now suppose the contrary that there exists a convergent sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq I$ with limit c but $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$. Then (0.1) implies that

$$
\#\left\{n \in \mathbb{N} \mid x_{n}=c\right\}=\infty
$$

(a) If $\#\left\{n \in \mathbb{N} \mid x_{n} \neq c\right\}<\infty$, then there exists $N>0$ such that $x_{n}=c$ for all $n \geqslant N$. This implies that $\left|f\left(x_{n}\right)-f(c)\right|=0<\varepsilon$ whenever $n \geqslant \mathrm{~N}$, a contradiction to that $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq$ $f(c)$.
(b) If $\#\left\{n \in \mathbb{N} \mid x_{n} \neq c\right\}=\infty$, then $\left\{n \in \mathbb{N} \mid x_{n} \neq c\right\}=\left\{n_{j} \in \mathbb{N} \mid j \in \mathbb{N}, n_{j}<n_{j+1}\right\}$ and $\left\{x_{n_{j}}\right\}_{j=1}^{\infty} \subseteq I \backslash\{c\}$ is a convergent sequence with limit c. Therefore, (0.1) implies that

$$
\lim _{j \rightarrow \infty} f\left(x_{n_{j}}\right)=f(c)
$$

Let $\varepsilon>0$ be given. The limit above shows that there exists $J>0$ such that $\mid f\left(x_{n_{j}}\right)-$ $f(c) \mid<\varepsilon$ whenever $j \geqslant J$. Let $N=n_{J}$. Then for all $n \geqslant N$, we have either $x_{n}=c$ or $x_{n}=x_{n_{j}}$ for some $j \geqslant J$; thus

$$
\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon \quad \text { whenever } \quad n \geqslant N
$$

a contradiction to that $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$.

