Exercise Problem Sets 1

Problem 1. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field, and $a, b \in \mathbb{F}$. Show that $a \leqslant b$ if and only if for all $\varepsilon>0, a<b+\varepsilon$.

Proof. The direction " \Rightarrow " is trivial, so we only prove the direction " \Leftarrow ". Suppose the contrary that $a>b$. Let $\varepsilon=a-b$. Then $\varepsilon>0$; thus

$$
a<b+(a-b)=a,
$$

a contradiction.
Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field, $x, y \in \mathbb{F}$, and $n \in \mathbb{N}$. Show that

1. If $0 \leqslant x<y$, then $x^{n}<y^{n}$.
2. If $0 \leqslant x, y$ and $x^{n}<y^{n}$, then $x<y$.

Proof. 1. Let $S=\left\{n \in \mathbb{N} \mid x^{n}<y^{n}\right\}$. Then $1 \in S$ by assumption. Suppose that $n \in S$. Then $0 \leqslant x^{n}<y^{n}$. By the fact that $0 \leqslant x<y$, we find that

$$
x^{n+1}=x^{n} \cdot x<x^{n} \cdot y<y^{n} \cdot y=y^{n+1}
$$

thus $n+1 \in S$. By induction, we conclude that $S=\mathbb{N}$.
2. Suppose the contrary that $x \geqslant y$. Then 1 implies that $x^{n} \geqslant y^{n}$, a contradiction.

