
Exercise Problem Sets 5
Mar. 26. 2021

Problem 1. Show that the series
8
ÿ

k=1

(´1)k
x2 + k

k2

converges uniformly on every bounded interval.

Proof. Since
8
ř

k=1

(´1)k
1

k
= ´ ln 2 converges (by the Dirichlet test), we have

8
ÿ

k=1

(´1)k
x2 + k

k2
=

8
ÿ

k=1

(´1)k
x2

k2
´ ln 2 @x P R .

Let Mk =
R2

k2
. Then

1. sup
xP[´R,R]

ˇ

ˇ

ˇ
(´1)k

x2

k2

ˇ

ˇ

ˇ
ď Mk for all k P N.

2.
8
ř

k=1

Mk ă 8 (by the integral test).

Therefore, the Weierstrass M -test implies that
8
ř

k=1

(´1)k
x2

k2
converges uniformly on [´R,R]. ˝

Problem 2. Determine which of the following real series
8
ř

k=1

gk converge (pointwise or uniformly).

Check the continuity of the limit in each case.

1. gk(x) =

"

0 if x ď k ,
(´1)k if x ą k .

2. gk(x) =

$

’

&

’

%

1

k2
if |x| ď k ,

1

x2
if |x| ą k .

3. gk(x) =
(´1)k

?
k

cos(kx) on R.

Proof. 1. By the definition of gk, we find that the partial sum Sn(x) =
n
ř

k=1

gk(x) satisfies that for all
n P N,

S2n(x) =

"

´1 if x P (1, 2] Y (3, 4] Y ¨ ¨ ¨ Y (2n ´ 1, 2n] ,
0 otherwise ,

and

S2n´1(x) =

"

´1 if x P (1, 2] Y (3, 4] Y ¨ ¨ ¨ Y (2n ´ 3, 2n ´ 2] Y (2n ´ 1,8) ,
0 otherwise.



Therefore, tSnu8
n=1 converges pointwise to the function

S(x) =

"

´1 if x P (1, 2] Y (3, 4] Y ¨ ¨ ¨ Y (2n ´ 3, 2n ´ 2] Y ¨ ,
0 otherwise

or more precisely,

S(x) =
8
ÿ

k=1

1(2k´1,2k](x) .

The convergence is uniformly on any bounded subset of R, and the limit function S has dis-
continuities on N.

2. Let Mk =
1

k2
. Then sup

xPR
|gk(x)| ď Mk and

8
ř

k=1

Mk converges (by the integral test). Therefore,

the Weierstrass M -test implies that
8
ř

k=1

gk converges uniformly on R. Since gk is continuous on

R, we find that
8
ř

k=1

gk is continuous on R.

3. If x = (2n+ 1)π for some n P Z, then cos(kx) = (´1)k for all k P N; thus
8
ř

k=1

gk(x) diverges at

x = (2n+ 1)π (by the integral test).

Now suppose that x R t(2n + 1)π |n P Zu. Let Sn(x) =
n
ř

k=1

(´1)k cos(kx). Then Sn(x) =

n
ř

k=1

cos(k(x+ π)) and

2 sin x+ π

2
Sn(x) =

n
ÿ

k=1

[
sin

(
k +

1

2

)
(x+ π) ´ sin

(
k ´

1

2

)
(x+ π)

]
= sin

(
n+

1

2

)
(x+ π) ´ sin x+ π

2
;

thus
Sn(x) =

(´1)n cos(n+ 1
2
)x

2 cos x
2

´
1

2
@x P Rzt(2n+ 1)π |n P Zu .

The equality above shows that

|Sn(x)| ď
1

2| cos x
2 |

+
1

2
@x P Rzt(2n+ 1)π |n P Zu ,

which is bounded independent of n. The Dirichlet test then shows that
8
ř

k=1

gk(x) converges for

all x P Rzt(2n+ 1)π |n P Zu. Therefore,
8
ř

k=1

gk converges pointwise on Rzt(2n+ 1)π |n P Zu.

Let A Ď R be a set satisfying that

d
(
x, t(2n+ 1)π |n P Zu

)
= inf

␣

|x ´ y|
ˇ

ˇ y P t(2n+ 1)π |n P Zu
(

ě δ @x P A .



Then the computation above shows that |Sn(x)| ď R ”
1

2| cos δ
2 |

+
1

2
for all x P A. If n ą m,

we have
n
ÿ

k=m+1

(´1)k
?
k

cos(kx) =
n
ÿ

k=m+1

1
?
k

[
Sk(x) ´ Sk´1(x)

]
=

n
ÿ

k=m+1

1
?
k
Sk(x) ´

n
ÿ

k=m+1

1
?
k
Sk´1(x)

=
n
ÿ

k=m+1

1
?
k
Sk(x) ´

n´1
ÿ

k=m

1
?
k + 1

Sk(x)

=
1

?
n
Sn(x) ´

1
?
m+ 1

Sm(x) +
n´1
ÿ

k=m+1

( 1
?
k

´
1

?
k + 1

)
Sk(x) ;

thus if x P A,
ˇ

ˇ

ˇ

n
ÿ

k=m+1

(´1)k
?
k

cos(kx)
ˇ

ˇ

ˇ
ď

[ 1
?
n
+

1
?
m+ 1

+
n´1
ÿ

k=m+1

( 1
?
k

´
1

?
k + 1

)]
R =

2R
?
m+ 1

.

Therefore, for a given ε ą 0, by choosing N ą 0 satisfying 2R
?
N + 1

ă ε we conclude that

ˇ

ˇ

ˇ

n
ÿ

k=m+1

(´1)k
?
k

cos(kx)
ˇ

ˇ

ˇ
ă ε whenever n ą m ě N and x P A .

By the Cauchy criterion,
8
ř

k=1

gk converges uniformly on A; thus
8
ř

k=1

gk is continuous at every
point at which the series converges. ˝

Problem 3. Suppose that the series
8
ř

n=0

an = 0, and f(x) =
8
ř

n=0

anx
n for ´1 ă x ď 1. Show that f

is continuous at x = 1 by complete the following.

1. Write sn = a0 + a1 + ¨ ¨ ¨ + an and Sn(x) = a0 + a1x+ ¨ ¨ ¨ + anx
n. Show that

Sn(x) = (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n

and f(x) = (1 ´ x)
8
ř

n=0

snx
n.

2. Using the representation of f from above to conclude that lim
xÑ1´

f(x) = 0.

3. What if
8
ř

n=0

an is convergent but not zero?

Proof. 1. Let sn = a0 + a1 + ¨ ¨ ¨ + an and Sn(x) = a0 + a1x+ ¨ ¨ ¨ + anx
n.

Sn(x) =
n
ÿ

k=0

akx
k = a0 +

n
ÿ

k=1

akx
k = s0 +

n
ÿ

k=1

(sk ´ sk´1)x
k

= s0 +
n
ÿ

k=1

skx
k ´

n
ÿ

k=1

sk´1x
k =

n
ÿ

k=0

skx
k ´

n´1
ÿ

k=0

skx
k+1

= snx
n +

n´1
ÿ

k=0

skx
k ´ x

n´1
ÿ

k=0

skx
k

= (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n .



Therefore, by the fact that lim
nÑ8

sn = 0, we find that if x P (´1, 1],

f(x) = lim
nÑ8

Sn(x) = (1 ´ x)
8
ÿ

k=0

skx
k .

2. Let ε ą 0 be given. Since lim
nÑ8

sn = 0, there exists N ą 0 such that |sn| ă
ε

2
for all n ě N .

Choose 0 ă δ ă 1 such that δ
N´1
ř

k=0

|sk| ă
ε

2
. Then if 1 ´ δ ă x ă 1,

ˇ

ˇf(x)
ˇ

ˇ ď |1 ´ x|

N´1
ÿ

k=0

|sk||x|k + |1 ´ x|

8
ÿ

k=N

|sk||x|k

ď δ
N´1
ÿ

k=0

|sk| +
ε

2
|1 ´ x||x|N

8
ÿ

k=0

|x|k ă
ε

2
+

ε

2
|1 ´ x|

1

1 ´ |x|
= ε .

Therefore, lim
xÑ1´

f(x) = 0 = f(1) which shows that f is continuous at 1.

3. If s =
8
ř

k=0

ak ‰ 0, we define a new series
8
ř

n=0

bnx
n by b0 = a0 ´ s and bn = an for all n P N.

Then g(x) =
8
ř

n=0

bnx
n also converges for x P (´1, 1] and satisfies that g(1) = 0. Therefore, 1

and 2 imply that g is continuous at 1; thus lim
xÑ1´

g(x) = 0. By the fact that g(x) = f(x) ´ s,
we conclude that

lim
xÑ1´

f(x) = s =
8
ÿ

n=0

an = f(1) . ˝

Problem 4. Construct the function g(x) by letting g(x) = |x| if x P
[

´
1

2
,
1

2

]
and extending g so

that it becomes periodic (with period 1). Define

f(x) =
8
ÿ

k=1

g(4k´1x)

4k´1
.

1. Use the Weierstrass M -test to show that f is continuous on R.

2. Prove that f is differentiable at no point.

Hint: Google Blancmange function!

Proof. 1. Since g is periodic with period 1, we find that

sup
xPR

ˇ

ˇg(x)
ˇ

ˇ = sup
xP[´1/2,1/2]

ˇ

ˇg(x)
ˇ

ˇ = 1 .

Let gk(x) =
g(4k´1x)

4k´1
and Mk =

1

4k´1
. Then sup

xPR

ˇ

ˇgk(x)
ˇ

ˇ ď Mk and
8
ř

k=1

Mk ă 8. Therefore, the

Weierstrass M -test implies that
8
ř

k=1

gk converges uniformly on R. Moreover, since each gk is

continuous,
8
ř

k=1

gk is also continuous on R.



2. We first claim that if f is differentiable at x, then for every sequence tanu8
n=1 and tbnu8

n=1

satisfying an ď x ď bn, bn ‰ an, and lim
nÑ8

(bn ´ an) = 0, we have

lim
nÑ8

f(bn) ´ f(an)

bn ´ an
= f 1(x) .

It suffices to show the case that an ă x ă bn for all n P N. To see the identity above, we note
that if an ă x ă bn, we have

ˇ

ˇ

ˇ

bn ´ x

bn ´ an

ˇ

ˇ

ˇ
ď 1 and

ˇ

ˇ

ˇ

x ´ an
bn ´ an

ˇ

ˇ

ˇ
ď 1 .

Therefore, for an ă x ă bn we have
ˇ

ˇ

ˇ

f(bn) ´ f(an)

bn ´ an
´ f 1(x)

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

bn ´ x

bn ´ an

(f(bn) ´ f(x)

bn ´ x
´ f 1(x)

)
+

x ´ an
bn ´ an

(f(x) ´ f(an)

x ´ an
´ f 1(x)

)ˇ
ˇ

ˇ

ď

ˇ

ˇ

ˇ

f(bn) ´ f(x)

bn ´ x
´ f 1(x)

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

f(x) ´ f(an)

x ´ an
´ f 1(x)

ˇ

ˇ

ˇ

so that the Sandwich Lemma implies that lim
nÑ8

ˇ

ˇ

ˇ

f(bn) ´ f(an)

bn ´ an
´ f 1(x)

ˇ

ˇ

ˇ
= 0.

Let D =
␣

j4´n
ˇ

ˇ j, n P Z
(

. Suppose that f is differentiable at x P R. Then there exists tanu8
n=1,

tbnu8
n=1 Ď D such that an ď x ă bn and bn ´ an =

1

4n´1
. Then

f(bn) ´ f(an) =
8
ÿ

k=1

g(4k´1bn) ´ g(4k´1an)

4k´1
=

n´1
ÿ

k=1

g(4k´1bn) ´ g(4k´1an)

4k´1

so that
f(bn) ´ f(an)

bn ´ an
=

n´1
ÿ

k=1

g(4k´1bn) ´ g(4k´1an)

4k´1(bn ´ an)

Since g : [4k´1an, 4
k´1bn] Ñ R is “linear”, we find that g(4k´1bn) ´ g(4k´1an)

4k´1(bn ´ an)
= ˘1; thus

f(bn) ´ f(an)

bn ´ an
=

n´1
ÿ

k=1

˘1

which does not converge by the n-th term test. ˝

Problem 5. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in
(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in
(
C (K;R), } ¨ }8

)
for all a, b P R.



3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set B =
␣

f P

Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.

Proof. 1. Let g P U . By the Extreme Value Theorem, there exists x1, x2 P K such that

g(x1) = inf
xPK

g(x) and g(x2) = sup
xPK

g(x) .

Therefore, a ă inf
xPK

g(x) ď sup
xPK

g(x) ă b. Let r = min
␣

b ´ sup
xPK

g(x), inf
xPK

g(x) ´ a
(

. Then r ą 0.
Moreover, if f P B(g, r) and x P K, we have

|f(x) ´ g(x)| ď sup
xPK

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ = }f ´ g}8 ă r .

Therefore, if f P B(g, r), by the fact that r ď b ´ sup
xPK

g(x) and r ď inf
xPK

g(x) ´ a, we conclude
that if x P K,

a ď inf
xPK

g(x) ´ r ď g(x) ´ r ă f(x) ă g(x) + r ď sup
xPK

g(x) + r ď b

which implies that f P U . Therefore, B(g, r) Ď U ; thus U is open.

2. Let tfnu8
n=1 be a sequence in F such that tfnu8

n=1 converges uniformly to f on K. Then
f P C (K;R). Moreover, by the fact that a ď fn(x) ď b for all x P K and n P N, we find that
a ď f(x) ď b for all x P K since f(x) = lim

nÑ8
fn(x). This implies that f P F ; thus F is closed

(since it contains all the limit points).

3. Consider the case A = (0, 1). Then the function f(x) = x belongs to B; however, for every
r ą 0, the function g(x) = f(x) ´

r

2
belongs to B(f, r) since

}f ´ g}8 = sup
xP(0,1)

ˇ

ˇf(x) ´ g(x)
ˇ

ˇ =
r

2
ă r .

However, g R B since if 0 ă x ! 1, we have g(x) ă 0. In other words, there exists no r ą 0

such that B(f, r) Ď B; thus B is not open. ˝


