Exercise Problem Sets 5

Problem 1. Show that the series

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2}+k}{k^{2}}
$$

converges uniformly on every bounded interval.
Proof. Since $\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k}=-\ln 2$ converges (by the Dirichlet test), we have

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2}+k}{k^{2}}=\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2}}{k^{2}}-\ln 2 \quad \forall x \in \mathbb{R}
$$

Let $M_{k}=\frac{R^{2}}{k^{2}}$. Then

1. $\sup _{x \in[-R, R]}\left|(-1)^{k} \frac{x^{2}}{k^{2}}\right| \leqslant M_{k}$ for all $k \in \mathbb{N}$.
2. $\sum_{k=1}^{\infty} M_{k}<\infty$ (by the integral test).

Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2}}{k^{2}}$ converges uniformly on $[-R, R]$.
Problem 2. Determine which of the following real series $\sum_{k=1}^{\infty} g_{k}$ converge (pointwise or uniformly). Check the continuity of the limit in each case.

1. $g_{k}(x)=\left\{\begin{array}{cc}0 & \text { if } x \leqslant k, \\ (-1)^{k} & \text { if } x>k .\end{array}\right.$
2. $g_{k}(x)=\left\{\begin{array}{cl}\frac{1}{k^{2}} & \text { if }|x| \leqslant k, \\ \frac{1}{x^{2}} & \text { if }|x|>k .\end{array}\right.$
3. $g_{k}(x)=\frac{(-1)^{k}}{\sqrt{k}} \cos (k x)$ on \mathbb{R}.

Proof. 1. By the definition of g_{k}, we find that the partial sum $S_{n}(x)=\sum_{k=1}^{n} g_{k}(x)$ satisfies that for all $n \in \mathbb{N}$,

$$
S_{2 n}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \in(1,2] \cup(3,4] \cup \cdots \cup(2 n-1,2 n], \\
0 & \text { otherwise },
\end{array}\right.
$$

and

$$
S_{2 n-1}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \in(1,2] \cup(3,4] \cup \cdots \cup(2 n-3,2 n-2] \cup(2 n-1, \infty), \\
0 & \text { otherwise } .
\end{array}\right.
$$

Therefore, $\left\{S_{n}\right\}_{n=1}^{\infty}$ converges pointwise to the function

$$
S(x)=\left\{\begin{array}{cl}
-1 & \text { if } x \in(1,2] \cup(3,4] \cup \cdots \cup(2 n-3,2 n-2] \cup, \\
0 & \text { otherwise }
\end{array}\right.
$$

or more precisely,

$$
S(x)=\sum_{k=1}^{\infty} \mathbf{1}_{(2 k-1,2 k]}(x) .
$$

The convergence is uniformly on any bounded subset of \mathbb{R}, and the limit function S has discontinuities on \mathbb{N}.
2. Let $M_{k}=\frac{1}{k^{2}}$. Then $\sup _{x \in \mathbb{R}}\left|g_{k}(x)\right| \leqslant M_{k}$ and $\sum_{k=1}^{\infty} M_{k}$ converges (by the integral test). Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on \mathbb{R}. Since g_{k} is continuous on \mathbb{R}, we find that $\sum_{k=1}^{\infty} g_{k}$ is continuous on \mathbb{R}.
3. If $x=(2 n+1) \pi$ for some $n \in \mathbb{Z}$, then $\cos (k x)=(-1)^{k}$ for all $k \in \mathbb{N}$; thus $\sum_{k=1}^{\infty} g_{k}(x)$ diverges at $x=(2 n+1) \pi$ (by the integral test).
Now suppose that $x \notin\{(2 n+1) \pi \mid n \in \mathbb{Z}\}$. Let $S_{n}(x)=\sum_{k=1}^{n}(-1)^{k} \cos (k x)$. Then $S_{n}(x)=$ $\sum_{k=1}^{n} \cos (k(x+\pi))$ and

$$
\begin{aligned}
2 \sin \frac{x+\pi}{2} S_{n}(x) & =\sum_{k=1}^{n}\left[\sin \left(k+\frac{1}{2}\right)(x+\pi)-\sin \left(k-\frac{1}{2}\right)(x+\pi)\right] \\
& =\sin \left(n+\frac{1}{2}\right)(x+\pi)-\sin \frac{x+\pi}{2}
\end{aligned}
$$

thus

$$
S_{n}(x)=\frac{(-1)^{n} \cos \left(n+\frac{1}{2}\right) x}{2 \cos \frac{x}{2}}-\frac{1}{2} \quad \forall x \in \mathbb{R} \backslash\{(2 n+1) \pi \mid n \in \mathbb{Z}\}
$$

The equality above shows that

$$
\left|S_{n}(x)\right| \leqslant \frac{1}{2\left|\cos \frac{x}{2}\right|}+\frac{1}{2} \quad \forall x \in \mathbb{R} \backslash\{(2 n+1) \pi \mid n \in \mathbb{Z}\}
$$

which is bounded independent of n. The Dirichlet test then shows that $\sum_{k=1}^{\infty} g_{k}(x)$ converges for all $x \in \mathbb{R} \backslash\{(2 n+1) \pi \mid n \in \mathbb{Z}\}$. Therefore, $\sum_{k=1}^{\infty} g_{k}$ converges pointwise on $\mathbb{R} \backslash\{(2 n+1) \pi \mid n \in \mathbb{Z}\}$.
Let $A \subseteq \mathbb{R}$ be a set satisfying that

$$
d(x,\{(2 n+1) \pi \mid n \in \mathbb{Z}\})=\inf \{|x-y| \mid y \in\{(2 n+1) \pi \mid n \in \mathbb{Z}\}\} \geqslant \delta \quad \forall x \in A
$$

Then the computation above shows that $\left|S_{n}(x)\right| \leqslant R \equiv \frac{1}{2\left|\cos \frac{\delta}{2}\right|}+\frac{1}{2}$ for all $x \in A$. If $n>m$, we have

$$
\begin{aligned}
\sum_{k=m+1}^{n} \frac{(-1)^{k}}{\sqrt{k}} \cos (k x) & =\sum_{k=m+1}^{n} \frac{1}{\sqrt{k}}\left[S_{k}(x)-S_{k-1}(x)\right]=\sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_{k}(x)-\sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_{k-1}(x) \\
& =\sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_{k}(x)-\sum_{k=m}^{n-1} \frac{1}{\sqrt{k+1}} S_{k}(x) \\
& =\frac{1}{\sqrt{n}} S_{n}(x)-\frac{1}{\sqrt{m+1}} S_{m}(x)+\sum_{k=m+1}^{n-1}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right) S_{k}(x)
\end{aligned}
$$

thus if $x \in A$,

$$
\left|\sum_{k=m+1}^{n} \frac{(-1)^{k}}{\sqrt{k}} \cos (k x)\right| \leqslant\left[\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{m+1}}+\sum_{k=m+1}^{n-1}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\right] R=\frac{2 R}{\sqrt{m+1}} .
$$

Therefore, for a given $\varepsilon>0$, by choosing $N>0$ satisfying $\frac{2 R}{\sqrt{N+1}}<\varepsilon$ we conclude that

$$
\left|\sum_{k=m+1}^{n} \frac{(-1)^{k}}{\sqrt{k}} \cos (k x)\right|<\varepsilon \quad \text { whenever } n>m \geqslant N \text { and } x \in A
$$

By the Cauchy criterion, $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on A; thus $\sum_{k=1}^{\infty} g_{k}$ is continuous at every point at which the series converges.
Problem 3. Suppose that the series $\sum_{n=0}^{\infty} a_{n}=0$, and $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $-1<x \leqslant 1$. Show that f is continuous at $x=1$ by complete the following.

1. Write $s_{n}=a_{0}+a_{1}+\cdots+a_{n}$ and $S_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Show that

$$
S_{n}(x)=(1-x)\left(s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}\right)+s_{n} x^{n}
$$

and $f(x)=(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}$.
2. Using the representation of f from above to conclude that $\lim _{x \rightarrow 1^{-}} f(x)=0$.
3. What if $\sum_{n=0}^{\infty} a_{n}$ is convergent but not zero?

Proof. 1. Let $s_{n}=a_{0}+a_{1}+\cdots+a_{n}$ and $S_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$.

$$
\begin{aligned}
S_{n}(x) & =\sum_{k=0}^{n} a_{k} x^{k}=a_{0}+\sum_{k=1}^{n} a_{k} x^{k}=s_{0}+\sum_{k=1}^{n}\left(s_{k}-s_{k-1}\right) x^{k} \\
& =s_{0}+\sum_{k=1}^{n} s_{k} x^{k}-\sum_{k=1}^{n} s_{k-1} x^{k}=\sum_{k=0}^{n} s_{k} x^{k}-\sum_{k=0}^{n-1} s_{k} x^{k+1} \\
& =s_{n} x^{n}+\sum_{k=0}^{n-1} s_{k} x^{k}-x \sum_{k=0}^{n-1} s_{k} x^{k} \\
& =(1-x)\left(s_{0}+s_{1} x+\cdots+s_{n-1} x^{n-1}\right)+s_{n} x^{n} .
\end{aligned}
$$

Therefore, by the fact that $\lim _{n \rightarrow \infty} s_{n}=0$, we find that if $x \in(-1,1]$,

$$
f(x)=\lim _{n \rightarrow \infty} S_{n}(x)=(1-x) \sum_{k=0}^{\infty} s_{k} x^{k} .
$$

2. Let $\varepsilon>0$ be given. Since $\lim _{n \rightarrow \infty} s_{n}=0$, there exists $N>0$ such that $\left|s_{n}\right|<\frac{\varepsilon}{2}$ for all $n \geqslant N$. Choose $0<\delta<1$ such that $\delta \sum_{k=0}^{N-1}\left|s_{k}\right|<\frac{\varepsilon}{2}$. Then if $1-\delta<x<1$,

$$
\begin{aligned}
|f(x)| & \leqslant|1-x| \sum_{k=0}^{N-1}\left|s_{k}\right||x|^{k}+|1-x| \sum_{k=N}^{\infty}\left|s_{k}\right||x|^{k} \\
& \leqslant \delta \sum_{k=0}^{N-1}\left|s_{k}\right|+\frac{\varepsilon}{2}|1-x||x|^{N} \sum_{k=0}^{\infty}|x|^{k}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}|1-x| \frac{1}{1-|x|}=\varepsilon .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 1^{-}} f(x)=0=f(1)$ which shows that f is continuous at 1 .
3. If $s=\sum_{k=0}^{\infty} a_{k} \neq 0$, we define a new series $\sum_{n=0}^{\infty} b_{n} x^{n}$ by $b_{0}=a_{0}-s$ and $b_{n}=a_{n}$ for all $n \in \mathbb{N}$. Then $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ also converges for $x \in(-1,1]$ and satisfies that $g(1)=0$. Therefore, 1 and 2 imply that g is continuous at 1 ; thus $\lim _{x \rightarrow 1^{-}} g(x)=0$. By the fact that $g(x)=f(x)-s$, we conclude that

$$
\lim _{x \rightarrow 1^{-}} f(x)=s=\sum_{n=0}^{\infty} a_{n}=f(1) .
$$

Problem 4. Construct the function $g(x)$ by letting $g(x)=|x|$ if $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ and extending g so that it becomes periodic (with period 1). Define

$$
f(x)=\sum_{k=1}^{\infty} \frac{g\left(4^{k-1} x\right)}{4^{k-1}} .
$$

1. Use the Weierstrass M-test to show that f is continuous on \mathbb{R}.
2. Prove that f is differentiable at no point.

Hint: Google Blancmange function!
Proof. 1. Since g is periodic with period 1, we find that

$$
\sup _{x \in \mathbb{R}}|g(x)|=\sup _{x \in[-1 / 2,1 / 2]}|g(x)|=1
$$

Let $g_{k}(x)=\frac{g\left(4^{k-1} x\right)}{4^{k-1}}$ and $M_{k}=\frac{1}{4^{k-1}}$. Then $\sup _{x \in \mathbb{R}}\left|g_{k}(x)\right| \leqslant M_{k}$ and $\sum_{k=1}^{\infty} M_{k}<\infty$. Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty} g_{k}$ converges uniformly on \mathbb{R}. Moreover, since each g_{k} is continuous, $\sum_{k=1}^{\infty} g_{k}$ is also continuous on \mathbb{R}.
2. We first claim that if f is differentiable at x, then for every sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfying $a_{n} \leqslant x \leqslant b_{n}, b_{n} \neq a_{n}$, and $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$, we have

$$
\lim _{n \rightarrow \infty} \frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}}=f^{\prime}(x) .
$$

It suffices to show the case that $a_{n}<x<b_{n}$ for all $n \in \mathbb{N}$. To see the identity above, we note that if $a_{n}<x<b_{n}$, we have

$$
\left|\frac{b_{n}-x}{b_{n}-a_{n}}\right| \leqslant 1 \quad \text { and } \quad\left|\frac{x-a_{n}}{b_{n}-a_{n}}\right| \leqslant 1
$$

Therefore, for $a_{n}<x<b_{n}$ we have

$$
\begin{aligned}
& \left|\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}}-f^{\prime}(x)\right| \\
& \quad=\left|\frac{b_{n}-x}{b_{n}-a_{n}}\left(\frac{f\left(b_{n}\right)-f(x)}{b_{n}-x}-f^{\prime}(x)\right)+\frac{x-a_{n}}{b_{n}-a_{n}}\left(\frac{f(x)-f\left(a_{n}\right)}{x-a_{n}}-f^{\prime}(x)\right)\right| \\
& \quad \leqslant\left|\frac{f\left(b_{n}\right)-f(x)}{b_{n}-x}-f^{\prime}(x)\right|+\left|\frac{f(x)-f\left(a_{n}\right)}{x-a_{n}}-f^{\prime}(x)\right|
\end{aligned}
$$

so that the Sandwich Lemma implies that $\lim _{n \rightarrow \infty}\left|\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}}-f^{\prime}(x)\right|=0$.
Let $\mathbb{D}=\left\{j 4^{-n} \mid j, n \in \mathbb{Z}\right\}$. Suppose that f is differentiable at $x \in \mathbb{R}$. Then there exists $\left\{a_{n}\right\}_{n=1}^{\infty}$, $\left\{b_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{D}$ such that $a_{n} \leqslant x<b_{n}$ and $b_{n}-a_{n}=\frac{1}{4^{n-1}}$. Then

$$
f\left(b_{n}\right)-f\left(a_{n}\right)=\sum_{k=1}^{\infty} \frac{g\left(4^{k-1} b_{n}\right)-g\left(4^{k-1} a_{n}\right)}{4^{k-1}}=\sum_{k=1}^{n-1} \frac{g\left(4^{k-1} b_{n}\right)-g\left(4^{k-1} a_{n}\right)}{4^{k-1}}
$$

so that

$$
\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}}=\sum_{k=1}^{n-1} \frac{g\left(4^{k-1} b_{n}\right)-g\left(4^{k-1} a_{n}\right)}{4^{k-1}\left(b_{n}-a_{n}\right)}
$$

Since $g:\left[4^{k-1} a_{n}, 4^{k-1} b_{n}\right] \rightarrow \mathbb{R}$ is "linear", we find that $\frac{g\left(4^{k-1} b_{n}\right)-g\left(4^{k-1} a_{n}\right)}{4^{k-1}\left(b_{n}-a_{n}\right)}= \pm 1$; thus

$$
\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}}=\sum_{k=1}^{n-1} \pm 1
$$

which does not converge by the n-th term test.
Problem 5. Let (M, d) be a metric space, and $K \subseteq M$ be a compact subset.

1. Show that the set $U=\{f \in \mathscr{C}(K ; \mathbb{R}) \mid a<f(x)<b$ for all $x \in K\}$ is open in $\left(\mathscr{C}(K ; \mathbb{R}),\|\cdot\|_{\infty}\right)$ for all $a, b \in \mathbb{R}$.
2. Show that the set $F=\{f \in \mathscr{C}(K ; \mathbb{R}) \mid a \leqslant f(x) \leqslant b$ for all $x \in K\}$ is closed in $\left(\mathscr{C}(K ; \mathbb{R}),\|\cdot\|_{\infty}\right)$ for all $a, b \in \mathbb{R}$.
3. Let $A \subseteq M$ be a subset, not necessarily compact. Prove or disprove that the set $B=\{f \in$ $\mathscr{C}_{b}(A ; \mathbb{R}) \mid f(x)>0$ for all $\left.x \in A\right\}$ is open in $\left(\mathscr{C}_{b}(A ; \mathbb{R}),\|\cdot\|_{\infty}\right)$.

Proof. 1. Let $g \in U$. By the Extreme Value Theorem, there exists $x_{1}, x_{2} \in K$ such that

$$
g\left(x_{1}\right)=\inf _{x \in K} g(x) \quad \text { and } \quad g\left(x_{2}\right)=\sup _{x \in K} g(x) .
$$

Therefore, $a<\inf _{x \in K} g(x) \leqslant \sup _{x \in K} g(x)<b$. Let $r=\min \left\{b-\sup _{x \in K} g(x), \inf _{x \in K} g(x)-a\right\}$. Then $r>0$. Moreover, if $f \in B(g, r)$ and $x \in K$, we have

$$
|f(x)-g(x)| \leqslant \sup _{x \in K}|f(x)-g(x)|=\|f-g\|_{\infty}<r .
$$

Therefore, if $f \in B(g, r)$, by the fact that $r \leqslant b-\sup _{x \in K} g(x)$ and $r \leqslant \inf _{x \in K} g(x)-a$, we conclude that if $x \in K$,

$$
a \leqslant \inf _{x \in K} g(x)-r \leqslant g(x)-r<f(x)<g(x)+r \leqslant \sup _{x \in K} g(x)+r \leqslant b
$$

which implies that $f \in U$. Therefore, $B(g, r) \subseteq U$; thus U is open.
2. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence in F such that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on K. Then $f \in \mathscr{C}(K ; \mathbb{R})$. Moreover, by the fact that $a \leqslant f_{n}(x) \leqslant b$ for all $x \in K$ and $n \in \mathbb{N}$, we find that $a \leqslant f(x) \leqslant b$ for all $x \in K$ since $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. This implies that $f \in F$; thus F is closed (since it contains all the limit points).
3. Consider the case $A=(0,1)$. Then the function $f(x)=x$ belongs to B; however, for every $r>0$, the function $g(x)=f(x)-\frac{r}{2}$ belongs to $B(f, r)$ since

$$
\|f-g\|_{\infty}=\sup _{x \in(0,1)}|f(x)-g(x)|=\frac{r}{2}<r .
$$

However, $g \notin B$ since if $0<x \ll 1$, we have $g(x)<0$. In other words, there exists no $r>0$ such that $B(f, r) \subseteq B$; thus B is not open.

