Exercise Problem Sets 12

Dec. 25. 2020

Problem 1. Investigate the differentiability of

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Solution. First we note that

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \quad \text { and } \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0 .
$$

For $(x, y) \neq(0,0)$,

$$
\frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}}=\frac{x y}{x^{2}+y^{2}}
$$

whose limit, as $(x, y) \rightarrow(0,0)$, does not exist. Therefore, f is not differentiable at $(0,0)$.
On the other hand, for $(x, y) \neq(0,0)$,

$$
f_{x}(x, y)=\frac{y \sqrt{x^{2}+y^{2}}-\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}=\frac{y^{3}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
$$

and similarly, $f_{y}(x, y)=\frac{x^{3}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}$. Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$; thus f is differentiable on $\mathbb{R}^{2} \backslash\{(0,0)\}$.

Problem 2. Investigate the differentiability of

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x+y^{2}} & \text { if } x+y^{2} \neq 0 \\
0 & \text { if } x+y^{2}=0
\end{array}\right.
$$

Solution. For $x+y^{2} \neq 0$,

$$
f_{x}(x, y)=\frac{y\left(x+y^{2}\right)-x y}{\left(x+y^{2}\right)^{2}}=\frac{y^{3}}{\left(x+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}(x, y)=\frac{x\left(x+y^{2}\right)-2 x y^{2}}{\left(x+y^{2}\right)^{2}}=\frac{x^{2}-x y^{2}}{\left(x+y^{2}\right)^{2}} .
$$

Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\left\{(x, y) \mid x+y^{2}=0\right\}$; thus f is differentiable at point (x, y) satisfying $x+y^{2} \neq 0$ (by Theorem 5.40 of the lecture note).

Now we consider the differentiability of f at (a, b) when $a+b^{2}=0$. First we note that

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}=\lim _{h \rightarrow 0} \frac{(a+h) b}{h\left(a+h+b^{2}\right)}=\left\{\begin{array}{cl}
0 & (a, b)=(0,0), \\
\text { D.N.E. } & (a, b) \neq(0,0)
\end{array}\right.
$$

thus f is not differentiable at (a, b) if $a+b^{2}=0$ and $(a, b) \neq(0,0)$ (because of Theorem 5.27).
Finally we justify the differentiability of f at $(0,0)$. Note that

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0 .
$$

For $x=y^{2}$ with $y \neq 0$, we have

$$
\frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}}=\frac{\left|y^{3}\right|}{2 y^{2} \sqrt{y^{4}+y^{2}}}=\frac{1}{2 \sqrt{y^{2}+1}}
$$

whose limit, as $y \rightarrow 0$, cannot be zero; thus

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left|f(x, y)-f(0,0)-f_{x}(0,0) x-f_{y}(0,0) y\right|}{\sqrt{x^{2}+y^{2}}} \neq 0 .
$$

Therefore, f is not differentiable at $(0,0)$.
Problem 3. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\left\{\begin{array}{cl}
\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Discuss the differentiability of f.
Solution. If $(x, y) \neq(0,0)$, then

$$
\begin{aligned}
f_{x}(x, y) & =2 x \sin \frac{1}{\sqrt{x^{2}+y^{2}}}+\left(x^{2}+y^{2}\right) \cos \frac{1}{\sqrt{x^{2}+y^{2}}} \cdot \frac{-x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \\
& =2 x \sin \frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}}} \cos \frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

and similarly,

$$
f_{y}(x, y)=2 y \sin \frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}}} \cos \frac{1}{\sqrt{x^{2}+y^{2}}} .
$$

Clearly f_{x} and f_{y} are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$; thus f is differentiable at point $(x, y) \neq(0,0)$ (by Theorem 5.40 of the lecture note).

Now we justify the differentiability of f at $(0,0)$. First we compute $f_{x}(0,0)$ and $f_{y}(0,0)$ and find that

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{|h|}=0
$$

and

$$
f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=\lim _{k \rightarrow 0} k \sin \frac{1}{|k|}=0
$$

where the limits above are obtained by the Sandwich Lemma. For $(x, y) \neq(0,0)$, we have

$$
\frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=\sqrt{x^{2}+y^{2}} \sin \frac{1}{\sqrt{x^{2}+y^{2}}} \leqslant \sqrt{x^{2}+y^{2}} ;
$$

thus the Sandwich Lemma implies that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=0 .
$$

Therefore, f is also differentiable at $(0,0)$; thus f is differentiable on \mathbb{R}^{2}.

Problem 4. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

and $u \in \mathbb{R}^{2}$ be a unit vector. Show that the directional derivative of f at the origin exists in all direction, and

$$
\left(D_{u} f\right)(0,0)=\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot u
$$

Is f differentiable at $(0,0)$?
Solution. Let $u=(\cos \theta, \sin \theta)$ be a unit vector. Then the directional derivative of f at $(0,0)$ in direction u is

$$
\begin{aligned}
\left(D_{u} f\right)(0,0) & =\lim _{t \rightarrow 0^{+}} \frac{f(t \cos \theta, t \sin \theta)-f(0,0)}{t}=\lim _{t \rightarrow 0^{+}} \frac{t^{4} \cos ^{3} \theta \sin \theta}{t\left(t^{4} \cos ^{4} \theta+t^{2} \sin ^{2} \theta\right)} \\
& =\lim _{t \rightarrow 0^{+}} \frac{t \cos ^{3} \theta \sin \theta}{t^{2} \cos ^{4} \theta+\sin ^{2} \theta}=0
\end{aligned}
$$

On the other hand,

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=0 \quad \text { and } \quad f_{y}(0,0)=\lim _{k \rightarrow 0} \frac{f(0, k)-f(0,0)}{k}=0
$$

thus we conclude that $\left(D_{u} f\right)(0,0)=\left(f_{x}(0,0), f_{y}(0,0)\right) \cdot u$.
Since $f_{x}(0,0)=f_{y}(0,0)=0$, if f is differentiable at $(0,0)$, we must have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{|f(x, y)-f(0,0)-0 \cdot(x-0)-0 \cdot(y-0)|}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left|x^{3} y\right|}{\sqrt{x^{2}+y^{2}}\left(x^{4}+y^{2}\right)}=0
$$

however, by passing to the limit as $(x, y) \rightarrow(0,0)$ along the curve $y=x^{2}$, we find that

$$
0=\lim _{x \rightarrow 0} \frac{\left|x^{3} \cdot x^{2}\right|}{\sqrt{x^{2}+x^{4}\left(x^{4}+x^{4}\right)}}=\lim _{x \rightarrow 0} \frac{1}{2 \sqrt{1+x^{2}}}=\frac{1}{2}
$$

a contradiction. Therefore, f is not differentiable at $(0,0)$.
Problem 5. Let $U \subseteq \mathbb{R}^{n}$ be open, and $f: U \rightarrow \mathbb{R}$. Suppose that the partial derivatives $\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}$ are bounded on U; that is, there exists a real number $M>0$ such that

$$
\left|\frac{\partial f}{\partial x_{j}}(x)\right| \leqslant M \quad \forall x \in U \text { and } j=1, \cdots, n
$$

Show that f is continuous on U.
Hint: Mimic the proof of the sufficient condition for differentiability.
Proof. Assume that $\left|\frac{\partial f}{\partial x_{i}}(x)\right| \leqslant M$ for all $x \in U$ and $1 \leqslant i \leqslant n$. Let $a \in U$ be given. Then there exists $r>0$ such that $B(a, r) \subseteq U$. For $x \in B(a, r)$, let $k=x-a$. Then

$$
\begin{aligned}
|f(x)-f(a)| & =\left|f\left(a_{1}+k_{1}, a_{2}+k_{2}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right| \\
& =\left|\sum_{j=1}^{n}\left[f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right]\right| \\
& \leqslant \sum_{j=1}^{n}\left|f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right| .
\end{aligned}
$$

By the Mean Value Theorem, for each $1 \leqslant j \leqslant n$ there exists $\theta_{j} \in(0,1)$ such that

$$
\begin{aligned}
& \mid f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right) \\
& \quad=\frac{\partial f}{\partial x_{j}}\left(a_{1}, \cdots, a_{j-1}, a_{j}+\theta_{j} k_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right) k_{j}
\end{aligned}
$$

thus

$$
\left|f\left(a_{1}, \cdots, a_{j-1}, a_{j}+k_{j}, \cdots, a_{n}+k_{n}\right)-f\left(a_{1}, \cdots, a_{j}, a_{j+1}+k_{j+1}, \cdots, a_{n}+k_{n}\right)\right| \leqslant M\left|k_{j}\right| .
$$

Therefore, if $x \in B(a, r)$,

$$
|f(x)-f(a)|=\sum_{j=1}^{n} M\left|k_{j}\right| \leqslant M \sqrt{n}\left(\sum_{j=1}^{n}\left|k_{j}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{n} M\|x-a\|_{\mathbb{R}^{n}}
$$

This shows that f is continuous at a.
Problem 6. Let $U \subseteq \mathbb{R}^{n}$ be open, and $f: U \rightarrow \mathbb{R}$. Show that f is differentiable at $a \in U$ if and only if there exists a vector-valued function $\varepsilon: U \rightarrow \mathbb{R}^{n}$ such that

$$
f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)=\varepsilon(x) \cdot(x-a)
$$

and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow a$.
Proof. " \Rightarrow " Suppose that f is differentiable at a. Define $\varepsilon: U \rightarrow \mathbb{R}^{n}$ by

$$
\varepsilon(x)=\left\{\begin{array}{cl}
{\left[f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right] \frac{x-a}{\|x-a\|^{2}}} & \text { if } x \neq a \\
0 & \text { if } x=a
\end{array}\right.
$$

Then for $x \neq a$,

$$
|\varepsilon(x)| \leqslant \frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}
$$

which, by the differentiability of f at a, implies that

$$
\lim _{x \rightarrow a}|\varepsilon(x)|=0 .
$$

Moreover,

$$
\varepsilon(x) \cdot(x-a)=f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right) .
$$

$" \Leftarrow$ " Suppose that there exists a vector-valued function $\varepsilon: U \rightarrow \mathbb{R}^{n}$ such that

$$
f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)=\varepsilon(x) \cdot(x-a)
$$

and $\varepsilon(x) \rightarrow 0$ as $x \rightarrow a$. Then for $x \neq a$, the Cauchy-Schwarz inequality implies that

$$
\frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}=\frac{|\varepsilon(x) \cdot(x-a)|}{\|x-a\|} \leqslant\|\varepsilon(x)\| ;
$$

thus

$$
\lim _{x \rightarrow a} \frac{\left|f(x)-f(a)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)\left(x_{j}-a_{j}\right)\right|}{\|x-a\|}=0 .
$$

Therefore, f is differentiable at a with $[(D f)(a)]=\left[\frac{\partial f}{\partial x_{1}}(a), \cdots, \frac{\partial f}{\partial x_{n}}(a)\right]$.

