Exercise Problem Sets 10

Dec. 11. 2020

Problem 1. Check if the following functions on uniformly continuous.

- 1. $f: (0, \infty) \to \mathbb{R}$ defined by $f(x) = \sin \log x$.
- 2. $f: (0,1) \to \mathbb{R}$ defined by $f(x) = x \sin \frac{1}{x}$.
- 3. $f:(0,\infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$.
- 4. $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos(x^2)$.
- 5. $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos^3 x$.
- 6. $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x \sin x$.
- **Problem 2.** 1. Find all positive numbers a and b such that the function $f(x) = \frac{\sin(x^a)}{1+x^b}$ is uniformly continuous on $[0, \infty)$.
 - 2. Find all positive numbers a and b such that the function $f(x, y) = |x|^a |y|^b$ is uniformly continuous on \mathbb{R}^2 .

Problem 3. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be continuous, and $\lim_{|x|\to\infty} f(x) = b$ exists for some $b \in \mathbb{R}^m$. Show that f is uniformly continuous on \mathbb{R}^n .

Proof. Let $\varepsilon > 0$ be given. By the fact that $\lim_{\|x\|\to\infty} f(x) = b$, there exists M > 0 such that

$$||f(x) - b||_{\mathbb{R}^m} < \frac{\varepsilon}{2}$$
 whenever $||x||_{\mathbb{R}^n} \ge M$.

By the Heine-Borel Theorem, B[0, M+1] is compact; thus f is uniformly continuous on B[0, M+1]and there exists $\delta \in (0, \frac{1}{2})$ such that

$$||f(x) - f(y)|| < \frac{\varepsilon}{2}$$
 whenever $||x - y||_{\mathbb{R}^n} < \delta$ and $x, y \in B[0, M+1]$. (*)

Therefore, for $x, y \in \mathbb{R}^n$ satisfying $||x - y|| < \delta$,

1. if $x, y \in B[0, M + 1]$, then (\star) implies that

$$\|f(x) - f(y)\|_{\mathbb{R}^m} < \varepsilon$$

2. if $x \notin B[0, M+1]$ or $y \notin B[0, M+1]$, then $x, y \in B[0, M]^{\complement}$ which implies that

$$\|f(x) - f(y)\|_{\mathbb{R}^m} \leq \|f(x)\|_{\mathbb{R}^m} + \|f(y)\|_{\mathbb{R}^m} < \varepsilon.$$

Problem 4. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is uniformly continuous. Show that there exists a > 0 and b > 0 such that $||f(x)||_{\mathbb{R}^m} \leq a ||x||_{\mathbb{R}^n} + b$.

Proof. Since f is uniformly continuous on \mathbb{R}^n , there exists $\delta > 0$ such that

 $\|f(x) - f(y)\|_{\mathbb{R}^n} < 1$ whenever $\|x - y\|_{\mathbb{R}^n} < \delta$.

For a given $x \in \mathbb{R}^n$, let $N \in \mathbb{N}$ such that $\frac{\|x\|_{\mathbb{R}^n}}{\delta} < N \leq \frac{\|x\|_{\mathbb{R}^n}}{\delta} + 1$. For each $k \in \mathbb{N}$, define points x_k by $x_k \equiv \frac{kx}{N}$. Then $\{x_k\}_{k=0}^{\infty}$ satisfies that

$$\|x_k - x_{k-1}\|_{\mathbb{R}^m} = \frac{\|x\|_{\mathbb{R}^n}}{N} < \delta \qquad \forall k \in \mathbb{N}$$

which further implies that

$$\|f(x_k) - f(x_{k-1})\|_{\mathbb{R}^m} < 1 \qquad \forall k \in \mathbb{N}.$$

Therefore,

$$\|f(x)\|_{\mathbb{R}^m} \leq \|f(x) - f(0)\|_{\mathbb{R}^m} + \|f(0)\|_{\mathbb{R}^m} \leq \sum_{k=1}^N \|f(x_k) - f(x_{k-1})\|_{\mathbb{R}^m} + \|f(0)\|_{\mathbb{R}^m}$$
$$\leq N + \|f(0)\|_{\mathbb{R}^m} \leq \frac{1}{\delta} \|x\|_{\mathbb{R}^m} + \|f(0)\|_{\mathbb{R}^m} + 1;$$

thus $a = \frac{1}{\delta}$ and $b = ||f(0)||_{\mathbb{R}^m} + 1$ verify the inequality $||f(x)||_{\mathbb{R}^m} \leq a ||x||_{\mathbb{R}^n} + b$.

Problem 5. Let $f(x) = \frac{q(x)}{p(x)}$ be a rational function define on \mathbb{R} , where p and q are two polynomials. Show that f is uniformly continuous on \mathbb{R} if and only if the degree of q is not more than the degree of p plus 1.

Proof. Note that if f is defined on \mathbb{R} , then $p(x) \neq 0$ for all $x \in \mathbb{R}$. By Problem 4, there exist a, b > 0 such that

$$\left|\frac{q(x)}{p(x)}\right| \leqslant a|x| + b \qquad \forall x \in \mathbb{R}$$

Therefore, $|q(x)| \leq |p(x)|(a|x|+b)$ for all $x \in \mathbb{R}$, and this inequality above can be true if and only if the degree of q is not more than the degree of p plus 1.

Problem 6. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous periodic function; that is, there exists p > 0 such that f(x+p) = f(x) for all $x \in \mathbb{R}$ (and f is continuous). Show that f is uniformly continuous on \mathbb{R} .

Proof. Let p > 0 be such that f(x+p) = f(x) for all $x \in \mathbb{R}$, and $\varepsilon > 0$ be given. Since f is uniformly continuous on [-p, p], there exists $\delta \in (0, p)$ such that

$$|f(x) - f(y)| < \frac{\varepsilon}{2}$$
 whenever $|x - y| < \delta$ and $x, y \in [-p, p]$

Therefore, if $|x-y| < \delta$, we must have $x, y \in [kp-p, kp+p]$ for some $k \in \mathbb{Z}$ so that $x-kp, y-kp \in [-p, p]$ which, together with the fact that $|(x-kp) - (y-kp)| = |x-y| < \delta$, implies that

$$\left|f(x) - f(y)\right| = \left|f(x - kp) - f(y - kp)\right| < \varepsilon.$$

Problem 7. Let $(a, b) \subseteq \mathbb{R}$ be an open interval, and $f : (a, b) \to \mathbb{R}^m$ be a function. Show that the following three statements are equivalent.

- 1. f is uniformly continuous on (a, b).
- 2. f is continuous on (a, b), and both limits $\lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} f(x)$ exist.
- 3. For all $\varepsilon > 0$, there exists N > 0 such that $|f(x) f(y)| < \varepsilon$ whenever $\left|\frac{f(x) f(y)}{x y}\right| > N$ and $x, y \in (a, b), x \neq y$.

Proof. First we note that 1 and 2 are equivalent since

- 1. if f is uniformly continuous on (a, b), then there is a unique continuous extension g of f on [a, b]; thus $\lim_{x \to a^+} g(x) = g(a)$ and $\lim_{x \to b^-} g(x) = g(b)$ exists, and 2 holds since $\lim_{x \to a^+} g(x) = \lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} g(x) = \lim_{x \to b^-} f(x)$.
- 2. if $\lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} f(x)$ exists, we define $g : [a, b] \to \mathbb{R}$ by g(x) = f(x) for $x \in (a, b)$ and g(a), g(b) are respectively the limit of f at a, b. Then g is continuous on [a, b]; thus the compactness of [a, b] shows that g is uniformly continuous on [a, b]. In particular, g is uniformly continuous on (a, b) which is the same as saying that f is uniformly continuous on (a, b).

Next we prove that 1 and 3 are equivalent.

"1 \Rightarrow 3" Suppose the contrary that there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$ there exist $x_n, y_n \in (a, b)$ such that

$$x_n \neq y_n$$
, $|f(x_n) - f(y_n)| \ge \varepsilon$ but $\left|\frac{f(x_n) - f(y_n)}{x_n - y_n}\right| > n$ $\forall n \in \mathbb{N}$

By the Bolzano-Weierstrass Theorem/Property, there exist convergent subsequence $\{x_{n_j}\}_{j=1}^{\infty}$ and $\{y_{n_j}\}_{j=1}^{\infty}$ with limit x and y. Since $x_n, y_n \in (a, b)$ for all $n \in \mathbb{N}$, we must have $x, y \in [a, b]$. If x = y, then $|x_n - y_n| \to 0$ as $n \to \infty$; thus the uniform continuity of f on (a, b) implies that $|f(x_n) - f(y_n)| \to 0$ as $n \to \infty$ which contradicts to the fact that $|f(x_n) - f(y_n)| \ge \varepsilon$ for all $n \in \mathbb{N}$. Therefore, $x \neq y$ which further shows that the limit

$$\lim_{n \to \infty} \left| \frac{f(x_n) - f(y_n)}{x_n - y_n} \right|$$

exists since the limit $\{f(x_n)\}_{n=1}^{\infty}$ and $\{f(y_n)\}_{n=1}^{\infty}$ both exist and $\lim_{n \to \infty} (x_n - y_n) = x - y \neq 0$. This is a contradiction to that $\left|\frac{f(x_n) - f(y_n)}{x_n - y_n}\right| > n$ for all $n \in \mathbb{N}$.

" $3 \Rightarrow 1$ " Suppose the contrary that there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$ there exists $x_n, y_n \in (a, b)$ satisfying $|x_n - y_n| < \frac{1}{n}$ but $|f(x_n) - f(y_n)| \ge \varepsilon$. For this $\varepsilon > 0$, by assumption there exists N > 0 such that

$$|f(x) - f(y)| < \varepsilon$$
 whenever $\left|\frac{f(x) - f(y)}{x - y}\right| > N$ and $x, y \in (a, b), x \neq y$.

Since $|f(x_n) - f(y_n)| \ge \varepsilon$, we must have $x_n \ne y_n$; thus the fact that $x_n, y_n \in (a, b)$ implies that

$$\left|\frac{f(x_n) - f(y_n)}{x_n - y_n}\right| \le N \qquad \forall \, n \in \mathbb{N}$$

This contradicts to the fact that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| > \varepsilon$.

Problem 8. Suppose that $f : [a, b] \to \mathbb{R}$ is *Hölder continuous with exponent* α ; that is, there exist M > 0 and $\alpha \in (0, 1]$ such that

$$|f(x) - f(y)| \le M|x - y|^{\alpha} \qquad \forall x, y \in [a, b]$$

Show that f is uniformly continuous on [a, b]. Show that $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$.

Proof. Let $\varepsilon > 0$ be given. Define $\delta = M^{-\frac{1}{\alpha}} \varepsilon^{\frac{1}{\alpha}}$. Then $\delta > 0$. Moreover, if $|x - y| < \delta$ and $x, y \in [a, b]$,

$$|f(x) - f(y)| \leq M|x - y|^{\alpha} < M\delta^{\alpha} = \varepsilon$$

Therefore, f is uniformly continuous on [a, b].

Next we show that $f(x) = \sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$. Note that if $x, y \ge 0$ and $x \ne y$,

$$\frac{|\sqrt{x} - \sqrt{y}|}{|x - y|^{\frac{1}{2}}} = \frac{|\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}|}{|x - y|^{\frac{1}{2}}|\sqrt{x} + \sqrt{y}|} = \frac{|x - y|^{\frac{1}{2}}}{|\sqrt{x} + \sqrt{y}|} \le \frac{\sqrt{x} + \sqrt{y}}{|\sqrt{x} + \sqrt{y}|} \le 1$$

thus

 $|\sqrt{x} - \sqrt{y}| \le |x - y|^{\frac{1}{2}} \qquad \forall x, y \ge 0 \text{ and } x \ne y.$

which implies that $f(x) = \sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$ on $[0, \infty)$.

Problem 9. A function $f : A \times B \to \mathbb{R}^m$, where $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}^p$, is said to be separately continuous if for each $x_0 \in A$, the map $g(y) = f(x_0, y)$ is continuous and for $y_0 \in B$, $h(x) = f(x, y_0)$ is continuous. f is said to be continuous on A uniformly with respect to B if

$$\forall \varepsilon > 0, \exists \delta > 0 \ni \left\| f(x, y) - f(x_0, y) \right\|_2 < \varepsilon \text{ whenever } \|x - x_0\|_2 < \delta \text{ and } x \in A, y \in B.$$

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f is continuous on $A \times B$.

Proof. Let $\varepsilon > 0$, and $(a, b) \in A \times B$ be given. By assumption there exists $\delta_1 > 0$ such that

$$\|f(x,y) - f(a,y)\|_2 < \frac{\varepsilon}{2}$$
 whenever $\|x - a\|_2 < \delta_1$ and $x \in A, y \in B$.

Since f is separately continuous, there exists $\delta_2 > 0$ such that

$$\|f(a,y) - f(a,b)\|_2 < \frac{\varepsilon}{2}$$
 whenever $\|y - b\|_2 < \delta_2$ and $y \in B$.

Define $\delta = \min\{\delta_1, \delta_2\}$. Then if $||(x, y) - (a, b)||_2 < \delta$, we must have $||x - a||_2 < \delta_1$ and $||y - b||_2 < \delta_2$ so that

$$||f(x,y) - f(a,b)||_2 = ||f(x,y) - f(a,y) + f(a,y) - f(a,b)||_2$$

$$\leq ||f(x,y) - f(a,y)||_2 + ||f(a,y) - f(a,b)||_2 < \varepsilon$$

which shows that f is continuous at (a, b).

Problem 10. Let (M, d) be a metric space, $A \subseteq M$, and $f, g : A \to \mathbb{R}$ be uniformly continuous on A. Show that if f and g are bounded, then fg is uniformly continuous on A. Does the conclusion still hold if f or g is not bounded?

Proof. Let $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ be sequences in A satisfying that $\lim_{n \to \infty} d(x_n, y_n) = 0$. Suppose that $|f(x)| \leq M$ and $|g(x)| \leq M$ for all $x \in A$. Then

$$\begin{aligned} \left| f(x_n)g(x_n) - f(y_n)g(y_n) \right| &= \left| f(x_n)g(x_n) - f(x_n)g(y_n) + f(x_n)g(y_n) - f(y_n)g(y_n) \right| \\ &\leq \left| f(x_n) \right| \left| g(x_n) - g(y_n) \right| + \left| g(y_n) \right| \left| f(x_n) - f(y_n) \right| \\ &\leq M \left(\left| f(x_n) - f(y_n) \right| + \left| g(x_n) - g(y_n) \right| \right); \end{aligned}$$

thus the uniform continuity of f and g, together with the Sandich Lemma, implies that

$$\lim_{n \to \infty} \left| f(x_n)g(x_n) - f(y_n)g(y_n) \right| = 0.$$

Therefore, fg is uniformly continuous on A.

When the boundedness is removed from the condition, the product of f and g might not be uniformly continuous. For example, f(x) = g(x) = x are continuous on \mathbb{R} , but $(fg)(x) = x^2$ is no uniformly continuous on \mathbb{R} (from an example in class).

Problem 11. Let $\mathscr{P}([0,1))$ be the collection of all polynomials defined on [0,1], and $\|\cdot\|_{\infty}$ be the max-norm defined by $\|p\|_{\infty} = \max_{x \in [0,1]} |p(x)|$.

1. Show that the differential operator $\frac{d}{dx} : \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Show that $\frac{d}{dx} : (\mathscr{P}([0,1]), \|\cdot\|_{\infty}) \to (\mathscr{P}([0,1]), \|\cdot\|_{\infty})$ is unbounded; that is, show that

$$\sup_{\|p\|_{\infty}=1}\|p'\|_{\infty}=\infty.$$

Proof. 1. Let $p, q \in \mathscr{P}([0,1])$ and $c \in \mathbb{R}$. Then by the rule of differentiation,

$$\frac{d}{dx}(cp+q)(x) = cp'(x) + q'(x) = c\frac{d}{dx}p(x) + \frac{d}{dx}q(x);$$

thus $\frac{d}{dx}: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Consider $p_n(x) = x^n$. Then $||p_n||_{\infty} = \max_{x \in [0,1]} x^n = 1$ for all $n \in \mathbb{N}$; however,

$$||p'_n||_{\infty} = \max_{x \in [0,1]} n x^{n-1} = n \qquad n \in \mathbb{N};$$

thus $\sup_{\|p\|_{\infty}=1} \|p'\|_{\infty} = \infty.$

Problem 12. Recall that $\mathcal{M}_{m \times n}$ is the collection of all $m \times n$ real matrices. For a given $A \in \mathcal{M}_{m \times n}$, define a function $f : \mathcal{M}_{n \times m} \to \mathbb{R}$ by

$$f(M) = \operatorname{tr}(AM) \,,$$

where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show that $f \in \mathscr{B}(\mathcal{M}_{n \times m}, \mathbb{R})$.

Hint: You may need the conclusion that any two norms on a finite dimensional vector spaces over \mathbb{R} or \mathbb{C} are equivalent.

Proof. Let $A = [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$ and $M = [m_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$. Then

$$\operatorname{tr}(AM) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji} \,.$$

First we show that $f \in \mathscr{L}(\mathcal{M}_{n \times m}, \mathbb{R})$. Let $M = [m_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ and $N = [n_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ be matrices in $\mathcal{M}_{n \times m}$ and $c \in \mathbb{R}$. Then

$$f(cM+N) = \operatorname{tr}(A(cM+N)) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}(cm_{ji}+n_{ji}) = c \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}m_{ji} + \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}n_{ji}$$
$$= c \operatorname{tr}(AM) + \operatorname{tr}(AN) = cf(M) + f(N).$$

Let $\|\cdot\| : \mathcal{M}_{n \times m} \to \mathbb{R}$ be defined by

$$\|[m_{jk}]_{1 \le j \le n, 1 \le k \le m}\| = \sum_{j=1}^{n} \sum_{k=1}^{m} |m_{jk}|.$$

Then $\|\cdot\|$ is a norm on $\mathcal{M}_{n\times m}$, and

$$\sup_{\|M\|=1} |f(M)| = \sup_{\sum_{j=1}^{n} \sum_{k=1}^{m} |m_{jk}|=1} \left| \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji} \right| \le \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| < \infty;$$

thus $f : (\mathcal{M}_{n \times m}, \|\cdot\|) \to (\mathbb{R}, |\cdot|)$ is bounded. Let $\|\cdot\|$ be another norm on $\mathcal{M}_{n \times m}$. Since $\mathcal{M}_{n \times m}$ is finite dimensional vector spaces over \mathbb{R} , there exists c and C such that

$$c\|M\| \leq \|\|M\| \leq C\|M\| \qquad \forall M \in \mathcal{M}_{n \times m}.$$

Therefore, $\left\{ M \in \mathcal{M}_{n \times m} \mid |||M||| \leq 1 \right\} \subseteq \left\{ M \in \mathcal{M}_{n \times m} \mid ||M|| \leq \frac{1}{c} \right\}$

$$\sup_{\||M\||=1} |f(M)| \leq \sup_{\|M\| \leq 1/c} |f(M)| = \sup_{\|cM\| \leq 1} \frac{1}{c} |f(cM)| \leq \frac{1}{c} \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| < \infty;$$

thus $f: (\mathcal{M}_{n \times m}, ||| \cdot |||) \to \mathbb{R}$ is bounded.

Remark 0.1. Problem 12 is a special case of the theorem (about linear maps on a finite dimensional normed space must be bounded) in class.