Exercise Problem Sets 8

Nov. 20. 2020

Problem 1. Let (M, d) be a metric space.

1. Show that a closed subset of a compact set is compact.
2. Show that the union of a finite number of sequentially compact subsets of M is compact.
3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is sequentially compact.

Proof. 1. Let K be a compact set in M, F be a closed subset of K, and $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in F. Then $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a sequence in K; thus the sequential compactness of K implies that there exists a convergent subsequence $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ with limit $x \in K$. Note that $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ itself is a convergent sequence in F; thus the limit x of $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ belongs to F by the closedness of F.
2. Let $K_{1}, K_{2}, \cdots, K_{N}$ be compact sets, and $K=\bigcup_{\ell=1}^{N} K_{\ell}$, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in K. Then there exists $1 \leqslant \ell_{0} \leqslant N$ such that

$$
\#\left\{n \in \mathbb{N} \mid x_{n} \in K_{\ell_{0}}\right\}=\infty .
$$

Let $\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \subseteq K_{\ell_{0}}$. By the compactness of $K_{\ell_{0}}$, there exists a convergent subsequence $\left\{x_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ with limit $x \in K_{\ell_{0}} \subseteq K$. Since $\left\{x_{n_{k_{j}}}\right\}_{j=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$, we conclude that every sequence in K has a convergent subsequence with limit in K; thus K is compact.
3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of M is closed. By 1 , this intersection is also compact since the intersection is a closed set of any compact set (in the family).

Problem 2. Given $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ a bounded sequence, define

$$
A=\left\{x \in \mathbb{R} \mid \text { there exists a subsequence }\left\{a_{k_{j}}\right\}_{j=1}^{\infty} \text { such that } \lim _{j \rightarrow \infty} a_{k_{j}}=x\right\}
$$

Show that A is a non-empty sequentially compact set in \mathbb{R}. Furthermore, $\limsup _{k \rightarrow \infty} a_{k}=\sup A$ and $\liminf _{k \rightarrow \infty} a_{k}=\inf A$.
Proof. Note that A is the collection of cluster points of bounded sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$; thus Problem 3 of Exercise 7 shows that A is closed. Moreover, A is bounded since $\left\{a_{k}\right\}_{k=1}^{\infty}$ is bounded; thus $\sup A \in A$ and $\inf A \in A$. The desired result then follows from the fact that $\underset{k \rightarrow \infty}{\limsup } a_{k}$ is the largest cluster point of $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\liminf _{k \rightarrow \infty} a_{k}$ is the least cluster point of $\left\{a_{k}\right\}_{k=1}^{\infty}$; thus $\limsup _{k \rightarrow \infty} a_{k}=\sup A \in A$ and $\liminf _{k \rightarrow \infty} a_{k}=\inf A \in A$.
Problem 3. Complete the following problems that we talked about in class.

1. Let (M, d) be a complete metric space, and A is a totally bounded subset of M. Show that $\operatorname{cl}(A)$ is sequentially compact.
2. Let (M, d) be a metric space. Show that M is complete if and only if every totally bounded sequence has a convergent subsequence.

Proof. Let $r>0$ be given. Since A is totally bounded, there exist $x_{1}, x_{2}, \cdots, x_{N} \in M$ such that

$$
A \subseteq \bigcup_{j=1}^{N} B\left(x_{j}, \frac{r}{2}\right) .
$$

Note that for all $x \in M, B\left(x, \frac{r}{2}\right) \subseteq B\left[x, \frac{r}{2}\right]$ which further implies that

$$
\operatorname{cl}\left(B\left(x, \frac{r}{2}\right)\right) \subseteq B\left[x, \frac{r}{2}\right] \subseteq B(x, r) \quad \forall x \in M .
$$

Therefore, (\star) and 3 of Problem 8 in Exercise 6 imply that

$$
\bar{A} \subseteq \operatorname{cl}\left(\bigcup_{j=1}^{N} B\left(x_{j}, \frac{r}{2}\right)\right)=\bigcup_{j=1}^{N} \operatorname{cl}\left(B\left(x_{j}, \frac{r}{2}\right)\right) \subseteq \bigcup_{j=1}^{N} B\left(x_{j}, r\right) .
$$

This shows that \bar{A} is totally bounded. By the fact that (M, d) is complete, \bar{A} is complete; thus \bar{A} is sequentially compact.

Problem 4. 1. Show the so-called "Finite Intersection Property":

Let (M, d) be a metric space, and K be a subset of M. Then K is compact if and only if for any family of closed subsets $\left\{F_{\alpha}\right\}_{\alpha \in I}$, we have

$$
K \cap \bigcap_{\alpha \in I} F_{\alpha} \neq \varnothing
$$

whenever $K \cap \bigcap_{\alpha \in J} F_{\alpha} \neq \varnothing$ for all $J \subseteq I$ satisfying $\# J<\infty$.
2. Show the so-called "Nested Set Properpty":

Let (M, d) be a metric space, and $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-empty compact sets in M such that $K_{j} \supseteq K_{j+1}$ for all $j \in \mathbb{N}$. Then there exists at least one point in $\bigcap_{j=1}^{\infty} K_{j}$; that is,

$$
\bigcap_{j=1}^{\infty} K_{j} \neq \varnothing .
$$

Proof. 1. (\Rightarrow) Let K be a compact set, and $\left\{F_{\alpha}\right\}_{\alpha \in I}$ be a collection of closed set such that

$$
K \cap \bigcap_{\alpha \in J} F_{\alpha} \neq \varnothing \quad \forall J \subseteq I, \# J<\infty .
$$

Suppose the contrary that $K \cap \bigcap_{\alpha \in I} F_{\alpha}=\varnothing$. Then

$$
K \subseteq\left(\bigcap_{\alpha \in I} F_{\alpha}\right)^{\complement}=\bigcup_{\alpha \in I} F_{\alpha}^{\complement}
$$

This, together with the fact that F_{α}^{\complement} is open for all $\alpha \in I$, implies that $\left\{F_{\alpha}^{\complement}\right\}_{\alpha \in I}$ is an open cover of K. By the compactness of K, there exists $J \subseteq I$ with $\# J<\infty$ such that $K \subseteq \bigcup_{\alpha \in J} F_{\alpha}^{\complement}$. Therefore,

$$
K \cap \bigcap_{\alpha \in J} F_{\alpha}=K \cap\left(\bigcup_{\alpha \in J} F_{\alpha}\right)^{\complement}=\varnothing
$$

a contradiction.
(\Leftarrow) Let $\left\{U_{\alpha}\right\}_{\alpha \in I}$ be an open cover of K. Define $F_{\alpha}=U_{\alpha}^{\complement}$. Then $\left\{F_{\alpha}\right\}_{\alpha \in I}$ is a family of closed set satisfying that

$$
K \cap \bigcap_{\alpha \in I} F_{\alpha}=K \cap \bigcap_{\alpha \in I} U_{\alpha}^{\complement}=K \cap\left(\bigcup_{\alpha \in I} U_{\alpha}\right)^{\complement}=\varnothing
$$

By assumption, there must be $J \subseteq I$ with $\# J<\infty$ such that

$$
K \cap \bigcap_{\alpha \in J} F_{\alpha}=\varnothing
$$

By the fact that $\bigcap_{\alpha \in J} F_{\alpha}=\left(\bigcup_{\alpha \in J} U_{\alpha}\right)^{\complement}$, we conclude that $K \subseteq \bigcup_{\alpha \in J} U_{\alpha}$; thus we conclude that every open cover of K has a finite subcover. Therefore, K is compact.
2. Let $K=K_{1}$, and $F_{j}=K_{j}$ for all $j \in \mathbb{N}$. Then for any finite subset J of \mathbb{N},

$$
K \cap \bigcap_{j \in J} F_{j}=K_{\max J} \neq \varnothing ;
$$

thus 1 implies that $K \cap \bigcap_{j \in \mathbb{N}} F_{j} \neq \varnothing$.
Problem 5. 1. Let $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ be a sequence in $(\mathbb{R},|\cdot|)$ that converges to x and let $A_{k}=$ $\left\{x_{k}, x_{k+1}, \cdots\right\}$. Show that $\{x\}=\bigcap_{k=1}^{\infty} \bar{A}_{k}$. Is this true in any metric space?
2. Suppose that $\left\{K_{j}\right\}_{j=1}^{\infty}$ is a sequence of non-empty compact sets satisfying the nested set property (that is, $K_{j} \supseteq K_{j+1}$), and $\operatorname{diam}\left(K_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$, where

$$
\operatorname{diam}\left(K_{j}\right)=\sup \left\{d(x, y) \mid x, y \in K_{j}\right\}
$$

Show that there is exactly one point in $\bigcap_{j=1}^{\infty} K_{j}$.
Proof. 1. By 2, it suffices to show that \bar{A}_{k} is non-empty compact set for all $k \in \mathbb{N}$ and $\left\{\bar{A}_{k}\right\}_{k=1}^{\infty}$ is a nested set satisfying $\operatorname{diam}\left(\bar{A}_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Note that in class we have shown that the set $\{0\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n} \cdots\right\}$ is compact, and similar proof shows that $A_{k} \cup\{x\}$ is compact; thus $\bar{A}_{k}=A_{k} \cup\{x\}$. Therefore, $\left\{\bar{A}_{k}\right\}_{k=1}^{\infty}$ is a nested set.

Let $\varepsilon>0$ be given. Since $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges to x, there exists $N>0$ such that $d\left(x_{k}, x\right)<\frac{\varepsilon}{3}$ whenever $k \geqslant N$. Then

$$
d(y, z)<\frac{2 \varepsilon}{3} \quad \forall y, z \in A_{N}
$$

thus for $j \geqslant N$,

$$
\operatorname{diam}\left(K_{j}\right) \leqslant \frac{2 \varepsilon}{3}<\varepsilon
$$

which implies that $\operatorname{diam}\left(K_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$.
2. First, by the nested set property, $\bigcap_{j=1}^{\infty} K_{j} \neq \varnothing$. Assume that $x, y \in \bigcap_{j=1}^{\infty} K_{j}$. Then $x, y \in K_{j}$ for all $j \in \mathbb{N}$; thus

$$
0 \leqslant d(x, y) \leqslant \operatorname{diam}\left(K_{j}\right) \quad \forall j \in \mathbb{N}
$$

By the assumption that $\operatorname{diam}\left(K_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$, we conclude that $d(x, y)=0$; thus by the property of the metric, $x=y$.

Problem 6. Let ℓ^{2} be the collection of all sequences $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ such that $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty$. In other words,

$$
\ell^{2}=\left\{\left\{x_{k}\right\}_{k=1}^{\infty} \mid x_{k} \in \mathbb{R} \text { for all } k \in \mathbb{N}, \sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty\right\}
$$

Define $\|\cdot\|_{2}: \ell^{2} \rightarrow \mathbb{R}$ by

$$
\left\|\left\{x_{k}\right\}_{k=1}^{\infty}\right\|_{2}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

1. Show that $\|\cdot\|_{2}$ is a norm on ℓ^{2}. The normed space $\left(\ell^{2},\|\cdot\|\right)$ usually is denoted by ℓ^{2}.
2. Show that $\|\cdot\|_{2}$ is induced by an inner product.
3. Show that $\left(\ell^{2},\|\cdot\|_{2}\right)$ is complete.
4. Let $A=\left\{\boldsymbol{x} \in \ell^{2} \mid\|\boldsymbol{x}\|_{2} \leqslant 1\right\}$. Is A sequentially compact or not?

Problem 7. Let A, B be two non-empty subsets in \mathbb{R}^{n}. Define

$$
d(A, B)=\inf \left\{\|x-y\|_{2} \mid x \in A, y \in B\right\}
$$

to be the distance between A and B. When $A=\{x\}$ is a point, we write $d(A, B)$ as $d(x, B)$.
(1) Prove that $d(A, B)=\inf \{d(x, B) \mid x \in A\}$.
(2) Show that $\left|d\left(x_{1}, B\right)-d\left(x_{2}, B\right)\right| \leqslant\left\|x_{1}-x_{2}\right\|_{2}$ for all $x_{1}, x_{2} \in \mathbb{R}^{n}$.
(3) Define $B_{\varepsilon}=\left\{x \in \mathbb{R}^{n} \mid d(x, B)<\varepsilon\right\}$ be the collection of all points whose distance from B is less than ε. Show that B_{ε} is open and $\bigcap_{\varepsilon>0} B_{\varepsilon}=\operatorname{cl}(B)$.
(4) If A is sequentially compact, show that there exists $x \in A$ such that $d(A, B)=d(x, B)$.
(5) If A is closed and B is sequentially compact, show that there exists $x \in A$ and $y \in B$ such that $d(A, B)=d(x, y)$.
(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$, so in the proofs of (1)-(4) we write $d(\boldsymbol{x}, \boldsymbol{y})$ instead of $\|\boldsymbol{x}-\boldsymbol{y}\|$.
(1) Define $f: A \times B \rightarrow \mathbb{R}$ by $f(\boldsymbol{a}, \boldsymbol{b})=d(\boldsymbol{a}, \boldsymbol{b})$. We note that similar proof for Problem 4 of Exercise 2 also shows that if $f: A \times B \rightarrow \mathbb{R}$, then

$$
\inf _{(a, b) \in A \times B} f(\boldsymbol{a}, \boldsymbol{b})=\inf _{a \in A}\left(\inf _{\boldsymbol{b} \in B} f(\boldsymbol{a}, \boldsymbol{b})\right)=\inf _{b \in B}\left(\inf _{\boldsymbol{a} \in A} f(\boldsymbol{a}, \boldsymbol{b})\right) .
$$

Since $\inf _{\boldsymbol{b} \in B} f(\boldsymbol{a}, \boldsymbol{b})=d(\boldsymbol{a}, B)$, we conclude that

$$
d(A, B)=\inf _{(a, b) \in A \times B} f(\boldsymbol{a}, \boldsymbol{b})=\inf _{a \in A} d(\boldsymbol{a}, B) .
$$

(2) Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\varepsilon>0$ be given. By the definition of infimum, there exists $\boldsymbol{z} \in B$ such that

$$
d(\boldsymbol{x}, B) \leqslant d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, B)+\varepsilon
$$

By the definition of $d(\boldsymbol{y}, B)$ and the triangle inequality,

$$
d(\boldsymbol{y}, B) \leqslant d(\boldsymbol{y}, \boldsymbol{z}) \leqslant d(\boldsymbol{y}, \boldsymbol{x})+d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, \boldsymbol{y})+d(\boldsymbol{x}, B)+\varepsilon ;
$$

thus

$$
d(\boldsymbol{y}, B)-d(\boldsymbol{x}, B)<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon .
$$

A symmetric argument (switching \boldsymbol{x} and $\boldsymbol{y})$ also shows that $d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon$. Therefore,

$$
|d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)|<d(\boldsymbol{x}, \boldsymbol{y})+\varepsilon
$$

Since $\varepsilon>0$ is given arbitrarily, we conclude that

$$
|d(\boldsymbol{x}, B)-d(\boldsymbol{y}, B)| \leqslant d(\boldsymbol{x}, \boldsymbol{y}) .
$$

(3) Let $\boldsymbol{x} \in B_{\varepsilon}$. Define $r=\varepsilon-d(\boldsymbol{x}, B)$. Then $r>0$; thus there exists $\boldsymbol{z} \in B$ such that

$$
d(\boldsymbol{x}, B) \leqslant d(\boldsymbol{x}, \boldsymbol{z})<d(\boldsymbol{x}, B)+\frac{r}{2}=\varepsilon .
$$

Therefore, if $\boldsymbol{y} \in B\left(\boldsymbol{x}, \frac{r}{2}\right)$, then

$$
d(\boldsymbol{y}, \boldsymbol{z}) \leqslant d(\boldsymbol{y}, \boldsymbol{x})+d(\boldsymbol{x}, \boldsymbol{z})<\frac{r}{2}+d(\boldsymbol{x}, B)+\frac{r}{2}=d(\boldsymbol{x}, B)+r=\varepsilon
$$

which shows that $B\left(\boldsymbol{x}, \frac{r}{2}\right) \subseteq B_{\varepsilon}$. Therefore, B_{ε} is open.
Next, we note that

$$
d(\boldsymbol{x}, B)=0 \quad \Leftrightarrow \quad(\forall \varepsilon>0)(d(\boldsymbol{x}, B)<\varepsilon) \quad \Leftrightarrow \quad(\forall \varepsilon>0)\left(\boldsymbol{x} \in B_{\varepsilon}\right) \quad \Leftrightarrow \quad \boldsymbol{x} \in \bigcap_{\varepsilon>0} B_{\varepsilon} ;
$$

thus $\boldsymbol{x} \in \bigcap_{\varepsilon>0} B_{\varepsilon}$ if and only if $d(\boldsymbol{x}, B)=0$. Since $\boldsymbol{x} \in \bar{B}$ if and only if $d(\boldsymbol{x}, B)=0$, we conclude that $\bigcap_{\varepsilon>0} B_{\varepsilon}=\bar{B}$.
(4) By the definition of infimum, for each $n \in \mathbb{N}$ there exists $\boldsymbol{a}_{n} \in A$ such that

$$
d(A, B) \leqslant d\left(\boldsymbol{a}_{n}, B\right)<d(A, B)+\frac{1}{n} .
$$

Since A is compact, there exists a convergent subsequence $\left\{\boldsymbol{a}_{n_{j}}\right\}_{j=1}^{\infty}$ of $\left\{\boldsymbol{a}_{n}\right\}_{n=1}^{\infty}$ with limit $\boldsymbol{a} \in A$. By the Sandwich Lemma,

$$
d\left(\boldsymbol{a}_{n_{j}}, B\right) \rightarrow d(A, B) \text { as } j \rightarrow \infty .
$$

On the other hand, (2) implies that

$$
\left|d\left(\boldsymbol{a}_{n_{j}}, B\right)-d(\boldsymbol{a}, B)\right| \leqslant d\left(\boldsymbol{a}_{n_{j}}, \boldsymbol{a}\right) \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Therefore,

$$
|d(\boldsymbol{a}, B)-d(A, B)| \leqslant\left|d(\boldsymbol{a}, B)-d\left(\boldsymbol{a}_{n_{j}}, B\right)\right|+\left|d\left(\boldsymbol{a}_{n_{j}}, B\right)-d(A, B)\right| \rightarrow 0 \text { as } j \rightarrow \infty
$$

which establishes the existence of $\boldsymbol{a} \in A$ such that $d(\boldsymbol{a}, B)=d(A, B)$ if A is compact.
(5) By (4), there exists $\boldsymbol{b} \in B$ such that $d(A, B)=d(\boldsymbol{b}, A)$. Let $C=B[\boldsymbol{b}, d(A, B)+1] \cap A$. Then

$$
d(\boldsymbol{b}, A)=d(\boldsymbol{b}, C)
$$

since every point $\boldsymbol{x} \in A \backslash C$ satisfies that $d(\boldsymbol{b}, \boldsymbol{x})>d(A, B)+1$. On the other hand, the HeineBorel Theorem implies that C is compact; thus (4) implies that there exists $\boldsymbol{c} \in C$ such that $d(\boldsymbol{b}, C)=d(\boldsymbol{b}, \boldsymbol{c})=\|\boldsymbol{b}-\boldsymbol{c}\|$. The desired result then follows from the fact that C is a subset of A (so that $\boldsymbol{c} \in A$).
(6) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geqslant 1, x>0\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \leqslant-1, x<0\right\}$. Then A and B are closed set since they contain their boundaries. However, since $\boldsymbol{a}=\left(\frac{1}{n}, n\right) \in A$ and $\boldsymbol{b}=\left(-\frac{1}{n}, n\right) \in B$ for all $n \in \mathbb{N}, d(A, B) \leqslant d(\boldsymbol{a}, \boldsymbol{b})=\frac{2}{n}$ for all $n \in \mathbb{N}$ which shows that $d(A, B)=0$. However, the fact that $A \cap B=\varnothing$ implies that $d(\boldsymbol{a}, \boldsymbol{b})>0$ for all $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$. Therefore, in this case there are not $\boldsymbol{a} \in A$ and $\boldsymbol{b} \in B$ such that $d(A, B)=d(\boldsymbol{a}, \boldsymbol{b})$.

Problem 8. Let (M, d) be a metric space, and $A \subseteq M$. Show that A is disconnected (not connected) if and only if there exist non-empty closed set F_{1} and F_{2} such that

1. $A \cap F_{1} \cap F_{2}=\varnothing$;
2. $A \cap F_{1} \neq \varnothing$;
3. $A \cap F_{2} \neq \varnothing$;
4. $A \subseteq F_{1} \cup F_{2}$.

Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U_{1} and U_{2} such that
(a) $A \cap U_{1} \cap U_{2}=\varnothing$,
(b) $A \cap U_{1} \neq \varnothing$,
(c) $A \cap U_{2} \neq \varnothing$,
(d) $A \subseteq U_{1} \cup U_{2}$.

Therefore, A is disconnected if and only if there exist non-empty closed set $F_{1} \equiv U_{1}^{\complement}$ and $F_{2} \equiv U_{2}^{\complement}$ such that
(i) $A \cap F_{1}^{\complement} \cap F_{2}^{\complement}=\varnothing$,
(ii) $A \cap F_{1}^{\complement} \neq \varnothing$,
(iii) $A \cap F_{2}^{\complement} \neq \varnothing$,
(iv) $A \subseteq F_{1}^{\complement} \cup F_{2}^{\complement}$.

Note that (i) above is equivalent to that $A \subseteq F_{1} \cup F_{2}$, while (iv) above is equivalent to that $A \cap$ $F_{1} \cap F_{2}=\varnothing$. Moreover, note that if A, B, C are sets satisfying $A \cap B \cap C=\varnothing, A \cap B \neq \varnothing$ and $A \cap C \neq \varnothing$, then

$$
\varnothing \neq A \cap B \subseteq A \cap C^{\complement} \quad \text { and } \quad \varnothing \neq A \cap C \subseteq A \cap B^{\complement} .
$$

Therefore, (a), (b) and (c) above imply 2 and 3 above, while (i) together with 2 and 3 above implies that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed sets F_{1} and F_{2} such that

1. $A \cap F_{1} \cap F_{2}=\varnothing$;
2. $A \cap F_{1} \neq \varnothing$;
3. $A \cap F_{2} \neq \varnothing$;
4. $A \subseteq F_{1} \cup F_{2}$.

Problem 9. Prove that if A is connected in a metric space (M, d) and $A \subseteq B \subseteq \bar{A}$, then B is connected.

Proof. Suppose the contrary that B is disconnected. Then Problem 8 implies that there exist two closed set F_{1} and F_{2} such that

1. $B \cap F_{1} \cap F_{2}=\varnothing$;
2. $B \cap F_{1} \neq \varnothing$;
3. $B \cap F_{2} \neq \varnothing$;
4. $B \subseteq F_{1} \cup F_{2}$.

Define $A_{1}=F_{1} \cap A$ and $A_{2}=F_{2} \cap A$. Then $A=A_{1} \cup A_{2}$. If $A_{1}=\varnothing$, then $A_{2}=A$ which, together with 3 of Problem 8 in Exercise 6, implies that

$$
B \subseteq \bar{A}=\bar{A}_{2} \subseteq \bar{A} \cap \bar{F}_{2}=\bar{A} \cap F_{2}
$$

which implies that $B=B \cap F_{2}$. The fact that $B \cap F_{1} \cap F_{2}=\varnothing$ then implies that $B \cap F_{1} \subseteq$ $\left(B \cap F_{2}\right)^{\complement}=B^{\complement}$; thus $B \cap F_{1}=\varnothing$, a contradiction. Therefore, $A_{1} \neq \varnothing$. Similarly, $A_{2} \neq \varnothing$. However, 3 of Problem 8 in Exercise 6 implies that

$$
A_{1} \cap \bar{A}_{2}=A_{1} \cap \mathrm{cl}\left(F_{2} \cap A\right) \subseteq A_{1} \cap \bar{F}_{2} \cap \bar{A}=A_{1} \cap F_{2} \subseteq B \cap F_{1} \cap F_{2}=\varnothing
$$

and

$$
A_{2} \cap \bar{A}_{1}=A_{2} \cap \mathrm{cl}\left(F_{1} \cap A\right) \subseteq A_{2} \cap \bar{F}_{1} \cap \bar{A}=A_{2} \cap F_{1} \subseteq B \cap F_{2} \cap F_{1}=\varnothing
$$

a contradiction to the assumption that A is connected.
Problem 10. Let (M, d) be a metric space, and $A \subseteq M$ be a subset. Suppose that A is connected and contain more than one point. Show that $A \subseteq A^{\prime}$, where A^{\prime} is the collection of accumulation points of A defined in Exercise 6.

Proof. Suppose the contrary that there exists $x \in A \backslash A^{\prime}$. Since $A \backslash A^{\prime}$ is the collection of isolated point of A, there exists $r>0$ such that $B(x, r) \cap A=\{x\}$. Let $U=B(x, r)$ and $V=B\left[x, \frac{r}{2}\right]^{\complement}$. Then

1. $A \cap U \cap V=\varnothing$.
2. $A \cap U=\{x\} \neq \varnothing$.
3. $A \cap V \supseteq A \backslash\{x\} \neq \varnothing$ since A contains more than one point.
4. $A \subseteq M=U \cup V$.

Therefore, A is disconnected, a contradiction.
Problem 11. Let (M, d) be a metric space. A subset A of M is said to be totally disconnected if for all $x, y \in A$ and $x \neq y$, there exist opens sets U and V separating A as well as $x \in U$ and $y \in V$. Show that the Cantor set C defined in Problem 9 of Exercise 7 is totally disconnected.

Proof. It suffices to show that for every $x, y \in C, x<y$, there exists $z \in C^{\complement}$ and $x<z<y$. Note that there exists $N>0$ such that $|x-y|<\frac{1}{3^{n}}$ for all $n \geqslant N$. If $C=\bigcap_{n=1}^{\infty} E_{n}$, where E_{n} is given is Problem 9 of Exercise 7. Then the length of each interval in E_{n} has length $\frac{1}{3^{n}}$; thus if $n \geqslant N$, the interval $[x, y]$ is not contained in any interval of E_{n}. In other words, there must be $z \in(x, y)$ such that $z \in E_{n}^{\complement}$. Since $E_{n}^{\complement} \subseteq C^{\complement}$, we establish the existence of $x<z<y$ such that $z \in C^{\complement}$.

Problem 12. Let F_{k} be a nest of connected compact sets (that is, $F_{k+1} \subseteq F_{k}$ and F_{k} is connected for all $k \in \mathbb{N}$). Show that $\bigcap_{k=1}^{\infty} F_{k}$ is connected. Give an example to show that compactness is an essential condition and we cannot just assume that F_{k} is a nest of closed connected sets.

Proof. Let $K=\bigcap_{k=1}^{\infty} F_{k}$. Then the nested set property implies that $K \neq \varnothing$. Suppose the contrary that there exist open sets U and V such that

1. $K \cap U \cap V=\varnothing$,
2. $K \cap U \neq \varnothing$,
3. $K \cap V \neq \varnothing$,
4. $K \subseteq U \cup V$.

Define $K_{1}=K \cap U^{\complement}$ and $K_{2}=K \cap V^{\complement}$. Then K_{1}, K_{2} are non-empty closed sets (Check!!!) of K such that

$$
K=K_{1} \cup K_{2} \quad \text { and } \quad K_{1} \cap K_{2}=\varnothing .
$$

In other words, K is the disjoint union of two compact subsets K_{1} and K_{2}. By (5) of Problem 7, there exists $x_{1} \in K_{1}$ and $x_{2} \in K_{2}$ such that $d\left(x_{1}, x_{2}\right)=d\left(K_{1}, K_{2}\right)$. Since $K_{1} \cap K_{2}=\varnothing, \varepsilon_{0} \equiv d\left(x_{1}, x_{2}\right)>0$; thus the definition of the distance of sets implies that

$$
\varepsilon_{0} \leqslant d(x, y) \quad \forall x \in K_{1}, y \in K_{2} .
$$

Define $O_{1}=\bigcup_{x \in K_{1}} B\left(x, \frac{\varepsilon_{0}}{3}\right)$ and $O_{2}=\bigcup_{y \in K_{2}} B\left(y, \frac{\varepsilon_{0}}{3}\right)$. Note that

$$
K_{1} \subseteq O_{1}, \quad K_{2} \subseteq O_{2} \quad \text { and } \quad O_{1} \cap O_{2}=\varnothing
$$

Claim: There exists $n \in \mathbb{N}$ such that $F_{n} \subseteq O_{1} \cup O_{2}$.
Proof. Suppose the contrary that for each $n_{0} \in \mathbb{N}, F_{n_{0}} \nsubseteq O_{1} \cup O_{2}$. Then

$$
F_{n} \cap O_{1}^{\complement} \cap O_{2}^{\complement}=F_{n} \cap\left(O_{1} \cup O_{2}\right)^{\complement} \neq \varnothing \quad \forall n \in \mathbb{N} .
$$

Since O_{1} and O_{2} are open, $F_{n} \cap O_{1}^{\complement} \cap O_{2}^{\complement}$ is a nest of non-empty compact sets; thus the nested set property shows that

$$
K \cap O_{1}^{\complement} \cap O_{2}^{\complement}=\bigcap_{n=1}^{\infty}\left(F_{n} \cap O_{1}^{\complement} \cap O_{2}^{\complement}\right) \neq \varnothing ;
$$

thus $K \nsubseteq O_{1} \cup O_{2}$, a contradiction.
Having established the claim, by the fact that $K_{1} \subseteq F_{n_{0}} \cap O_{1}$ and $K_{2} \subseteq F_{n_{0}} \cap O_{2}$, we find that

$$
F_{n_{0}} \cap O_{1} \neq \varnothing \quad \text { and } \quad F_{n_{0}} \cap O_{2} \neq \varnothing
$$

Together with the fact that $F_{n_{0}} \cap O_{1} \cap O_{2}=\varnothing$ and $F_{n_{0}} \subseteq O_{1} \cup O_{2}$, we conclude that $F_{n_{0}}$ is disconnected, a contradiction.

The compactness of F_{n} is crucial to obtain the result or we will have counter-examples. For example, let $F_{k}=\mathbb{R}^{2} \backslash(-k, k) \times(-1,1)$. Then clearly F_{k} is closed but not bounded (hence F_{k} is not compact). Moreover, $F_{k} \supseteq F_{k+1}$ for all $k \in \mathbb{N}$; thus $\left\{F_{k}\right\}_{k=1}^{\infty}$ is a nest of sets. However, $\bigcap_{k=1}^{\infty} F_{k}=\mathbb{R}^{2} \backslash \mathbb{R} \times(-1,1)$ which is disconnected and is the union of two disjoint closed set $\mathbb{R} \times[1, \infty)$ and $\mathbb{R} \times(-\infty,-1]$. Therefore, if $\left\{F_{k}\right\}_{k=1}^{\infty}$ is a nest of closed connected sets, it is possible that $\bigcap_{k=1}^{\infty} F_{k}$ is disconnected.

Problem 13. Let $\left\{A_{k}\right\}_{k=1}^{\infty}$ be a family of connected subsets of M, and suppose that A is a connected subset of M such that $A_{k} \cap A \neq \varnothing$ for all $k \in \mathbb{N}$. Show that the union $\left(\bigcup_{k \in \mathbb{N}} A_{k}\right) \cup A$ is also connected.

Proof. By the induction argument, it suffices to show that if A and B are connected sets and $A \cap B \neq \varnothing$, then $A \cup B$ is connected. Suppose the contrary that there exist open sets U and V such that

1. $(A \cup B) \cap U \cap V=\varnothing$,
2. $(A \cup B) \cap U \neq \varnothing$,
3. $(A \cup B) \cap V \neq \varnothing$,
4. $(A \cup B) \subseteq U \cup V$.

Note that 1 and 4 implies that $A \cap U \cap V=\varnothing$ and $A \subseteq U \cup V$; thus by the connectedness of A, either $A \cap U=\varnothing$ or $A \cap V=\varnothing$. W.L.O.G., we assume that $A \cap U=\varnothing$ so that $A \subseteq V$. Then 1 implies that $B \cap U \cap V=\varnothing, 2$ implies that $B \cap U \neq \varnothing$, and 4 implies that $B \subseteq U \cup V$. Next we show that $B \cap V \neq \varnothing$ to reach a contradiction (to that B is connected). Suppose the contrary that $B \cap V=\varnothing$. Then 3 implies that $A \cap B \subseteq A=A \cap V \neq \varnothing$ so that $B \cap V \supseteq A \cap B \neq \varnothing$, a contradiction.

For an alternative proof, see the proof of 1 of Problem 15.
Problem 14. Let $A, B \subseteq M$ and A is connected. Suppose that $A \cap B \neq \varnothing$ and $A \cap B^{\complement} \neq \varnothing$. Show that $A \cap \partial B \neq \varnothing$.

Proof. Suppose the contrary that $A \cap \partial B=\varnothing$. Let $U=\operatorname{int}(B)$ and $V=\operatorname{int}\left(B^{\complement}\right)$. If $\stackrel{\circ}{B}=\varnothing$, then $\partial B=\bar{B} \supseteq B$; thus the assumption that $A \cap B \neq \varnothing$ implies that $A \cap \partial B \neq \varnothing$. Similarly, if $\operatorname{int}\left(B^{\mathrm{C}}\right)=\varnothing$, then $A \cap \partial B \neq \varnothing$.

Now suppose that U and V are non-empty open sets. If $x \notin U \cup V$, then $x \in \partial B$; thus $(U \cup V)^{\complement} \subseteq$ ∂B and the assumption that $A \cap \partial B=\varnothing$ further implies that $A \subseteq U \cup V$. Moreover, $U \cap V=\varnothing$; thus $A \cap U \cap V=\varnothing$. Now we prove that $A \cap U \neq \varnothing$ and $A \cap V \neq \varnothing$ to reach a contradiction.

Suppose the contrary that $A \cap U=\varnothing$. Then $A \cap B \subseteq A \cap \bar{B}=A \cap(U \cup \partial B)=\varnothing$, a contradiction. Therefore, $A \cap U=\varnothing$. Similarly, if $A \cap V=\varnothing, A \cap B^{\complement} \subseteq A \cap \overline{B^{\complement}}=A \cap\left(V \cup \partial B^{\complement}\right)=A \cap(V \cup \partial B)=\varnothing$, a contradiction.

Problem 15. Let (M, d) be a metric space and A be a non-empty subset of M. A maximal connected subset of A is called a connected component of A.

1. Let $a \in A$. Show that there is a unique connected components of A containing a.
2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint union of its connected components.
3. Show that every connected component of A is a closed subset of A.
4. If A is open, prove that every connected component of A is also open. Therefore, when $M=\mathbb{R}^{n}$, show that A has at most countable infinite connected components.
5. Find the connected components of the set of rational numbers or the set of irrational numbers in \mathbb{R}.

Proof. 1. Let \mathscr{F} be the family $\mathscr{F}=\{C \subseteq A \mid x \in C$ and C is connected $\}$. We note that \mathscr{F} is not empty since $\{x\} \in \mathscr{F}$. Let $B=\bigcup_{C \in \mathscr{F}} C$. It then suffices to show that B is connected (since if so, then it is the maximal connected subset of A containing x).

Claim: A subset $A \subseteq M$ is connected if and only if every continuous function defined on A whose range is a subset of $\{0,1\}$ is constant.

Proof. " \Rightarrow " Assume that A is connected and $f: A \rightarrow\{0,1\}$ is a continuous function, and $\delta=$ $1 / 2$. Suppose the contrary that $f^{-1}(\{0\}) \neq \varnothing$ and $f^{-1}(\{1\}) \neq \varnothing$. Then $A=f^{-1}((-\delta, \delta))$ and $B=f^{-1}((1-\delta, 1+\delta))$ are non-empty set. Moreover, the continuity of f implies that A and B are open relative to A; thus there exist open sets U and V such that

$$
f^{-1}((-\delta, \delta))=U \cap A \quad \text { and } \quad f^{-1}((1-\delta, 1+\delta))=V \cap A
$$

Then
(1) $A \cap U \cap V=f^{-1}((-\delta, \delta)) \cap f^{-1}((1-\delta, 1+\delta))=\varnothing$,
(2) $A \cap U \neq \varnothing$ and $A \cap V \neq \varnothing$,
(3) $A \subseteq U \cup V$ since the range of f is a subset of $\{0,1\}$;
thus A is disconnect, a contradiction.
" \Leftarrow " Suppose the contrary that A is disconnected so that there exist open sets U and V such that
(1) $A \cap U \cap V=\varnothing$,
(2) $A \cap U \neq \varnothing$,
(3) $A \cap V \neq \varnothing$,
(4) $A \subseteq U \cup V$.

Let $f: A \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in A \cap U \\ 1 & \text { if } x \in A \cap V\end{cases}
$$

We first prove that f is continuous on A. Let $a \in A$. Then $a \in A \cap U$ or $a \in A \cap V$. Suppose that $a \in A \cap U$. In particular $a \in U$; thus the openness of U provides $r>0$ such that $B(a, r) \subseteq U$. Note that if $x \in B(a, r) \cap A$, then $x \in A \subseteq U$; thus

$$
|f(x)-f(a)|=0 \quad \forall x \in B(a, r) \cap A
$$

which shows the continuity of f at a. Similar argument can be applied to show that f is continuous at $a \in A \cap V$.

Now let $f: B \rightarrow\{0,1\}$ be a continuous function. Let $y \in B$. Then $y \in C$ for some $C \in \mathscr{F}$. Since C is a connected set, $f: C \rightarrow\{0,1\}$ is a constant; thus by the fact that $x \in C$, we must have $f(x)=f(y)$. Therefore, $f(y)=f(x)$ for all $y \in B$; thus $f: B \rightarrow\{0,1\}$ is a constant. The claim then shows that B is connected.
2. By Problem 13, the union of two overlapping connected sets is connected; thus distinct connected components of A are disjoint.
3. Let C be a connected component of A.

Claim: $\bar{C} \cap A$ is connected.

Proof. Suppose the contrary that there exist open sets U and V such that
(1) $\bar{C} \cap A \cap U \cap V=\varnothing$,
(2) $\bar{C} \cap A \cap U \neq \varnothing$,
(3) $\bar{C} \cap A \cap V \neq \varnothing$,
(4) $\bar{C} \cap A \subseteq U \cup V$.

Note that (1) and (4) implies that $C \cap U \cap V=\varnothing$ and $C \subseteq U \cup V$ since $C \subseteq \bar{C} \cap A$. If $C \cap U=\varnothing$, then $C \subseteq U^{\text {C }}$; thus the closedness of $U^{\text {C }}$ implies that $\bar{C} \subseteq U^{\complement}$ which shows that $\bar{C} \cap A \cap U=\varnothing$, a contradiction. Therefore, $C \cap U \neq \varnothing$. Similarly, $C \cap V \neq \varnothing$, so we establish that C is disconnected, a contradiction.

Having established that $\bar{C} \cap A$ is connected, we immediately conclude that $C=\bar{C} \cap A$ since $C \subseteq \bar{C} \cap A$ and C is the largest connected component of A containing points in C.
4. Suppose that A is open and C is a connected component of A. Let $x \in C$. Then $x \in A$; thus there exists $r>0$ such that $B(x, r) \subseteq A$. Note that $B(x, r)$ is a connected set and $B(x, r) \cap C \supseteq\{x\} \neq \varnothing$. Therefore, Problem 13 implies that $B(x, r) \cup C$ is a connected subset of A containing x. Since C is the largest connected subset of A containing x, we must have $B(x, r) \cup C=C$; thus $B(x, r) \subseteq C$.

If $M=\mathbb{R}^{n}$, then each connected component contains a point whose components are all rational. Since \mathbb{Q}^{n} is countable, we find that an open set in \mathbb{R}^{n} has countable connected components.
5. In $(\mathbb{R},|\cdot|)$ every connected set is an interval or a set of a single point. Since \mathbb{Q} and \mathbb{Q}^{\complement} do not contain any intervals, the connected component of \mathbb{Q} and \mathbb{Q}^{C} are points.

