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Problem 1. Let A Ď Rn. Define the sequence of sets A(m) as follows: A(0) = A and A(m+1) =

the derived set of A(m) for m P N. Complete the following.

1. Prove that each A(m) for m P N is a closed set; thus A(1) Ě A(2) Ě ¨ ¨ ¨ .

2. Show that if there exists some m P N such that A(m) is a countable set, then A is countable.

3. For any given m P N, is there a set A such that A(m) ‰ H but A(m+1) = H?

4. Let A be uncountable. Then each A(m) is an uncountable set. Is it possible that
8
Ş

m=1

A(m) = H?

5. Let A =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Find A(1), A(2) and A(3).

Proof. 1. See Problem 2 for that A1 is closed for all A Ď M . Moreover, sA = AYA1 so that A Ď A1 if
A is closed (in fact, A is closed if and only if A Ď A1). Therefore, knowing that A(m) is closed
for all m P N, we obtain that A(m) Ě A(m+1) for all m P N.

2. Note that AzA1 consists of all isolated points of A. For m P N, define B(m´1) = A(m´1)zA(m).
Then B(m´1) consists of isolated points of A(m´1); thus B(m´1) is countable for all m P N. Since
for any subset A of M , we have

A Ď (AzA1) Y A1

and equality holds if A is closed, 1 implies that

A Ď (AzA(1)) Y A(1) = B(0) Y A(1) = B(0) Y
[(
A(1)zA(2)

)
Y A(2)

]
= B(0) Y B(1) Y A(2)

= ¨ ¨ ¨ = B(0) Y B(1) Y ¨ ¨ ¨ Y B(m´1) Y A(m) .

If A(m) is countable, we find that A is a subset of a finite union of countable sets; thus A is
countable.

3. For each m P N, define

Am =
!

1

i1
+

1

i2
+ ¨ ¨ ¨ +

1

im

ˇ

ˇ

ˇ
im ě im´1 ě im´2 ě ¨ ¨ ¨ ě i1

)

.

Then A1
m =

Ťm´1
j=1 Aj Yt0u. To see this, let txku8

k=1 be a convergent sequence in Am. W.L.O.G.
we can assume that txku8

k=1 has distinct terms; that is, xk ‰ xj if k ‰ j for otherwise

(a) if finitely many terms are the same, eliminating all but one such terms from the original
sequence does not change the limit of the sequence;

(b) if infinitely many terms are the same, then this term is a cluster point of the sequence;
thus the sequence converges to this term which is one particular element of Am.



If txku8
k=1 has distinct terms, then there exists 1 ď j ď m such that

#
␣

k P N
ˇ

ˇ i
(k)
j

(

= 8

that is, at least one i
(k)
j has infinitely many

A2
m =

Ťm´2
j=1 Aj Y t0u, ¨ ¨ ¨ , A(m´1)

m = A1 Y t0u, A(m)
m = t0u, A(m+1)

m = H.

4. By 2, if A(m) is countable for some m P N, then A is countable; thus if A is uncountable, A(m)

must be uncountable for all m P N.
5. Similar to 3, we have A(1) =

!

1

k

ˇ

ˇ

ˇ
k P N

)

Y t0u, A(2) = t0u and A(3) = H. ˝

Problem 2. Let (M,d) be a metric space, and A be a subset of M . Show that A1, the derived set
of A consisting of all accumulation points of A (defined in Exercise 6), is closed.

Proof. Let y R A1. Then there exists ε ą 0 such that

B(y, ε) X (Aztyu) = (B(y, ε)ztyu) X A = H .

Then A Ď
(
B(y, ε)ztyu

)A. Since(
B(y, ε)ztyu

)A
=

(
B(y, ε) X tyuA

)A
= B(y, ε)A Y tyu ,

by the fact that
(
B(y, ε)ztyu

)A is closed,

sA Ď
(
B(y, ε)ztyu

)A or equivalently, sA X B(y, ε)ztyu = H .

Since sA Ď A1, the equality above implies that

A1 X B(y, ε)ztyu = H ;

thus the fact that y R A1 implies that B(y, ε) X A1 = H. ˝

Problem 3. Recall that a cluster point x of a sequence txnu8
n=1 satisfies that

@ ε ą 0,#
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8 .

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M,d) be a metric space, txku8
k=1 be a sequence in M , and A be the collection of cluster

points of txku8
k=1. We would like to show that A Ě sA.

Let y P AA. Then y is not a cluster point of txku8
k=1; thus

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn P B(y, ε)
(

ă 8 .

For z P B(y, ε), let r = ε ´ d(y, z) ą 0. Then B(z, r) Ď B(y, ε) (see Figure 1 or check rigorously
using the triangle inequality). As a consequence, #

␣

n P N
ˇ

ˇxn P B(z, r)
(

ă 8 which implies that
z R A.



ε

yz

ε ´ d(y, z)

Figure 1: B(z, ε ´ d(y, z)) Ď B(y, ε) if z P B(y, ε)

Therefore, if z P B(y, ε) then z P AA; thus B(y, ε) X A = H. We then conclude that if y P AA then
y R sA. ˝

Problem 4. Let (V , } ¨ }) ba a normed vector space. A subset C of V is said to be convex if

(@ x,y P C ^ λ P [0, 1])(λx + (1 ´ λ)y P C) .

Let C be a non-empty convex set in V .

1. Show that sC is convex.

2. Show that if x P C̊ and y P sC, then (1´λ)x+λy P C̊ for all λ P (0, 1). This result is sometimes
called the line segment principle.

3. Show that C̊ is convex (you may need the conclusion in 2 to prove this).

4. Show that cl(C̊) = cl(C).

5. Show that int( sC) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that x P int( sC) can be written as (1 ´ λ)y + λz for some y P C̊ and z P B(x, ε) Ď sC.

Proof. 1. Let x,y P sC and 0 ď λ ď 1. Then there exist sequences txku8
k=1 and tyku8

k=1 in C such that
xk Ñ x and yk Ñ y as k Ñ 8. Since C is convex, (1´ λ)xk + λyk P C for each k P N; thus by
the fact that C Ď sC, (1´λ)xk+λyk P sC for each k P N. Since (1´λ)xk+λyk Ñ (1´λ)x+λy
as k Ñ 8 and sC is closed, we must have (1 ´ λ)x + λy P sC; thus sC is convex if C is convex.

2. Suppose the contrary that there exists λ P (0, 1) such that (1 ´ λ)x + λy R C̊. Then for each
k P N, there exists zk R C such that

›

›(1 ´ λ)x + λy ´ zk

›

› ă
1

k
@ k P N .

Since y P sC, there exists a sequence tyku8
k=1 P C satisfying

}yk ´ y} ă
1

λk
@ k P N .



Therefore, if k P N ,
›

›(1 ´ λ)x + λyk ´ zk

›

› ď
›

›(1 ´ λ)x + λy ´ zk

›

›+ }λ(y ´ yk)} ă
2

k
;

thus
›

›x ´
zk ´ λyk

1 ´ λ

›

› ă
2

k(1 ´ λ)
@ k P N .

Since x P C̊, there exists N ą 0 such that B
(
x, 2

(1 ´ λ)N

)
Ď C; thus zk ´ λyk

1 ´ λ
P C whenever

k ě N . By the convexity of C,

zk = (1 ´ λ)
zk ´ λyk

1 ´ λ
+ λyk P C ,

a contradiction.

3. Let x,y P C̊. By the line segment principle, (1´ λ)x + λy P C̊ for all λ P (0, 1) (since C̊ Ď sC).
This further implies that (1 ´ λ)x + λy P C̊ for all λ P [0, 1] since x,y P C̊; thus C̊ is convex.

4. It suffices to show that cl(C̊) Ě cl(C). Let x P cl(C). Pick any y P C̊. By the line segment
principle,

xk ”
(
1 ´

1

k

)
x +

1

k
y P C̊ @ k ě 2 .

Since xk Ñ x as k Ñ 8, we find that x P cl(C̊).

5. It suffices to show that int( sC) Ď int(C). Let x P int( sC). Then there exists ε ą 0 such that
B(x, ε) Ď sC. Let y P int(C). If y = x, then x P int(C). If y ‰ x, define z = x + α(x ´ y),
where

α =
ε

2}x ´ y}
.

Then }x ´ z} =
ε

2
; thus z P B(x, ε) which further implies that z P sC. By the line segment

principle implies that (1 ´ λ)y + λz P C̊ for all λ P (0, 1). Taking λ =
1

1 + α
, we find that

(1 ´ λ)y + λz =
α

1 + α
y +

1

1 + α

(
x + α(x ´ y)

)
= x

which shows that x P int(C). ˝

Problem 5. Let (V , } ¨ }) be a normed vector space. Show that for all x P V and r ą 0,

int
(
B[x, r]

)
= B(x, r) .

Proof. Let y P V such that }x ´ y} = r. Then x + λ(y ´ x) P B[x, r]A for all |λ| ą 1. In particular,
yn ” x +

(
1 +

1

n

)
(y ´ x) P B[x, r]A for all n P N. Moreover,

}yn ´ y} =
1

n
}x ´ y} =

r

n
Ñ 0 as n Ñ 8 .



Therefore, lim
nÑ8

yn = y which implies that y P BB[x, r]
(
since y P B[x, r] and y is the limit of a

sequence from B[x, r]A
)
; thus

␣

y P V
ˇ

ˇ }x ´ y} = r
(

Ď BB[x, r] .

On the other hand, B(x, r) is open and

B[x, r] = B(x, r) Y
␣

y P V
ˇ

ˇ }x ´ y} = r
(

.

Therefore, B(x, r) is the largest open set contained inside B[x, r]; thus B(x, r) = int(B[x, r]). ˝

Problem 6. Let Mnˆn denote the collection of all n ˆ n square real matrices, and (Mnˆn, } ¨ }) be
a normed space with norm } ¨ } given in Problem 3 of Exercise 5 (with p = q = 2). Show that the set

GL(n) ”
␣

A P Mnˆn

ˇ

ˇ det(A) ‰ 0
(

is an open set in Mnˆn. The set GL(n) is called the general linear group.

Proof. Let A P GL(n) be given. Then A´1 P Mnˆn exists. We show that

@B P B
(
A,

1

}A´1}2,2

)
, det(B) ‰ 0 .

By the definition of the norm, for all x P Rn we have

}x}2 ď }A´1Ax}2 ď }A´1}2,2}Ax}2 ;

thus for all x P Rn,

1

}A´1}2,2
}x}2 ď }Ax}2 ď }(A ´ B)x}2 + }Bx}2 ď }A ´ B}2,2}x}2 + }Bx}2

which implies that
}Bx}2 ě

( 1

}A´1}2,2
´ }A ´ B}2,2

)
}x}2 @ x P Rn .

Therefore, if B P B
(
A,

1

}A´1}2,2

)
, then Bx = 0, then x = 0. This shows that B is invertible if

B P B
(
A,

1

}A´1}2,2

)
; thus B

(
A,

1

}A´1}2,2

)
Ď GL(n). ˝

Problem 7. Show that every open set in R is the union of at most countable collection of disjoint
open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.
Hint: For each point x P U , define Lx =

␣

y P R
ˇ

ˇ (y, x) Ď U
(

and Rx =
␣

y P R
ˇ

ˇ (x, y) Ď U
(

. Define
Ix = (infLx, supRx). Show that Ix = Iy if (x, y) P U .



Proof. As suggested in the hint, for each point x P U we define Lx =
␣

y P R
ˇ

ˇ (y, x) Ď U
(

and
Rx =

␣

y P R
ˇ

ˇ (x, y) Ď U
(

. We note that a ” infLx R U since if a P U , by the openness of U there
exists r ą 0 such that (a ´ r, a + r) Ď U which implies that (a ´ r, x) Ď U so that a ´ r P Lx, a
contradiction to the fact that a = infLx. Similarly, supRx R U . Therefore, Ix = (infLx, supLx) is
the maximal connected subset of U containing x.

If x, y P U and (x, y) Ď U , then (Lx, y) = (Lx, x) Y txu Y x, y) Ď U which implies that Lx Ď Ly.
On the other hand, if z P Ly, then z ď x and (z, x) Ď U ; thus Ly Ď Lx which implies that Lx = Ly

if x, y P U and (x, y) Ď U . This shows that Ix = Iy if x, y P U and (x, y) Ď U . Moreover, if x, y P U

but (x, y) Ę U , then there exists x ă z ă y such that z R U ; thus supRx ď z ď infLy which implies
that Ix X Iy = H. Therefore, we establish that

1. if x, y P U and (x, y) Ď U , then Ix = Iy.

2. if x, y P U and (x, y) Ę U , then Ix X Iy = H.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a
rational number, we can denote each such open interval as Ik, where k belongs to a countable index
set I. Write Ik = (ak, bk), then U =

Ť

kPI
(ak, bk). ˝

Problem 8. In class we introduce the normed vector space (ℓ8, } ¨ }8):

ℓ8 =
␣

txnu8
n=1 Ď R

ˇ

ˇ DM ą 0 Q |xn| ď M for all n P N
(

equipped with
›

›txnu8
n=1

›

›

8
= sup

nPN
|xn| .

Complete the following.

1. Show that } ¨ }8 is indeed a norm.

2. Show that (ℓ8, } ¨ }8) is a Banach space; that is, show that (ℓ8, } ¨ }8) is complete.

3. Show that the set A =
!

txnu8
n=1 P ℓ8

ˇ

ˇ

ˇ
|xn| ď

1

n
for all n P N

)

is closed.

Problem 9. Let (M,d) be a metric space. A set A Ď M is said to be perfect if A = A1 (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let E0 = [0, 1].
Remove the segment

(1
3
,
2

3

)
, and let E1 be the union of the intervals

[
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that



(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;

(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set.

2. Show that C is uncountable.

3. Find int(C).

Proof. 1. Let x P C. Then x P EN for some N P N. For each n P N, En is the union of disjoint closed
intervals with length 1

3n
, and BEn consists of the end-points of these disjoint closed intervals

whose union is En. Therefore, there exists xn P BEN+n´1ztxu such that |xn ´ x| ă
1

3N´1+n
.

Since BEn Ď C for each n P N, we find that txnu8
n=1 P Cztxu. Moreover, lim

nÑ8
xn = x; thus

x P C 1 which shows C Ď C 1. Since C is the intersection of closed sets, C is closed; thus

C Ď C 1 Ď sC = C

so we establish that C 1 = C.

2. For x P [0, 1], write x in ternary expansion (三進位展開); that is,

x = 0.d1d2d3 ¨ ¨ ¨ ¨ ¨ ¨ .

Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,
we write 1

3
as 0.02222 ¨ ¨ ¨ instead of 0.1. Define

A =
␣

x = 0.d1d2d3 ¨ ¨ ¨
ˇ

ˇ dj P t0, 2u for all j P N
(

.

Note each point in BEn belongs to A; thus A Ď C. On the other hand, A has a one-to-one
correspondence with [0, 1]

(
x = 0.d1d2 ¨ ¨ ¨ P A ô y = 0.

d1
2

d2
2

¨ ¨ ¨ P [0, 1], where y is expressed
in binary expansion (二進位展開) with repeated 1’s instead of terminating decimals

)
. Since

[0, 1] is uncountable, A is uncountable; thus C is uncountable.

3. If int(C) is non-empty, then by the fact that int(C) is open in (R, | ¨ |), by Problem 7 the Cantor
set C contains at least one interval (x, y). Note that there exists N ą 0 such that |x´ y| ă

1

3n

for all n ě N . Since the length of each interval in En has length 1

3n
, we find that if n ě N , the

interval (x, y) is not contained in any interval of En. In other words, there must be z P (x, y)

such that z P EA
n which shows that (x, y) Ę

8
Ş

n=1

En. Therefore, int(C) = H. ˝


