Exercise Problem Sets 7

Nov. 13. 2020

Problem 1. Let $A \subseteq \mathbb{R}^{n}$. Define the sequence of sets $A^{(m)}$ as follows: $A^{(0)}=A$ and $A^{(m+1)}=$ the derived set of $A^{(m)}$ for $m \in \mathbb{N}$. Complete the following.

1. Prove that each $A^{(m)}$ for $m \in \mathbb{N}$ is a closed set; thus $A^{(1)} \supseteq A^{(2)} \supseteq \cdots$.
2. Show that if there exists some $m \in \mathbb{N}$ such that $A^{(m)}$ is a countable set, then A is countable.
3. For any given $m \in \mathbb{N}$, is there a set A such that $A^{(m)} \neq \varnothing$ but $A^{(m+1)}=\varnothing$?
4. Let A be uncountable. Then each $A^{(m)}$ is an uncountable set. Is it possible that $\bigcap_{m=1}^{\infty} A^{(m)}=\varnothing$?
5. Let $A=\left\{\left.\frac{1}{m}+\frac{1}{k} \right\rvert\, m-1>k(k-1), m, k \in \mathbb{N}\right\}$. Find $A^{(1)}, A^{(2)}$ and $A^{(3)}$.

Proof. 1. See Problem 2 for that A^{\prime} is closed for all $A \subseteq M$. Moreover, $\bar{A}=A \cup A^{\prime}$ so that $A \subseteq A^{\prime}$ if A is closed (in fact, A is closed if and only if $A \subseteq A^{\prime}$). Therefore, knowing that $A^{(m)}$ is closed for all $m \in \mathbb{N}$, we obtain that $A^{(m)} \supseteq A^{(m+1)}$ for all $m \in \mathbb{N}$.
2. Note that $A \backslash A^{\prime}$ consists of all isolated points of A. For $m \in \mathbb{N}$, define $B^{(m-1)}=A^{(m-1)} \backslash A^{(m)}$. Then $B^{(m-1)}$ consists of isolated points of $A^{(m-1)}$; thus $B^{(m-1)}$ is countable for all $m \in \mathbb{N}$. Since for any subset A of M, we have

$$
A \subseteq\left(A \backslash A^{\prime}\right) \cup A^{\prime}
$$

and equality holds if A is closed, 1 implies that

$$
\begin{aligned}
A & \subseteq\left(A \backslash A^{(1)}\right) \cup A^{(1)}=B^{(0)} \cup A^{(1)}=B^{(0)} \cup\left[\left(A^{(1)} \backslash A^{(2)}\right) \cup A^{(2)}\right]=B^{(0)} \cup B^{(1)} \cup A^{(2)} \\
& =\cdots=B^{(0)} \cup B^{(1)} \cup \cdots \cup B^{(m-1)} \cup A^{(m)} .
\end{aligned}
$$

If $A^{(m)}$ is countable, we find that A is a subset of a finite union of countable sets; thus A is countable.
3. For each $m \in \mathbb{N}$, define

$$
A_{m}=\left\{\left.\frac{1}{i_{1}}+\frac{1}{i_{2}}+\cdots+\frac{1}{i_{m}} \right\rvert\, i_{m} \geqslant i_{m-1} \geqslant i_{m-2} \geqslant \cdots \geqslant i_{1}\right\} .
$$

Then $A_{m}^{\prime}=\bigcup_{j=1}^{m-1} A_{j} \cup\{0\}$. To see this, let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a convergent sequence in A_{m}. W.L.O.G. we can assume that $\left\{x_{k}\right\}_{k=1}^{\infty}$ has distinct terms; that is, $x_{k} \neq x_{j}$ if $k \neq j$ for otherwise
(a) if finitely many terms are the same, eliminating all but one such terms from the original sequence does not change the limit of the sequence;
(b) if infinitely many terms are the same, then this term is a cluster point of the sequence; thus the sequence converges to this term which is one particular element of A_{m}.

If $\left\{x_{k}\right\}_{k=1}^{\infty}$ has distinct terms, then there exists $1 \leqslant j \leqslant m$ such that

$$
\#\left\{k \in \mathbb{N} \mid i_{j}^{(k)}\right\}=\infty
$$

that is, at least one $i_{j}^{(k)}$ has infinitely many
$A_{m}^{\prime \prime}=\bigcup_{j=1}^{m-2} A_{j} \cup\{0\}, \cdots, A_{m}^{(m-1)}=A_{1} \cup\{0\}, A_{m}^{(m)}=\{0\}, A_{m}^{(m+1)}=\varnothing$.
4. By 2 , if $A^{(m)}$ is countable for some $m \in \mathbb{N}$, then A is countable; thus if A is uncountable, $A^{(m)}$ must be uncountable for all $m \in \mathbb{N}$.
5. Similar to 3, we have $A^{(1)}=\left\{\left.\frac{1}{k} \right\rvert\, k \in \mathbb{N}\right\} \cup\{0\}, A^{(2)}=\{0\}$ and $A^{(3)}=\varnothing$.

Problem 2. Let (M, d) be a metric space, and A be a subset of M. Show that A^{\prime}, the derived set of A consisting of all accumulation points of A (defined in Exercise 6), is closed.

Proof. Let $y \notin A^{\prime}$. Then there exists $\varepsilon>0$ such that

$$
B(y, \varepsilon) \cap(A \backslash\{y\})=(B(y, \varepsilon) \backslash\{y\}) \cap A=\varnothing .
$$

Then $A \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement}$. Since

$$
(B(y, \varepsilon) \backslash\{y\})^{\complement}=\left(B(y, \varepsilon) \cap\{y\}^{\complement}\right)^{\complement}=B(y, \varepsilon)^{\complement} \cup\{y\},
$$

by the fact that $(B(y, \varepsilon) \backslash\{y\})^{\text {c }}$ is closed,

$$
\bar{A} \subseteq(B(y, \varepsilon) \backslash\{y\})^{\complement} \quad \text { or equivalently, } \quad \bar{A} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing .
$$

Since $\bar{A} \subseteq A^{\prime}$, the equality above implies that

$$
A^{\prime} \cap B(y, \varepsilon) \backslash\{y\}=\varnothing ;
$$

thus the fact that $y \notin A^{\prime}$ implies that $B(y, \varepsilon) \cap A^{\prime}=\varnothing$.
Problem 3. Recall that a cluster point x of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfies that

$$
\forall \varepsilon>0, \#\left\{n \in \mathbb{N} \mid x_{n} \in B(x, \varepsilon)\right\}=\infty .
$$

Show that the collection of cluster points of a sequence (in a metric space) is closed.
Proof. Let (M, d) be a metric space, $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in M, and A be the collection of cluster points of $\left\{x_{k}\right\}_{k=1}^{\infty}$. We would like to show that $A \supseteq \bar{A}$.

Let $y \in A^{\complement}$. Then y is not a cluster point of $\left\{x_{k}\right\}_{k=1}^{\infty}$; thus

$$
\exists \varepsilon>0 \ni \#\left\{n \in \mathbb{N} \mid x_{n} \in B(y, \varepsilon)\right\}<\infty .
$$

For $z \in B(y, \varepsilon)$, let $r=\varepsilon-d(y, z)>0$. Then $B(z, r) \subseteq B(y, \varepsilon)$ (see Figure 1 or check rigorously using the triangle inequality). As a consequence, $\#\left\{n \in \mathbb{N} \mid x_{n} \in B(z, r)\right\}<\infty$ which implies that $z \notin A$.

Figure 1: $B(z, \varepsilon-d(y, z)) \subseteq B(y, \varepsilon)$ if $z \in B(y, \varepsilon)$
Therefore, if $z \in B(y, \varepsilon)$ then $z \in A^{\complement}$; thus $B(y, \varepsilon) \cap A=\varnothing$. We then conclude that if $y \in A^{\complement}$ then $y \notin \bar{A}$.

Problem 4. Let $(\mathcal{V},\|\cdot\|)$ ba a normed vector space. A subset C of \mathcal{V} is said to be convex if

$$
(\forall \boldsymbol{x}, \boldsymbol{y} \in C \wedge \lambda \in[0,1])(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} \in C) .
$$

Let C be a non-empty convex set in \mathcal{V}.

1. Show that \bar{C} is convex.
2. Show that if $\boldsymbol{x} \in \stackrel{\circ}{C}$ and $\boldsymbol{y} \in \bar{C}$, then $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \stackrel{\circ}{C}$ for all $\lambda \in(0,1)$. This result is sometimes called the line segment principle.
3. Show that \dot{C} is convex (you may need the conclusion in 2 to prove this).
4. Show that $\operatorname{cl}(\dot{C})=\operatorname{cl}(C)$.
5. Show that $\operatorname{int}(\bar{C})=\operatorname{int}(C)$.

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that $\boldsymbol{x} \in \operatorname{int}(\bar{C})$ can be written as $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}$ for some $\boldsymbol{y} \in \stackrel{\circ}{C}$ and $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$.

Proof. 1. Let $\boldsymbol{x}, \boldsymbol{y} \in \bar{C}$ and $0 \leqslant \lambda \leqslant 1$. Then there exist sequences $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty}$ in C such that $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ and $\boldsymbol{y}_{k} \rightarrow \boldsymbol{y}$ as $k \rightarrow \infty$. Since C is convex, $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in C$ for each $k \in \mathbb{N}$; thus by the fact that $C \subseteq \bar{C},(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \in \bar{C}$ for each $k \in \mathbb{N}$. Since $(1-\lambda) \boldsymbol{x}_{k}+\lambda \boldsymbol{y}_{k} \rightarrow(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}$ as $k \rightarrow \infty$ and \bar{C} is closed, we must have $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \bar{C}$; thus \bar{C} is convex if C is convex.
2. Suppose the contrary that there exists $\lambda \in(0,1)$ such that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \notin \dot{C}$. Then for each $k \in \mathbb{N}$, there exists $\boldsymbol{z}_{k} \notin C$ such that

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|<\frac{1}{k} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{y} \in \bar{C}$, there exists a sequence $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{\infty} \in C$ satisfying

$$
\left\|\boldsymbol{y}_{k}-\boldsymbol{y}\right\|<\frac{1}{\lambda k} \quad \forall k \in N
$$

Therefore, if $k \in N$,

$$
\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}_{k}-\boldsymbol{z}_{k}\right\| \leqslant\left\|(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y}-\boldsymbol{z}_{k}\right\|+\left\|\lambda\left(\boldsymbol{y}-\boldsymbol{y}_{k}\right)\right\|<\frac{2}{k} ;
$$

thus

$$
\left\|\boldsymbol{x}-\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}\right\|<\frac{2}{k(1-\lambda)} \quad \forall k \in \mathbb{N} .
$$

Since $\boldsymbol{x} \in \stackrel{\circ}{C}$, there exists $N>0$ such that $B\left(\boldsymbol{x}, \frac{2}{(1-\lambda) N}\right) \subseteq C$; thus $\frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda} \in C$ whenever $k \geqslant N$. By the convexity of C,

$$
\boldsymbol{z}_{k}=(1-\lambda) \frac{\boldsymbol{z}_{k}-\lambda \boldsymbol{y}_{k}}{1-\lambda}+\lambda \boldsymbol{y}_{k} \in C
$$

a contradiction.
3. Let $\boldsymbol{x}, \boldsymbol{y} \in \stackrel{\circ}{C}$. By the line segment principle, $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in(0,1)$ (since $\dot{C} \subseteq \bar{C})$. This further implies that $(1-\lambda) \boldsymbol{x}+\lambda \boldsymbol{y} \in \dot{C}$ for all $\lambda \in[0,1]$ since $\boldsymbol{x}, \boldsymbol{y} \in \dot{C}$; thus \dot{C} is convex.
4. It suffices to show that $\operatorname{cl}(\stackrel{\circ}{C}) \supseteq \operatorname{cl}(C)$. Let $\boldsymbol{x} \in \operatorname{cl}(C)$. Pick any $\boldsymbol{y} \in \dot{C}$. By the line segment principle,

$$
\boldsymbol{x}_{k} \equiv\left(1-\frac{1}{k}\right) \boldsymbol{x}+\frac{1}{k} \boldsymbol{y} \in \dot{C} \quad \forall k \geqslant 2 .
$$

Since $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}$ as $k \rightarrow \infty$, we find that $\boldsymbol{x} \in \operatorname{cl}(\stackrel{\circ}{C})$.
5. It suffices to show that $\operatorname{int}(\bar{C}) \subseteq \operatorname{int}(C)$. Let $\boldsymbol{x} \in \operatorname{int}(\bar{C})$. Then there exists $\varepsilon>0$ such that $B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$. Let $\boldsymbol{y} \in \operatorname{int}(C)$. If $\boldsymbol{y}=\boldsymbol{x}$, then $\boldsymbol{x} \in \operatorname{int}(C)$. If $\boldsymbol{y} \neq \boldsymbol{x}$, define $\boldsymbol{z}=\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y})$, where

$$
\alpha=\frac{\varepsilon}{2\|\boldsymbol{x}-\boldsymbol{y}\|} .
$$

Then $\|\boldsymbol{x}-\boldsymbol{z}\|=\frac{\varepsilon}{2}$; thus $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon)$ which further implies that $\boldsymbol{z} \in \bar{C}$. By the line segment principle implies that $(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z} \in \check{C}$ for all $\lambda \in(0,1)$. Taking $\lambda=\frac{1}{1+\alpha}$, we find that

$$
(1-\lambda) \boldsymbol{y}+\lambda \boldsymbol{z}=\frac{\alpha}{1+\alpha} \boldsymbol{y}+\frac{1}{1+\alpha}(\boldsymbol{x}+\alpha(\boldsymbol{x}-\boldsymbol{y}))=\boldsymbol{x}
$$

which shows that $\boldsymbol{x} \in \operatorname{int}(C)$.
Problem 5. Let $(\mathcal{V},\|\cdot\|)$ be a normed vector space. Show that for all $\boldsymbol{x} \in \mathcal{V}$ and $r>0$,

$$
\operatorname{int}(B[\boldsymbol{x}, r])=B(\boldsymbol{x}, r)
$$

Proof. Let $\boldsymbol{y} \in \mathcal{V}$ such that $\|\boldsymbol{x}-\boldsymbol{y}\|=r$. Then $\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $|\lambda|>1$. In particular, $\boldsymbol{y}_{n} \equiv \boldsymbol{x}+\left(1+\frac{1}{n}\right)(\boldsymbol{y}-\boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\mathbb{C}}$ for all $n \in \mathbb{N}$. Moreover,

$$
\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\right\|=\frac{1}{n}\|\boldsymbol{x}-\boldsymbol{y}\|=\frac{r}{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Therefore, $\lim _{n \rightarrow \infty} \boldsymbol{y}_{n}=\boldsymbol{y}$ which implies that $\boldsymbol{y} \in \partial B[\boldsymbol{x}, r]$ (since $\boldsymbol{y} \in B[\boldsymbol{x}, r]$ and \boldsymbol{y} is the limit of a sequence from $B[\boldsymbol{x}, r]^{c}$); thus

$$
\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\} \subseteq \partial B[\boldsymbol{x}, r] .
$$

On the other hand, $B(\boldsymbol{x}, r)$ is open and

$$
B[\boldsymbol{x}, r]=B(\boldsymbol{x}, r) \cup\{\boldsymbol{y} \in \mathcal{V} \mid\|\boldsymbol{x}-\boldsymbol{y}\|=r\}
$$

Therefore, $B(x, r)$ is the largest open set contained inside $B[\boldsymbol{x}, r]$; thus $B(\boldsymbol{x}, r)=\operatorname{int}(B[\boldsymbol{x}, r])$. $\quad \square$
Problem 6. Let $\mathcal{M}_{n \times n}$ denote the collection of all $n \times n$ square real matrices, and $\left(\mathcal{M}_{n \times n},\|\cdot\|\right)$ be a normed space with norm $\|\cdot\|$ given in Problem 3 of Exercise 5 (with $p=q=2$). Show that the set

$$
\mathrm{GL}(n) \equiv\left\{A \in \mathcal{M}_{n \times n} \mid \operatorname{det}(A) \neq 0\right\}
$$

is an open set in $\mathcal{M}_{n \times n}$. The set $\mathrm{GL}(n)$ is called the general linear group.
Proof. Let $A \in \mathrm{GL}(n)$ be given. Then $A^{-1} \in \mathcal{M}_{n \times n}$ exists. We show that

$$
\forall B \in B\left(A, \frac{1}{\left\|A^{-1}\right\|_{2,2}}\right), \operatorname{det}(B) \neq 0 .
$$

By the definition of the norm, for all $\boldsymbol{x} \in \mathbb{R}^{n}$ we have

$$
\|\boldsymbol{x}\|_{2} \leqslant\left\|A^{-1} A \boldsymbol{x}\right\|_{2} \leqslant\left\|A^{-1}\right\|_{2,2}\|A \boldsymbol{x}\|_{2} ;
$$

thus for all $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\frac{1}{\left\|A^{-1}\right\|_{2,2}}\|\boldsymbol{x}\|_{2} \leqslant\|A \boldsymbol{x}\|_{2} \leqslant\|(A-B) \boldsymbol{x}\|_{2}+\|B \boldsymbol{x}\|_{2} \leqslant\|A-B\|_{2,2}\|\boldsymbol{x}\|_{2}+\|B \boldsymbol{x}\|_{2}
$$

which implies that

$$
\|B \boldsymbol{x}\|_{2} \geqslant\left(\frac{1}{\left\|A^{-1}\right\|_{2,2}}-\|A-B\|_{2,2}\right)\|\boldsymbol{x}\|_{2} \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}
$$

Therefore, if $B \in B\left(A, \frac{1}{\left\|A^{-1}\right\|_{2,2}}\right)$, then $B \boldsymbol{x}=\mathbf{0}$, then $\boldsymbol{x}=\mathbf{0}$. This shows that B is invertible if $B \in B\left(A, \frac{1}{\left\|A^{-1}\right\|_{2,2}}\right) ;$ thus $B\left(A, \frac{1}{\left\|A^{-1}\right\|_{2,2}}\right) \subseteq \mathrm{GL}(n)$.

Problem 7. Show that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals; that is, if $U \subseteq \mathbb{R}$ is open, then

$$
U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right)
$$

where \mathcal{I} is countable, and $\left(a_{k}, b_{k}\right) \cap\left(a_{\ell}, b_{\ell}\right)=\varnothing$ if $k \neq \ell$.
Hint: For each point $x \in U$, define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. Define $I_{x}=\left(\inf L_{x}, \sup R_{x}\right)$. Show that $I_{x}=I_{y}$ if $(x, y) \in U$.

Proof. As suggested in the hint, for each point $x \in U$ we define $L_{x}=\{y \in \mathbb{R} \mid(y, x) \subseteq U\}$ and $R_{x}=\{y \in \mathbb{R} \mid(x, y) \subseteq U\}$. We note that $a \equiv \inf L_{x} \notin U$ since if $a \in U$, by the openness of U there exists $r>0$ such that $(a-r, a+r) \subseteq U$ which implies that $(a-r, x) \subseteq U$ so that $a-r \in L_{x}$, a contradiction to the fact that $a=\inf L_{x}$. Similarly, $\sup R_{x} \notin U$. Therefore, $I_{x}=\left(\inf L_{x}, \sup L_{x}\right)$ is the maximal connected subset of U containing x.

If $x, y \in U$ and $(x, y) \subseteq U$, then $\left.\left(L_{x}, y\right)=\left(L_{x}, x\right) \cup\{x\} \cup x, y\right) \subseteq U$ which implies that $L_{x} \subseteq L_{y}$. On the other hand, if $z \in L_{y}$, then $z \leqslant x$ and $(z, x) \subseteq U$; thus $L_{y} \subseteq L_{x}$ which implies that $L_{x}=L_{y}$ if $x, y \in U$ and $(x, y) \subseteq U$. This shows that $I_{x}=I_{y}$ if $x, y \in U$ and $(x, y) \subseteq U$. Moreover, if $x, y \in U$ but $(x, y) \varsubsetneqq U$, then there exists $x<z<y$ such that $z \notin U$; thus $\sup R_{x} \leqslant z \leqslant \inf L_{y}$ which implies that $I_{x} \cap I_{y}=\varnothing$. Therefore, we establish that

1. if $x, y \in U$ and $(x, y) \subseteq U$, then $I_{x}=I_{y}$.
2. if $x, y \in U$ and $(x, y) \nsubseteq U$, then $I_{x} \cap I_{y}=\varnothing$.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a rational number, we can denote each such open interval as I_{k}, where k belongs to a countable index set \mathcal{I}. Write $I_{k}=\left(a_{k}, b_{k}\right)$, then $U=\bigcup_{k \in \mathcal{I}}\left(a_{k}, b_{k}\right)$.

Problem 8. In class we introduce the normed vector space $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$:

$$
\ell^{\infty}=\left\{\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}|\exists M>0 \ni| x_{n} \mid \leqslant M \text { for all } n \in \mathbb{N}\right\}
$$

equipped with

$$
\left\|\left\{x_{n}\right\}_{n=1}^{\infty}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|
$$

Complete the following.

1. Show that $\|\cdot\|_{\infty}$ is indeed a norm.
2. Show that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space; that is, show that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is complete.
3. Show that the set $A=\left\{\left\{x_{n}\right\}_{n=1}^{\infty} \in \ell^{\infty}| | x_{n} \left\lvert\, \leqslant \frac{1}{n}\right.\right.$ for all $\left.n \in \mathbb{N}\right\}$ is closed.

Problem 9. Let (M, d) be a metric space. A set $A \subseteq M$ is said to be perfect if $A=A^{\prime}$ (so that there is no isolated points). The Cantor set is constructed by the following procedure: let $E_{0}=[0,1]$. Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$, and let E_{1} be the union of the intervals

$$
\left[0, \frac{1}{3}\right],\left[\frac{2}{3}, 1\right] .
$$

Remove the middle thirds of these intervals, and let E_{2} be the union of the intervals

$$
\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{3}{9}\right],\left[\frac{6}{9}, \frac{7}{9}\right],\left[\frac{8}{9}, 1\right] .
$$

Continuing in this way, we obtain a sequence of closed set E_{k} such that
（a）$E_{1} \supseteq E_{2} \supseteq E_{2} \supseteq \cdots$ ；
（b）E_{n} is the union of 2^{n} intervals，each of length 3^{-n} ．
The set $C=\bigcap_{n=1}^{\infty} E_{n}$ is called the Cantor set．
1．Show that C is a perfect set．
2．Show that C is uncountable．
3．Find $\operatorname{int}(C)$ ．
Proof．1．Let $x \in C$ ．Then $x \in E_{N}$ for some $N \in \mathbb{N}$ ．For each $n \in \mathbb{N}, E_{n}$ is the union of disjoint closed intervals with length $\frac{1}{3^{n}}$ ，and ∂E_{n} consists of the end－points of these disjoint closed intervals whose union is E_{n} ．Therefore，there exists $x_{n} \in \partial E_{N+n-1} \backslash\{x\}$ such that $\left|x_{n}-x\right|<\frac{1}{3^{N-1+n}}$ ． Since $\partial E_{n} \subseteq C$ for each $n \in \mathbb{N}$ ，we find that $\left\{x_{n}\right\}_{n=1}^{\infty} \in C \backslash\{x\}$ ．Moreover， $\lim _{n \rightarrow \infty} x_{n}=x$ ；thus $x \in C^{\prime}$ which shows $C \subseteq C^{\prime}$ ．Since C is the intersection of closed sets，C is closed；thus

$$
C \subseteq C^{\prime} \subseteq \bar{C}=C
$$

so we establish that $C^{\prime}=C$ ．
2．For $x \in[0,1]$ ，write x in ternary expansion（三進位展開）；that is，

$$
x=0 . d_{1} d_{2} d_{3} \cdots \cdots .
$$

Here we note that repeated 2＇s are chosen by preference over terminating decimals．For example， we write $\frac{1}{3}$ as $0.02222 \cdots$ instead of 0.1 ．Define

$$
A=\left\{x=0 . d_{1} d_{2} d_{3} \cdots \mid d_{j} \in\{0,2\} \text { for all } j \in \mathbb{N}\right\}
$$

Note each point in ∂E_{n} belongs to A ；thus $A \subseteq C$ ．On the other hand，A has a one－to－one correspondence with $[0,1]\left(x=0 . d_{1} d_{2} \cdots \in A \Leftrightarrow y=0 \cdot \frac{d_{1}}{2} \frac{d_{2}}{2} \cdots \in[0,1]\right.$ ，where y is expressed in binary expansion（二進位展開）with repeated 1＇s instead of terminating decimals）．Since $[0,1]$ is uncountable，A is uncountable；thus C is uncountable．

3．If $\operatorname{int}(C)$ is non－empty，then by the fact that $\operatorname{int}(C)$ is open in $(R,|\cdot|)$ ，by Problem 7 the Cantor set C contains at least one interval (x, y) ．Note that there exists $N>0$ such that $|x-y|<\frac{1}{3^{n}}$ for all $n \geqslant N$ ．Since the length of each interval in E_{n} has length $\frac{1}{3^{n}}$ ，we find that if $n \geqslant N$ ，the interval (x, y) is not contained in any interval of E_{n} ．In other words，there must be $z \in(x, y)$ such that $z \in E_{n}^{\complement}$ which shows that $(x, y) \nsubseteq \bigcap_{n=1}^{\infty} E_{n}$ ．Therefore， $\operatorname{int}(C)=\varnothing$ ．

