Exercise Problem Sets 7

Problem 1. Let $A \subseteq \mathbb{R}^n$. Define the sequence of sets $A^{(m)}$ as follows: $A^{(0)} = A$ and $A^{(m+1)} =$ the derived set of $A^{(m)}$ for $m \in \mathbb{N}$. Complete the following.

- 1. Prove that each $A^{(m)}$ for $m \in \mathbb{N}$ is a closed set; thus $A^{(1)} \supseteq A^{(2)} \supseteq \cdots$.
- 2. Show that if there exists some $m \in \mathbb{N}$ such that $A^{(m)}$ is a countable set, then A is countable.
- 3. For any given $m \in \mathbb{N}$, is there a set A such that $A^{(m)} \neq \emptyset$ but $A^{(m+1)} = \emptyset$?
- 4. Let A be uncountable. Then each $A^{(m)}$ is an uncountable set. Is it possible that $\bigcap_{m=1}^{\infty} A^{(m)} = \emptyset$?
- 5. Let $A = \left\{ \frac{1}{m} + \frac{1}{k} \, \middle| \, m 1 > k(k 1), m, k \in \mathbb{N} \right\}$. Find $A^{(1)}, A^{(2)}$ and $A^{(3)}$.
- Proof. 1. See Problem 2 for that A' is closed for all $A \subseteq M$. Moreover, $\overline{A} = A \cup A'$ so that $A \subseteq A'$ if A is closed (in fact, A is closed if and only if $A \subseteq A'$). Therefore, knowing that $A^{(m)}$ is closed for all $m \in \mathbb{N}$, we obtain that $A^{(m)} \supseteq A^{(m+1)}$ for all $m \in \mathbb{N}$.
 - 2. Note that $A \setminus A'$ consists of all isolated points of A. For $m \in \mathbb{N}$, define $B^{(m-1)} = A^{(m-1)} \setminus A^{(m)}$. Then $B^{(m-1)}$ consists of isolated points of $A^{(m-1)}$; thus $B^{(m-1)}$ is countable for all $m \in \mathbb{N}$. Since for any subset A of M, we have

$$A \subseteq (A \backslash A') \cup A'$$

and equality holds if A is closed, 1 implies that

$$A \subseteq (A \setminus A^{(1)}) \cup A^{(1)} = B^{(0)} \cup A^{(1)} = B^{(0)} \cup \left[\left(A^{(1)} \setminus A^{(2)} \right) \cup A^{(2)} \right] = B^{(0)} \cup B^{(1)} \cup A^{(2)}$$
$$= \dots = B^{(0)} \cup B^{(1)} \cup \dots \cup B^{(m-1)} \cup A^{(m)}.$$

If $A^{(m)}$ is countable, we find that A is a subset of a finite union of countable sets; thus A is countable.

3. For each $m \in \mathbb{N}$, define

$$A_m = \left\{ \frac{1}{i_1} + \frac{1}{i_2} + \dots + \frac{1}{i_m} \left| i_m \ge i_{m-1} \ge i_{m-2} \ge \dots \ge i_1 \right\}.$$

Then $A'_m = \bigcup_{j=1}^{m-1} A_j \cup \{0\}$. To see this, let $\{x_k\}_{k=1}^{\infty}$ be a convergent sequence in A_m . W.L.O.G. we can assume that $\{x_k\}_{k=1}^{\infty}$ has distinct terms; that is, $x_k \neq x_j$ if $k \neq j$ for otherwise

- (a) if finitely many terms are the same, eliminating all but one such terms from the original sequence does not change the limit of the sequence;
- (b) if infinitely many terms are the same, then this term is a cluster point of the sequence; thus the sequence converges to this term which is one particular element of A_m .

If $\{x_k\}_{k=1}^{\infty}$ has distinct terms, then there exists $1 \leq j \leq m$ such that

$$\#\left\{k \in \mathbb{N} \,\middle|\, i_j^{(k)}\right\} = \infty$$

that is, at least one $i_i^{(k)}$ has infinitely many

$$A''_{m} = \bigcup_{j=1}^{m-2} A_{j} \cup \{0\}, \dots, A_{m}^{(m-1)} = A_{1} \cup \{0\}, A_{m}^{(m)} = \{0\}, A_{m}^{(m+1)} = \emptyset.$$

- 4. By 2, if $A^{(m)}$ is countable for some $m \in \mathbb{N}$, then A is countable; thus if A is uncountable, $A^{(m)}$ must be uncountable for all $m \in \mathbb{N}$.
- 5. Similar to 3, we have $A^{(1)} = \left\{ \frac{1}{k} \mid k \in \mathbb{N} \right\} \cup \{0\}, A^{(2)} = \{0\} \text{ and } A^{(3)} = \emptyset.$

Problem 2. Let (M, d) be a metric space, and A be a subset of M. Show that A', the derived set of A consisting of all accumulation points of A (defined in Exercise 6), is closed.

Proof. Let $y \notin A'$. Then there exists $\varepsilon > 0$ such that

$$B(y,\varepsilon) \cap (A \setminus \{y\}) = (B(y,\varepsilon) \setminus \{y\}) \cap A = \emptyset$$

Then $A \subseteq (B(y,\varepsilon) \setminus \{y\})^{\mathbb{C}}$. Since

$$(B(y,\varepsilon)\setminus\{y\})^{\mathbb{C}} = (B(y,\varepsilon)\cap\{y\}^{\mathbb{C}})^{\mathbb{C}} = B(y,\varepsilon)^{\mathbb{C}}\cup\{y\},$$

by the fact that $(B(y,\varepsilon) \setminus \{y\})^{\complement}$ is closed,

$$\overline{A} \subseteq (B(y,\varepsilon) \setminus \{y\})^{\mathbb{C}}$$
 or equivalently, $\overline{A} \cap B(y,\varepsilon) \setminus \{y\} = \emptyset$.

Since $\overline{A} \subseteq A'$, the equality above implies that

$$A' \cap B(y,\varepsilon) \setminus \{y\} = \emptyset;$$

thus the fact that $y \notin A'$ implies that $B(y, \varepsilon) \cap A' = \emptyset$.

Problem 3. Recall that a cluster point x of a sequence $\{x_n\}_{n=1}^{\infty}$ satisfies that

$$\forall \varepsilon > 0, \# \{ n \in \mathbb{N} \mid x_n \in B(x, \varepsilon) \} = \infty.$$

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M, d) be a metric space, $\{x_k\}_{k=1}^{\infty}$ be a sequence in M, and A be the collection of cluster points of $\{x_k\}_{k=1}^{\infty}$. We would like to show that $A \supseteq \overline{A}$.

Let $y \in A^{\complement}$. Then y is not a cluster point of $\{x_k\}_{k=1}^{\infty}$; thus

$$\exists \varepsilon > 0 \ni \# \{ n \in \mathbb{N} \mid x_n \in B(y, \varepsilon) \} < \infty.$$

For $z \in B(y,\varepsilon)$, let $r = \varepsilon - d(y,z) > 0$. Then $B(z,r) \subseteq B(y,\varepsilon)$ (see Figure 1 or check rigorously using the triangle inequality). As a consequence, $\#\{n \in \mathbb{N} \mid x_n \in B(z,r)\} < \infty$ which implies that $z \notin A$.

Figure 1: $B(z, \varepsilon - d(y, z)) \subseteq B(y, \varepsilon)$ if $z \in B(y, \varepsilon)$

Therefore, if $z \in B(y, \varepsilon)$ then $z \in A^{\complement}$; thus $B(y, \varepsilon) \cap A = \emptyset$. We then conclude that if $y \in A^{\complement}$ then $y \notin \overline{A}$.

Problem 4. Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space. A subset C of \mathcal{V} is said to be convex if

$$(\forall \boldsymbol{x}, \boldsymbol{y} \in C \land \lambda \in [0, 1]) (\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in C).$$

Let C be a non-empty convex set in \mathcal{V} .

- 1. Show that \overline{C} is convex.
- 2. Show that if $\boldsymbol{x} \in \mathring{C}$ and $\boldsymbol{y} \in \overline{C}$, then $(1-\lambda)\boldsymbol{x} + \lambda \boldsymbol{y} \in \mathring{C}$ for all $\lambda \in (0, 1)$. This result is sometimes called the *line segment principle*.
- 3. Show that \mathring{C} is convex (you may need the conclusion in 2 to prove this).
- 4. Show that $\operatorname{cl}(\mathring{C}) = \operatorname{cl}(C)$.
- 5. Show that $\operatorname{int}(\overline{C}) = \operatorname{int}(C)$.

Hint: 2. Prove by contradiction.

3 and 4. Use the line segment principle.

5. Show that $\boldsymbol{x} \in \operatorname{int}(\bar{C})$ can be written as $(1 - \lambda)\boldsymbol{y} + \lambda\boldsymbol{z}$ for some $\boldsymbol{y} \in \mathring{C}$ and $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon) \subseteq \bar{C}$.

- Proof. 1. Let $\mathbf{x}, \mathbf{y} \in \overline{C}$ and $0 \leq \lambda \leq 1$. Then there exist sequences $\{\mathbf{x}_k\}_{k=1}^{\infty}$ and $\{\mathbf{y}_k\}_{k=1}^{\infty}$ in C such that $\mathbf{x}_k \to \mathbf{x}$ and $\mathbf{y}_k \to \mathbf{y}$ as $k \to \infty$. Since C is convex, $(1 \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \in C$ for each $k \in \mathbb{N}$; thus by the fact that $C \subseteq \overline{C}, (1 \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \in \overline{C}$ for each $k \in \mathbb{N}$. Since $(1 \lambda)\mathbf{x}_k + \lambda \mathbf{y}_k \to (1 \lambda)\mathbf{x} + \lambda \mathbf{y}$ as $k \to \infty$ and \overline{C} is closed, we must have $(1 \lambda)\mathbf{x} + \lambda \mathbf{y} \in \overline{C}$; thus \overline{C} is convex if C is convex.
 - 2. Suppose the contrary that there exists $\lambda \in (0, 1)$ such that $(1 \lambda)\mathbf{x} + \lambda \mathbf{y} \notin \mathring{C}$. Then for each $k \in \mathbb{N}$, there exists $\mathbf{z}_k \notin C$ such that

$$\|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}-\boldsymbol{z}_k\|<rac{1}{k}\qquad \forall\,k\in\mathbb{N}\,.$$

Since $\boldsymbol{y} \in \overline{C}$, there exists a sequence $\{\boldsymbol{y}_k\}_{k=1}^{\infty} \in C$ satisfying

$$\|\boldsymbol{y}_k - \boldsymbol{y}\| < \frac{1}{\lambda k} \qquad \forall k \in N$$

Therefore, if $k \in N$,

$$\|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}_k-\boldsymbol{z}_k\| \leq \|(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}-\boldsymbol{z}_k\|+\|\lambda(\boldsymbol{y}-\boldsymbol{y}_k)\|<\frac{2}{k};$$

thus

$$\|\boldsymbol{x} - \frac{\boldsymbol{z}_k - \lambda \boldsymbol{y}_k}{1 - \lambda}\| < \frac{2}{k(1 - \lambda)} \qquad \forall k \in \mathbb{N}$$

Since $\boldsymbol{x} \in \mathring{C}$, there exists N > 0 such that $B\left(\boldsymbol{x}, \frac{2}{(1-\lambda)N}\right) \subseteq C$; thus $\frac{\boldsymbol{z}_k - \lambda \boldsymbol{y}_k}{1-\lambda} \in C$ whenever $k \ge N$. By the convexity of C,

$$\boldsymbol{z}_k = (1-\lambda) \frac{\boldsymbol{z}_k - \lambda \boldsymbol{y}_k}{1-\lambda} + \lambda \boldsymbol{y}_k \in C,$$

a contradiction.

- 3. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathring{C}$. By the line segment principle, $(1 \lambda)\boldsymbol{x} + \lambda \boldsymbol{y} \in \mathring{C}$ for all $\lambda \in (0, 1)$ (since $\mathring{C} \subseteq \overline{C}$). This further implies that $(1 - \lambda)\boldsymbol{x} + \lambda \boldsymbol{y} \in \mathring{C}$ for all $\lambda \in [0, 1]$ since $\boldsymbol{x}, \boldsymbol{y} \in \mathring{C}$; thus \mathring{C} is convex.
- 4. It suffices to show that $cl(\mathring{C}) \supseteq cl(C)$. Let $\boldsymbol{x} \in cl(C)$. Pick any $\boldsymbol{y} \in \mathring{C}$. By the line segment principle,

$$\boldsymbol{x}_k \equiv \left(1 - \frac{1}{k}\right) \boldsymbol{x} + \frac{1}{k} \boldsymbol{y} \in \mathring{C} \qquad \forall k \ge 2.$$

Since $\boldsymbol{x}_k \to \boldsymbol{x}$ as $k \to \infty$, we find that $\boldsymbol{x} \in cl(\mathring{C})$.

5. It suffices to show that $\operatorname{int}(\overline{C}) \subseteq \operatorname{int}(C)$. Let $\boldsymbol{x} \in \operatorname{int}(\overline{C})$. Then there exists $\varepsilon > 0$ such that $B(\boldsymbol{x},\varepsilon) \subseteq \overline{C}$. Let $\boldsymbol{y} \in \operatorname{int}(C)$. If $\boldsymbol{y} = \boldsymbol{x}$, then $\boldsymbol{x} \in \operatorname{int}(C)$. If $\boldsymbol{y} \neq \boldsymbol{x}$, define $\boldsymbol{z} = \boldsymbol{x} + \alpha(\boldsymbol{x} - \boldsymbol{y})$, where

$$\alpha = \frac{\varepsilon}{2\|\boldsymbol{x} - \boldsymbol{y}\|}$$

Then $\|\boldsymbol{x} - \boldsymbol{z}\| = \frac{\varepsilon}{2}$; thus $\boldsymbol{z} \in B(\boldsymbol{x}, \varepsilon)$ which further implies that $\boldsymbol{z} \in \overline{C}$. By the line segment principle implies that $(1 - \lambda)\boldsymbol{y} + \lambda \boldsymbol{z} \in \mathring{C}$ for all $\lambda \in (0, 1)$. Taking $\lambda = \frac{1}{1 + \alpha}$, we find that

$$(1-\lambda)\boldsymbol{y} + \lambda \boldsymbol{z} = \frac{\alpha}{1+\alpha}\boldsymbol{y} + \frac{1}{1+\alpha}(\boldsymbol{x} + \alpha(\boldsymbol{x} - \boldsymbol{y})) = \boldsymbol{x}$$

which shows that $\boldsymbol{x} \in int(C)$.

Problem 5. Let $(\mathcal{V}, \|\cdot\|)$ be a normed vector space. Show that for all $\boldsymbol{x} \in \mathcal{V}$ and r > 0,

$$\operatorname{int}(B[\boldsymbol{x},r]) = B(\boldsymbol{x},r) \,.$$

Proof. Let $\boldsymbol{y} \in \mathcal{V}$ such that $\|\boldsymbol{x} - \boldsymbol{y}\| = r$. Then $\boldsymbol{x} + \lambda(\boldsymbol{y} - \boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $|\lambda| > 1$. In particular, $\boldsymbol{y}_n \equiv \boldsymbol{x} + (1 + \frac{1}{n})(\boldsymbol{y} - \boldsymbol{x}) \in B[\boldsymbol{x}, r]^{\complement}$ for all $n \in \mathbb{N}$. Moreover,

$$\|\boldsymbol{y}_n - \boldsymbol{y}\| = \frac{1}{n} \|\boldsymbol{x} - \boldsymbol{y}\| = \frac{r}{n} \to 0 \quad \text{as} \quad n \to \infty.$$

Therefore, $\lim_{n\to\infty} \boldsymbol{y}_n = \boldsymbol{y}$ which implies that $\boldsymbol{y} \in \partial B[\boldsymbol{x}, r]$ (since $\boldsymbol{y} \in B[\boldsymbol{x}, r]$ and \boldsymbol{y} is the limit of a sequence from $B[\boldsymbol{x}, r]^{\complement}$); thus

$$\left\{ \boldsymbol{y} \in \mathcal{V} \, \big| \, \|\boldsymbol{x} - \boldsymbol{y}\| = r \right\} \subseteq \partial B[\boldsymbol{x}, r]$$

On the other hand, $B(\boldsymbol{x}, r)$ is open and

$$B[\boldsymbol{x},r] = B(\boldsymbol{x},r) \cup \left\{ \boldsymbol{y} \in \mathcal{V} \, \big| \, \|\boldsymbol{x} - \boldsymbol{y}\| = r \right\}.$$

Therefore, B(x, r) is the largest open set contained inside B[x, r]; thus B(x, r) = int(B[x, r]).

Problem 6. Let $\mathcal{M}_{n \times n}$ denote the collection of all $n \times n$ square real matrices, and $(\mathcal{M}_{n \times n}, \|\cdot\|)$ be a normed space with norm $\|\cdot\|$ given in Problem 3 of Exercise 5 (with p = q = 2). Show that the set

$$\operatorname{GL}(n) \equiv \left\{ A \in \mathcal{M}_{n \times n} \,\middle|\, \det(A) \neq 0 \right\}$$

is an open set in $\mathcal{M}_{n \times n}$. The set $\mathrm{GL}(n)$ is called the general linear group.

Proof. Let $A \in GL(n)$ be given. Then $A^{-1} \in \mathcal{M}_{n \times n}$ exists. We show that

$$\forall B \in B(A, \frac{1}{\|A^{-1}\|_{2,2}}), \det(B) \neq 0.$$

By the definition of the norm, for all $\boldsymbol{x} \in \mathbb{R}^n$ we have

$$\|m{x}\|_{2} \leqslant \|A^{-1}Am{x}\|_{2} \leqslant \|A^{-1}\|_{2,2}\|Am{x}\|_{2}$$

thus for all $\boldsymbol{x} \in \mathbb{R}^n$,

$$\frac{1}{\|A^{-1}\|_{2,2}} \|\boldsymbol{x}\|_{2} \leq \|A\boldsymbol{x}\|_{2} \leq \|(A-B)\boldsymbol{x}\|_{2} + \|B\boldsymbol{x}\|_{2} \leq \|A-B\|_{2,2} \|\boldsymbol{x}\|_{2} + \|B\boldsymbol{x}\|_{2}$$

which implies that

$$||B\boldsymbol{x}||_2 \ge \left(\frac{1}{||A^{-1}||_{2,2}} - ||A - B||_{2,2}\right) ||\boldsymbol{x}||_2 \qquad \forall \, \boldsymbol{x} \in \mathbb{R}^n \,.$$

Therefore, if $B \in B\left(A, \frac{1}{\|A^{-1}\|_{2,2}}\right)$, then $B\boldsymbol{x} = \boldsymbol{0}$, then $\boldsymbol{x} = \boldsymbol{0}$. This shows that B is invertible if $B \in B\left(A, \frac{1}{\|A^{-1}\|_{2,2}}\right)$; thus $B\left(A, \frac{1}{\|A^{-1}\|_{2,2}}\right) \subseteq \operatorname{GL}(n)$.

Problem 7. Show that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals; that is, if $U \subseteq \mathbb{R}$ is open, then

$$U = \bigcup_{k \in \mathcal{I}} (a_k, b_k) \,,$$

where \mathcal{I} is countable, and $(a_k, b_k) \cap (a_\ell, b_\ell) = \emptyset$ if $k \neq \ell$.

Hint: For each point $x \in U$, define $L_x = \{y \in \mathbb{R} \mid (y, x) \subseteq U\}$ and $R_x = \{y \in \mathbb{R} \mid (x, y) \subseteq U\}$. Define $I_x = (\inf L_x, \sup R_x)$. Show that $I_x = I_y$ if $(x, y) \in U$.

Proof. As suggested in the hint, for each point $x \in U$ we define $L_x = \{y \in \mathbb{R} \mid (y, x) \subseteq U\}$ and $R_x = \{y \in \mathbb{R} \mid (x, y) \subseteq U\}$. We note that $a \equiv \inf L_x \notin U$ since if $a \in U$, by the openness of U there exists r > 0 such that $(a - r, a + r) \subseteq U$ which implies that $(a - r, x) \subseteq U$ so that $a - r \in L_x$, a contradiction to the fact that $a = \inf L_x$. Similarly, $\sup R_x \notin U$. Therefore, $I_x = (\inf L_x, \sup L_x)$ is the maximal connected subset of U containing x.

If $x, y \in U$ and $(x, y) \subseteq U$, then $(L_x, y) = (L_x, x) \cup \{x\} \cup x, y) \subseteq U$ which implies that $L_x \subseteq L_y$. On the other hand, if $z \in L_y$, then $z \leq x$ and $(z, x) \subseteq U$; thus $L_y \subseteq L_x$ which implies that $L_x = L_y$ if $x, y \in U$ and $(x, y) \subseteq U$. This shows that $I_x = I_y$ if $x, y \in U$ and $(x, y) \subseteq U$. Moreover, if $x, y \in U$ but $(x, y) \notin U$, then there exists x < z < y such that $z \notin U$; thus $\sup R_x \leq z \leq \inf L_y$ which implies that $I_x \cap I_y = \emptyset$. Therefore, we establish that

- 1. if $x, y \in U$ and $(x, y) \subseteq U$, then $I_x = I_y$.
- 2. if $x, y \in U$ and $(x, y) \notin U$, then $I_x \cap I_y = \emptyset$.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a rational number, we can denote each such open interval as I_k , where k belongs to a countable index set \mathcal{I} . Write $I_k = (a_k, b_k)$, then $U = \bigcup_{k \in \mathcal{I}} (a_k, b_k)$.

Problem 8. In class we introduce the normed vector space $(\ell^{\infty}, \|\cdot\|_{\infty})$:

$$\ell^{\infty} = \left\{ \{x_n\}_{n=1}^{\infty} \subseteq \mathbb{R} \mid \exists M > 0 \ni |x_n| \leqslant M \text{ for all } n \in \mathbb{N} \right\}$$

equipped with

$$\left\| \{x_n\}_{n=1}^{\infty} \right\|_{\infty} = \sup_{n \in \mathbb{N}} \left| x_n \right|.$$

Complete the following.

- 1. Show that $\|\cdot\|_{\infty}$ is indeed a norm.
- 2. Show that $(\ell^{\infty}, \|\cdot\|_{\infty})$ is a Banach space; that is, show that $(\ell^{\infty}, \|\cdot\|_{\infty})$ is complete.
- 3. Show that the set $A = \left\{ \{x_n\}_{n=1}^{\infty} \in \ell^{\infty} \mid |x_n| \leq \frac{1}{n} \text{ for all } n \in \mathbb{N} \right\}$ is closed.

Problem 9. Let (M, d) be a metric space. A set $A \subseteq M$ is said to be **perfect** if A = A' (so that there is no isolated points). The Cantor set is constructed by the following procedure: let $E_0 = [0, 1]$. Remove the segment $(\frac{1}{3}, \frac{2}{3})$, and let E_1 be the union of the intervals

$$\left[0,\frac{1}{3}\right], \left[\frac{2}{3},1\right].$$

Remove the middle thirds of these intervals, and let E_2 be the union of the intervals

$$\left[0,\frac{1}{9}\right], \left[\frac{2}{9},\frac{3}{9}\right], \left[\frac{6}{9},\frac{7}{9}\right], \left[\frac{8}{9},1\right].$$

Continuing in this way, we obtain a sequence of closed set E_k such that

- (a) $E_1 \supseteq E_2 \supseteq E_2 \supseteq \cdots;$
- (b) E_n is the union of 2^n intervals, each of length 3^{-n} .

The set $C = \bigcap_{n=1}^{\infty} E_n$ is called the **Cantor set**.

- 1. Show that C is a perfect set.
- 2. Show that C is uncountable.
- 3. Find int(C).
- Proof. 1. Let $x \in C$. Then $x \in E_N$ for some $N \in \mathbb{N}$. For each $n \in \mathbb{N}$, E_n is the union of disjoint closed intervals with length $\frac{1}{3^n}$, and ∂E_n consists of the end-points of these disjoint closed intervals whose union is E_n . Therefore, there exists $x_n \in \partial E_{N+n-1} \setminus \{x\}$ such that $|x_n - x| < \frac{1}{3^{N-1+n}}$. Since $\partial E_n \subseteq C$ for each $n \in \mathbb{N}$, we find that $\{x_n\}_{n=1}^{\infty} \in C \setminus \{x\}$. Moreover, $\lim_{n \to \infty} x_n = x$; thus $x \in C'$ which shows $C \subseteq C'$. Since C is the intersection of closed sets, C is closed; thus

$$C \subseteq C' \subseteq \bar{C} = C$$

so we establish that C' = C.

2. For $x \in [0, 1]$, write x in ternary expansion (三進位展開); that is,

$$x = 0.d_1d_2d_3\cdots\cdots$$

Here we note that repeated 2's are chosen by preference over terminating decimals. For example, we write $\frac{1}{3}$ as $0.02222\cdots$ instead of 0.1. Define

$$A = \{ x = 0.d_1 d_2 d_3 \cdots \mid d_j \in \{0, 2\} \text{ for all } j \in \mathbb{N} \}.$$

Note each point in ∂E_n belongs to A; thus $A \subseteq C$. On the other hand, A has a one-to-one correspondence with [0,1] $(x = 0.d_1d_2 \cdots \in A \Leftrightarrow y = 0.\frac{d_1}{2}\frac{d_2}{2} \cdots \in [0,1]$, where y is expressed in binary expansion (-進位展開) with repeated 1's instead of terminating decimals). Since [0,1] is uncountable, A is uncountable; thus C is uncountable.

3. If $\operatorname{int}(C)$ is non-empty, then by the fact that $\operatorname{int}(C)$ is open in $(R, |\cdot|)$, by Problem 7 the Cantor set C contains at least one interval (x, y). Note that there exists N > 0 such that $|x - y| < \frac{1}{3^n}$ for all $n \ge N$. Since the length of each interval in E_n has length $\frac{1}{3^n}$, we find that if $n \ge N$, the interval (x, y) is not contained in any interval of E_n . In other words, there must be $z \in (x, y)$ such that $z \in E_n^{\mathbb{C}}$ which shows that $(x, y) \not \equiv \bigcap_{n=1}^{\infty} E_n$. Therefore, $\operatorname{int}(C) = \emptyset$.