Exercise Problem Sets 2

Oct. 2. 2020

Problem 1. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and A be a non-empty set of \mathbb{F} which is bounded below. Define the set $-A$ by $-A \equiv\{-x \in \mathbb{F} \mid x \in A\}$. Prove that

$$
\inf A=-\sup (-A)
$$

Proof. Let C be a subset of \mathbb{F}. Then
b is a lower bound for a set $C \Leftrightarrow b \leqslant c$ for all $c \in C \Leftrightarrow-b \geqslant-c$ for all $c \in C$
$\Leftrightarrow-b \geqslant-c$ for all $-c \in-C \Leftrightarrow-b \geqslant c$ for all $c \in-C \Leftrightarrow-b$ is an upper bound for $-C$.
Therefore, we conclude that

$$
\begin{equation*}
b \text { is a lower bound for a set } C \text { if and only if }-b \text { is an upper bound for }-C \text {. } \tag{*}
\end{equation*}
$$

Now, since A is bounded from below, $-A$ is bounded from above. The least upper bound property then implies that $b=\sup (-A) \in \mathbb{F}$ exists. From (\star), we find that $-b$ is a lower bound for A. Suppose that $-b$ is not the greatest lower bound for A. Then there exists $m>-b$ such that $m \leqslant x$ for all $x \in A$. This implies that m is a lower bound for A; thus (\star) shows that $-m$ is an upper bound for $-A$. By the fact that $-m<b$, we conclude that b is not the least upper bound for $-A$, a contradiction to that b is the least upper bound for $-A$.

Remark 0.1. Note the Problem 1 in fact shows that if \mathbb{F} satisfies LUBP, then \mathbb{F} satisfies GLBP.
Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and A, B be non-empty subsets of \mathbb{F}. Define $A+B=\{x+y \mid x \in A, y \in B\}$. Justify if the following statements are true or false by providing a proof for the true statement and giving a counter-example for the false ones.

1. $\sup (A+B)=\sup A+\sup B$.
2. $\inf (A+B)=\inf A+\inf B$.
3. $\sup (A \cap B) \leqslant \min \{\sup A, \sup B\}$.
4. $\sup (A \cap B)=\min \{\sup A, \sup B\}$.
5. $\sup (A \cup B) \geqslant \max \{\sup A, \sup B\}$.
6. $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

Proof. 1. Let $a=\sup A, b=\sup B$, and $\varepsilon>0$ be given. W.L.O.G. we can assume that $a, b \in \mathbb{F}$ for otherwise $a=\infty$ or $b=\infty$ so that $A+B$ is not bounded from above.
(a) Let $z \in A+B$. Then $z=x+y$ for some $x \in A$ and $y \in B$. By the fact that $x \leqslant a$ and $y \leqslant b$, we find that $z \leqslant a+b$. Therefore, $a+b$ is an upper bound for $A+B$.
(b) There exists $x \in A$ and $y \in B$ such that $x>a-\frac{\varepsilon}{2}$ and $y>b-\frac{\varepsilon}{2}$; thus there exists $z=x+y \in A+B$ such that

$$
z=x+y>a+b-\varepsilon .
$$

Therefore, $a+b=\sup (A+B)$.
2. By Problem 1,

$$
\begin{aligned}
\inf (A+B) & =-\sup (-(A+B))=-\sup (-A+(-B))=-\sup (-A)-\sup (-B) \\
& =\inf (A)+\inf (B)
\end{aligned}
$$

3. The desired inequality hold if $A \cap B=\varnothing$ (since then $\sup A \cap B=-\infty$), so we assume that $A \cap B \neq \varnothing$. Then $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Therefore,

$$
\sup (A \cap B) \leqslant \sup A \quad \text { and } \quad \sup (A \cap B) \leqslant \sup B
$$

The inequalities above then implies that $\sup (A \cap B) \leqslant \min \{\sup A, \sup B\}$.
4. If A and B are non-empty bounded sets but $A \cap B=\varnothing$, then $\sup (A \cap B)=-\infty$ but $\sup A, \sup B \in \mathbb{F}$. In such a case $\sup (A \cap B) \neq \min \{\sup A, \sup B\}$.
5. Similar to 3 , we have $A \subseteq A \cup B$ and $B \subseteq A \cup B$; thus

$$
\sup A \leqslant \sup (A \cup B) \quad \text { and } \quad \sup B \leqslant \sup (A \cup B) .
$$

Therefore, $\max \{\sup A, \sup B\} \leqslant \sup (A \cup B)$.
6. If one of A and B is not bounded from above, then $\sup (A \cup B)=\max \{\sup A, \sup B\}=\infty$. Suppose that A and B are bounded from above. Then $A \cup B$ are bounded from above by $\max \{\sup A, \sup B\}$ since if $x \in A \cup B$, then $x \in A$ or $x \in B$ which implies that $x \leqslant \sup A$ or $x \leqslant \sup B$; thus $x \leqslant \max \{\sup A, \sup B\}$ for all $x \in A \cup B$. This shows that

$$
\sup (A \cup B) \leqslant \max \{\sup A, \sup B\}
$$

Together with 5 , we conclude that $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
Problem 3. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and $S \subseteq \mathbb{F}$ be bounded below and non-empty. Show that

$$
\inf S=\sup \{x \in \mathbb{F} \mid x \text { is a lower bound for } S\}
$$

and

$$
\sup S=\inf \{x \in \mathbb{F} \mid x \text { is an upper bound for } S\}
$$

Proof. Define $A=\{x \in \mathbb{F} \mid x$ is a lower bound for $S\}$. Since S is non-empty, every element in S is an upper bound for A; thus A is bounded from above. By the least upper bound property, $b=\sup A \in \mathbb{F}$ exists. Note that by the definition of A,

$$
\text { if } x \in A \text {, then } x \leqslant s \text { for all } s \in S \text {. }
$$

Let $\varepsilon>0$ be given. Then $b-\varepsilon$ is not an upper bound for A; thus there exists $x \in A$ such that $b-\varepsilon<x$. Then (\star) implies that $b-\varepsilon<s$ for all $s \in S$. Since $\varepsilon>0$ is given arbitrarily, $b \leqslant s$ for all $s \in S$; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists $m>b$ such that $m \leqslant s$ for all $s \in S$. Therefore, $m \in A$; thus $m \leqslant b=\sup A$, a contradiction.

Problem 4. Let A, B be two sets, and $f: A \times B \rightarrow \mathbb{F}$ be a function, where $(\mathbb{F},+, \cdot, \leqslant)$ is an ordered field satisfying the least upper bound property. Show that

$$
\sup _{(x, y) \in A \times B} f(x, y)=\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)=\sup _{x \in A}\left(\sup _{y \in B} f(x, y)\right) .
$$

Proof. It suffices to prove the first equality. Note that

$$
f(x, y) \leqslant \sup _{(x, y) \in A \times B} f(x, y) \quad \forall(x, y) \in A \times B ;
$$

thus

$$
\sup _{x \in A} f(x, y) \leqslant \sup _{(x, y) \in A \times B} f(x, y) \quad \forall y \in B .
$$

The inequality above further shows that

$$
\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) \leqslant \sup _{(x, y) \in A \times B} f(x, y) .
$$

Now we show the reverse inequality.

1. Suppose that $\sup _{(x, y) \in A \times B} f(x, y)=M<\infty$. Then for each $k \in \mathbb{N}$, there exists $\left(x_{k}, y_{k}\right) \in A \times B$ such that

$$
f\left(x_{k}, y_{k}\right)>M-\frac{1}{k} .
$$

Therefore,

$$
M-\frac{1}{k}<f\left(x_{k}, y_{k}\right) \leqslant \sup _{x \in A} f\left(x, y_{k}\right)
$$

which further implies that

$$
M-\frac{1}{k}<f\left(x_{k}, y_{k}\right) \leqslant \sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) .
$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) \geqslant M$.
2. Suppose that $\sup _{(x, y) \in A \times B} f(x, y)=\infty$. Then for each $k \in \mathbb{N}$, there exists $\left(x_{k}, y_{k}\right) \in A \times B$ such that

$$
f\left(x_{k}, y_{k}\right)>k
$$

Therefore,

$$
k<f\left(x_{k}, y_{k}\right) \leqslant \sup _{x \in A} f\left(x, y_{k}\right)
$$

which further implies that

$$
k<f\left(x_{k}, y_{k}\right) \leqslant \sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) .
$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)=\infty$.
With the help of (\star), we conclude that $\sup _{(x, y) \in A \times B} f(x, y)=\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)$.
Problem 5. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$. Define

$$
\|\boldsymbol{x}\|_{1}=\sum_{k=1}^{n}\left|x_{k}\right| \quad \text { and } \quad\|\boldsymbol{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right\} .
$$

Show that

1. $\|\boldsymbol{x}\|_{1}=\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\}$.
2. $\|\boldsymbol{y}\|_{\infty}=\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\}$.

Proof. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^{n}$ be given. Then

$$
\sum_{k=1}^{n} x_{k} y_{k} \leqslant \sum_{k=1}^{n}\left|x_{k}\right|\left|y_{k}\right| \leqslant \sum_{k=1}^{n}\left|x_{k}\right|\|\boldsymbol{y}\|_{\infty}=\|\boldsymbol{y}\|_{\infty} \sum_{k=1}^{n}\left|x_{k}\right|=\|\boldsymbol{y}\|_{\infty}\|\boldsymbol{x}\|_{1} .
$$

Therefore,

$$
\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\} \leqslant\|\boldsymbol{x}\|_{1} \quad \text { and } \quad \sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\} \leqslant\|\boldsymbol{y}\|_{\infty} .
$$

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of the inequalities belongs to the sets (this is because if $b \in A$ is an upper bound for A, then b is the least upper bound for A).

1. $\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\}=\|\boldsymbol{x}\|_{1}$: W.L.O.G. we can assume that $\boldsymbol{x} \neq \mathbf{0}$. For a given $\boldsymbol{x} \in \mathbb{F}^{n}$, define $y_{k}=\operatorname{sgn}\left(x_{k}\right)$, where sgn is the sign function defined by

$$
\operatorname{sgn}(a)=\left\{\begin{array}{cl}
1 & \text { if } a>0 \\
-1 & \text { if } a<0 \\
0 & \text { if } a=0
\end{array}\right.
$$

Then $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ satisfies $\|\boldsymbol{y}\|_{\infty}=1$ (since at least one component of \boldsymbol{x} is non-zero), and

$$
\sum_{k=1}^{n} x_{k} y_{k}=\sum_{k=1}^{n} x_{k} \operatorname{sgn}\left(x_{k}\right)=\sum_{k=1}^{n}\left|x_{k}\right|=\|\boldsymbol{x}\|_{1} .
$$

2. $\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\}=\|\boldsymbol{y}\|_{\infty}$: W.L.O.G. we can assume that $\boldsymbol{y} \neq \mathbf{0}$. Suppose that $\|\boldsymbol{y}\|_{\infty}=\left|y_{m}\right| \neq 0$ for some $1 \leqslant m \leqslant n$; that is, the maximum of the absolute value of components occurs at the m-th component. Define $x_{j}=\delta_{j m} \operatorname{sgn}\left(y_{j}\right)$; that is,

$$
x_{j}=\left\{\begin{array}{cl}
0 & \text { if } j \neq m \\
\operatorname{sgn}\left(y_{m}\right) & \text { if } j=m
\end{array}\right.
$$

Then $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ satisfies $\|\boldsymbol{x}\|=1$ (since only one component of \boldsymbol{x} is 1 or -1), and

$$
\sum_{k=1}^{n} x_{k} y_{k}=\operatorname{sgn}\left(y_{m}\right) y_{m}=\left|y_{m}\right|=\|\boldsymbol{y}\|_{\infty}
$$

Problem 6. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property. A set $A \subseteq \mathbb{F}$ is said to be closed if every convergent sequence in A converges to a limit in A. In logic notation,

$$
A \subseteq \mathbb{F} \text { is closed } \quad \Leftrightarrow \quad\left(\forall\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq A\right)\left(\left\{x_{n}\right\}_{n=1}^{\infty} \text { converges } \Rightarrow \lim _{n \rightarrow \infty} x_{n} \in A\right)
$$

1. Show that \varnothing and \mathbb{F} are closed.
2. Show that $[a, b]=\{x \in \mathbb{F} \mid a \leqslant x \leqslant b\}$ is closed for all $a, b \in \mathbb{F}$.
3. Show that if $\varnothing \neq A \subseteq \mathbb{F}$ is closed and bounded, then $\sup A \in A$ and $\inf A \in A$.

Proof. 3. Since A is bounded, $a=\inf A$ and $b=\sup A$ exist. For each $n \in \mathbb{N}$, there exists $x_{n}, y_{n} \in A$ such that

$$
a \leqslant x_{n}<a+\frac{1}{n} \quad \text { and } \quad b-\frac{1}{n}<y_{n} \leqslant b .
$$

By the Archimedean property, $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$; thus the Sandwich Lemma implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=a \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{n}=b \tag{ㅁ}
\end{equation*}
$$

Since $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty} \subseteq A$ and A is closed, $a \in A$ and $b \in B$.
Problem 7. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an Archimedean ordered field, $a, \delta \in \mathbb{F}$ and $\delta>0$. The δ-neighborhood of a is the set $\mathcal{N}(a, \delta)=\{x \in \mathbb{F}| | x-a \mid<\delta\}$. A number $x \in \mathbb{F}$ is called an accumulation point of a set $A \subseteq \mathbb{F}$ if for all $\delta>0, \mathcal{N}(x, \delta)$ contains at least one point of A distinct from x. In logic notation,

$$
x \text { is an accumulation point of } A \Leftrightarrow(\forall \delta>0)(\mathcal{N}(x, \delta) \cap A \supsetneq\{x\}) .
$$

1. Show that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in \mathbb{F} so that $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$ and $A=\left\{x_{k} \mid k \in \mathbb{N}\right\}$, then x is an accumulation of A if and only if x is a cluster point of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
2. How about if the condition $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$ is removed? Is the statement in 1 still valid?

Proof. 1. We show that
x is an accumulation point of A if and only if $(\forall \delta>0)(\#(A \cap(x-\delta, x+\delta))=\infty)$.
The direction " \Leftarrow " is trivial since if $\#(A \cap(x-\delta, x+\delta))=\infty, A \cap(x-\delta, x+\delta)$ contains some point distinct from x.
(\Rightarrow) Let $\delta_{1}=1$, by the definition of the accumulation points, there exists $x_{1} \in A \cap\left(x-\delta_{1}, x+\delta_{1}\right)$ and $x_{1} \neq x$. Define $\delta_{2}=\min \left\{\left|x_{1}-x\right|, \frac{1}{2}\right\}$. Then $\delta_{2}>0$; thus there exists $x_{2} \in A \cap\left(x-\delta_{2}, x+\delta_{2}\right)$ and $x_{2} \neq x$. We continue this process and obtain a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq A \backslash\{x\}$ satisfying that

$$
x_{1} \in A \cap(x-1, x+1), \quad x_{n} \in A \cap\left(x-\delta_{n}, x+\delta_{n}\right) \text { with } \delta_{n}=\min \left\{\left|x-x_{n-1}\right|, \frac{1}{n}\right\} .
$$

By the Archimedean property, $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x since $\left|x-x_{n}\right|<\delta_{n} \leqslant \frac{1}{n}$. Let $\delta>0$ be given. There exists $N>0$ such that $\frac{1}{N}<\delta$; thus

$$
A \cap(x-\delta, x+\delta) \supseteq A \cap\left(x-\frac{1}{N}, x+\frac{1}{N}\right) \supseteq\left\{x_{N}, x_{N+1}, x_{N+2}, \cdots\right\}
$$

Since $x_{i} \neq x_{j}$ for all $i, j \in \mathbb{N}$, we must have $\#(A \cap(x-\delta, x+\delta))=\infty$.
Problem 8. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field, and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathbb{F}. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges if and only if every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges.

Proof. By a Proposition that we have talked about in class, it suffices to prove the direction " \Leftarrow ". We show that if every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges, then every proper subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to identical limit. Suppose the contrary that there exist two subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{x_{m_{j}}\right\}_{j=1}^{\infty}$ that converge to a and b and $a \neq b$, respectively. We construct a new subsequence $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$, as follows. Let $k_{1}=1$ and $y_{1}=x_{n_{k_{1}}}$. Let j_{1} be the smallest integer so that $m_{j_{1}}>n_{k_{1}}$, and define $y_{2}=x_{m_{j_{1}}}$. Let k_{2} be the smallest integer so that $n_{k_{2}}>m_{j_{1}}$, and define $y_{3}=x_{n_{\ell_{2}}}$. We continue this process and obtain a sequence $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ satisfying that

$$
y_{\ell}= \begin{cases}y_{n_{k^{\ell+1}}} & \ell \text { is odd } \\ y_{m_{\frac{j_{\ell}}{2}}} & \ell \text { is even },\end{cases}
$$

where k_{1}, k_{2}, \cdots and j_{1}, j_{2}, \cdots satisfy that $k_{1}=1$,

$$
j_{r}=\min \left\{j \in \mathbb{N} \mid m_{j}>k_{r}\right\} \quad \text { and } \quad k_{r+1}=\min \left\{k \in \mathbb{N} \mid n_{k}>m_{j_{r}}\right\} \quad \forall r \in \mathbb{N}
$$

Then $\left\{y_{2 \ell-1}\right\}_{\ell=1}^{\infty}$, the collection of odd terms of $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$, is a subsequence of $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{y_{2 \ell}\right\}_{\ell=1}^{\infty}$, the collection of even terms of $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$, is a subsequence of $\left\{x_{m_{j}}\right\}_{j=1}^{\infty}$, and $\left\{y_{2 \ell-1}\right\}_{\ell=1}^{\infty}$ converges to a while $\left\{y_{2 \ell}\right\}_{\ell=1}^{\infty}$ converges to b, and $a \neq b$. By a Proposition we talked about in class, $\left\{y_{\ell}\right\}_{\ell=1}^{\infty}$ does not converges, a contradiction.

