
Exercise Problem Sets 2
Oct. 2. 2020

Problem 1. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and A be
a non-empty set of F which is bounded below. Define the set ´A by ´A ”

␣

´ x P F
ˇ

ˇx P A
(

. Prove
that

infA = ´ sup(´A) .

Proof. Let C be a subset of F. Then

b is a lower bound for a set C ô b ď c for all c P C ô ´b ě ´c for all c P C

ô ´b ě ´c for all ´ c P ´C ô ´b ě c for all c P ´C ô ´b is an upper bound for ´C.

Therefore, we conclude that

b is a lower bound for a set C if and only if ´b is an upper bound for ´C. (‹)

Now, since A is bounded from below, ´A is bounded from above. The least upper bound property
then implies that b = sup(´A) P F exists. From (‹), we find that ´b is a lower bound for A. Suppose
that ´b is not the greatest lower bound for A. Then there exists m ą ´b such that m ď x for all
x P A. This implies that m is a lower bound for A; thus (‹) shows that ´m is an upper bound for ´A.
By the fact that ´m ă b, we conclude that b is not the least upper bound for ´A, a contradiction
to that b is the least upper bound for ´A. ˝

Remark 0.1. Note the Problem 1 in fact shows that if F satisfies LUBP, then F satisfies GLBP.

Problem 2. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and A,B

be non-empty subsets of F. Define A+B = tx+ y |x P A, y P Bu. Justify if the following statements
are true or false by providing a proof for the true statement and giving a counter-example for the
false ones.

1. sup(A+B) = supA+ supB. 2. inf(A+B) = infA+ infB.

3. sup(A X B) ď mintsupA, supBu. 4. sup(A X B) = mintsupA, supBu.

5. sup(A Y B) ě maxtsupA, supBu. 6. sup(A Y B) = maxtsupA, supBu.

Proof. 1. Let a = supA, b = supB, and ε ą 0 be given. W.L.O.G. we can assume that a, b P F for
otherwise a = 8 or b = 8 so that A+B is not bounded from above.

(a) Let z P A + B. Then z = x + y for some x P A and y P B. By the fact that x ď a and
y ď b, we find that z ď a+ b. Therefore, a+ b is an upper bound for A+B.

(b) There exists x P A and y P B such that x ą a ´
ε

2
and y ą b ´

ε

2
; thus there exists

z = x+ y P A+B such that

z = x+ y ą a+ b ´ ε .



Therefore, a+ b = sup(A+B).

2. By Problem 1,

inf(A+B) = ´ sup(´(A+B)) = ´ sup(´A+ (´B)) = ´ sup(´A) ´ sup(´B)

= inf(A) + inf(B) .

3. The desired inequality hold if A X B = H (since then supA X B = ´8), so we assume that
A X B ‰ H. Then A X B Ď A and A X B Ď B. Therefore,

sup(A X B) ď supA and sup(A X B) ď supB .

The inequalities above then implies that sup(A X B) ď mintsupA, supBu.

4. If A and B are non-empty bounded sets but A X B = H, then sup(A X B) = ´8 but
supA, supB P F. In such a case sup(A X B) ‰ mintsupA, supBu.

5. Similar to 3, we have A Ď A Y B and B Ď A Y B; thus

supA ď sup(A Y B) and supB ď sup(A Y B) .

Therefore, maxtsupA, supBu ď sup(A Y B).

6. If one of A and B is not bounded from above, then sup(A Y B) = maxtsupA, supBu = 8.
Suppose that A and B are bounded from above. Then A Y B are bounded from above by
maxtsupA, supBu since if x P A Y B, then x P A or x P B which implies that x ď supA or
x ď supB; thus x ď maxtsupA, supBu for all x P A Y B. This shows that

sup(A Y B) ď maxtsupA, supBu .

Together with 5, we conclude that sup(A Y B) = maxtsupA, supBu. ˝

Problem 3. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and S Ď F
be bounded below and non-empty. Show that

infS = sup
␣

x P F
ˇ

ˇx is a lower bound for S
(

and
supS = inf

␣

x P F
ˇ

ˇx is an upper bound for S
(

.

Proof. Define A =
␣

x P F
ˇ

ˇx is a lower bound for S
(

. Since S is non-empty, every element in S is an
upper bound for A; thus A is bounded from above. By the least upper bound property, b = supA P F
exists. Note that by the definition of A,

if x P A, then x ď s for all s P S. (‹)



Let ε ą 0 be given. Then b ´ ε is not an upper bound for A; thus there exists x P A such that
b ´ ε ă x. Then (‹) implies that b ´ ε ă s for all s P S. Since ε ą 0 is given arbitrarily, b ď s for all
s P S; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m ą b such that m ď s for all
s P S. Therefore, m P A; thus m ď b = supA, a contradiction. ˝

Problem 4. Let A,B be two sets, and f : AˆB Ñ F be a function, where (F,+, ¨,ď) is an ordered
field satisfying the least upper bound property. Show that

sup
(x,y)PAˆB

f(x, y) = sup
yPB

(
sup
xPA

f(x, y)
)
= sup

xPA

(
sup
yPB

f(x, y)
)
.

Proof. It suffices to prove the first equality. Note that

f(x, y) ď sup
(x,y)PAˆB

f(x, y) @ (x, y) P A ˆ B ;

thus
sup
xPA

f(x, y) ď sup
(x,y)PAˆB

f(x, y) @ y P B .

The inequality above further shows that

sup
yPB

(
sup
xPA

f(x, y)
)

ď sup
(x,y)PAˆB

f(x, y) . (‹)

Now we show the reverse inequality.

1. Suppose that sup
(x,y)PAˆB

f(x, y) = M ă 8. Then for each k P N, there exists (xk, yk) P A ˆ B

such that
f(xk, yk) ą M ´

1

k
.

Therefore,
M ´

1

k
ă f(xk, yk) ď sup

xPA
f(x, yk)

which further implies that

M ´
1

k
ă f(xk, yk) ď sup

yPB

(
sup
xPA

f(x, y)
)
.

Since the inequality above holds for all k P N, we find that sup
yPB

(
sup
xPA

f(x, y)
)

ě M .

2. Suppose that sup
(x,y)PAˆB

f(x, y) = 8. Then for each k P N, there exists (xk, yk) P A ˆ B such

that
f(xk, yk) ą k .

Therefore,
k ă f(xk, yk) ď sup

xPA
f(x, yk)



which further implies that

k ă f(xk, yk) ď sup
yPB

(
sup
xPA

f(x, y)
)
.

Since the inequality above holds for all k P N, we find that sup
yPB

(
sup
xPA

f(x, y)
)
= 8.

With the help of (‹), we conclude that sup
(x,y)PAˆB

f(x, y) = sup
yPB

(
sup
xPA

f(x, y)
)
. ˝

Problem 5. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and
x = (x1, x2, ¨ ¨ ¨ , xn) P Fn. Define

}x}1 =
n
ÿ

k=1

|xk| and }x}8 = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |xn|
(

.

Show that

1. }x}1 = sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

. 2. }y}8 = sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

.

Proof. Let x,y P Fn be given. Then
n
ÿ

k=1

xkyk ď

n
ÿ

k=1

|xk||yk| ď

n
ÿ

k=1

|xk|}y}8 = }y}8

n
ÿ

k=1

|xk| = }y}8}x}1 .

Therefore,

sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

ď }x}1 and sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

ď }y}8 .

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of
the inequalities belongs to the sets (this is because if b P A is an upper bound for A, then b is the
least upper bound for A).

1. sup
! n
ř

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

= }x}1: W.L.O.G. we can assume that x ‰ 0. For a given x P Fn,

define yk = sgn(xk), where sgn is the sign function defined by

sgn(a) =

$

&

%

1 if a ą 0 ,
´1 if a ă 0 ,
0 if a = 0 .

Then y = (y1, y2, ¨ ¨ ¨ , yn) satisfies }y}8 = 1 (since at least one component of x is non-zero),
and

n
ÿ

k=1

xkyk =
n
ÿ

k=1

xksgn(xk) =
n
ÿ

k=1

|xk| = }x}1 .

2. sup
! n
ř

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

= }y}8: W.L.O.G. we can assume that y ‰ 0. Suppose that

}y}8 = |ym| ‰ 0 for some 1 ď m ď n; that is, the maximum of the absolute value of
components occurs at the m-th component. Define xj = δjmsgn(yj); that is,

xj =

"

0 if j ‰ m,
sgn(ym) if j = m.

Then x = (x1, x2, ¨ ¨ ¨ , xn) satisfies }x} = 1 (since only one component of x is 1 or ´1), and



n
ÿ

k=1

xkyk = sgn(ym)ym = |ym| = }y}8 . ˝

Problem 6. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property. A set
A Ď F is said to be closed if every convergent sequence in A converges to a limit in A. In logic
notation,

A Ď F is closed ô (@ txnu8
n=1 Ď A)

(
txnu8

n=1 converges ñ lim
nÑ8

xn P A
)
.

1. Show that H and F are closed.

2. Show that [a, b] =
␣

x P F
ˇ

ˇ a ď x ď b
(

is closed for all a, b P F.

3. Show that if H ‰ A Ď F is closed and bounded, then supA P A and infA P A.

Proof. 3. Since A is bounded, a = infA and b = supA exist. For each n P N, there exists xn, yn P A

such that
a ď xn ă a+

1

n
and b ´

1

n
ă yn ď b .

By the Archimedean property, 1

n
Ñ 0 as n Ñ 8; thus the Sandwich Lemma implies that

lim
nÑ8

xn = a and lim
nÑ8

yn = b .

Since txnu8
n=1, tynu8

n=1 Ď A and A is closed, a P A and b P B. ˝

Problem 7. Let (F,+, ¨,ď) be an Archimedean ordered field, a, δ P F and δ ą 0. The δ-neighborhood
of a is the set N (a, δ) =

␣

x P F
ˇ

ˇ |x ´ a| ă δ
(

. A number x P F is called an accumulation point
of a set A Ď F if for all δ ą 0, N (x, δ) contains at least one point of A distinct from x. In logic
notation,

x is an accumulation point of A ô (@ δ ą 0)
(
N (x, δ) X A Ľ txu

)
.

1. Show that if txnu8
n=1 is a sequence in F so that xi ‰ xj for all i, j P N and A =

␣

xk

ˇ

ˇ k P N
(

,
then x is an accumulation of A if and only if x is a cluster point of txnu8

n=1.

2. How about if the condition xi ‰ xj for all i, j P N is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if (@ δ ą 0)
(
#(A X (x ´ δ, x+ δ)

)
= 8

)
.

The direction “ð” is trivial since if #(AX (x´ δ, x+ δ)
)
= 8, AX (x´ δ, x+ δ) contains some point

distinct from x.

(ñ) Let δ1 = 1, by the definition of the accumulation points, there exists x1 P AX(x´δ1, x+δ1) and
x1 ‰ x. Define δ2 = min

␣

|x1 ´ x|,
1

2

(

. Then δ2 ą 0; thus there exists x2 P A X (x ´ δ2, x+ δ2)

and x2 ‰ x. We continue this process and obtain a sequence txnu8
n=1 Ď Aztxu satisfying that

x1 P A X (x ´ 1, x+ 1), xn P A X (x ´ δn, x+ δn) with δn = min
␣

|x ´ xn´1|,
1

n

(

.



By the Archimedean property, txnu8
n=1 converges to x since |x ´ xn| ă δn ď

1

n
. Let δ ą 0 be

given. There exists N ą 0 such that 1

N
ă δ; thus

A X (x ´ δ, x+ δ) Ě A X
(
x ´

1

N
, x+

1

N

)
Ě txN , xN+1, xN+2, ¨ ¨ ¨ u .

Since xi ‰ xj for all i, j P N, we must have #
(
A X (x ´ δ, x+ δ)

)
= 8. ˝

Problem 8. Let (F,+, ¨,ď) be an ordered field, and txnu8
n=1 be a sequence in F. Show that txnu8

n=1

converges if and only if every proper subsequence of txnu8
n=1 converges.

Proof. By a Proposition that we have talked about in class, it suffices to prove the direction “ð”.
We show that if every proper subsequence of txnu8

n=1 converges, then every proper subsequence of
txnu8

n=1 converges to identical limit. Suppose the contrary that there exist two subsequence txnk
u8
k=1

and txmj
u8
j=1 that converge to a and b and a ‰ b, respectively. We construct a new subsequence

tyℓu
8
ℓ=1 of txnu8

n=1, as follows. Let k1 = 1 and y1 = xnk1
. Let j1 be the smallest integer so that

mj1 ą nk1 , and define y2 = xmj1
. Let k2 be the smallest integer so that nk2 ą mj1 , and define

y3 = xnℓ2
. We continue this process and obtain a sequence tyℓu

8
ℓ=1 satisfying that

yℓ =

$

&

%

ynk ℓ+1
2

ℓ is odd ,

ymj ℓ
2

ℓ is even ,

where k1, k2, ¨ ¨ ¨ and j1, j2, ¨ ¨ ¨ satisfy that k1 = 1,

jr = min
␣

j P N
ˇ

ˇmj ą kr
(

and kr+1 = min
␣

k P N
ˇ

ˇnk ą mjr

(

@ r P N .

Then ty2ℓ´1u8
ℓ=1, the collection of odd terms of tyℓu

8
ℓ=1, is a subsequence of txnk

u8
k=1 and ty2ℓu

8
ℓ=1,

the collection of even terms of tyℓu
8
ℓ=1, is a subsequence of txmj

u8
j=1, and ty2ℓ´1u8

ℓ=1 converges to a

while ty2ℓu
8
ℓ=1 converges to b, and a ‰ b. By a Proposition we talked about in class, tyℓu

8
ℓ=1 does not

converges, a contradiction. ˝


