Exercise Problem Sets 1

Sept. 25. 2020

Problem 1. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, and $a, b \in \mathbb{F}$. Show that $a \leq b$ if and only if for all $\varepsilon > 0, a < b + \varepsilon$.

Proof. The direction " \Rightarrow " is trivial, so we only prove the direction " \Leftarrow ". Suppose the contrary that a > b. Let $\varepsilon = a - b$. Then $\varepsilon > 0$; thus

$$a < b + (a - b) = a,$$

a contradiction.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, $x, y \in \mathbb{F}$, and $n \in \mathbb{N}$. Show that

- 1. If $0 \leq x < y$, then $x^n < y^n$.
- 2. If $0 \leq x, y$ and $x^n < y^n$, then x < y.
- *Proof.* 1. Let $S = \{n \in \mathbb{N} \mid x^n < y^n\}$. Then $1 \in S$ by assumption. Suppose that $n \in S$. Then $0 \leq x^n < y^n$. By the fact that $0 \leq x < y$, we find that

$$x^{n+1} = x^n \cdot x < x^n \cdot y < y^n \cdot y = y^{n+1};$$

thus $n + 1 \in S$. By induction, we conclude that $S = \mathbb{N}$.

2. Suppose the contrary that $x \ge y$. Then 1 implies that $x^n \ge y^n$, a contradiction.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, $I \subseteq \mathbb{F}$ be an interval, and $f: I \to \mathbb{F}$ be a function.

- 1. f is said to have a limit at c or we say that the limit of f at c exists if
 - (a) there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c, and
 - (b) $\lim_{n\to\infty} f(x_n)$ exists for all convergence sequences $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c.

Show that the limit of f at c exists if and only if there exists $L \in \mathbb{F}$ satisfying that for every $\varepsilon > 0$ there exists $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$ and $x \in I$.

2. f is said to be continuous at a point $c \in I$ if

 $\lim_{n \to \infty} f(x_n) = f(c) \quad \text{for all convergence sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \text{ with limit } c.$

Show that f is continuous at c if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

 $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$ and $x \in I$.

Problem 4. Let $(\mathbb{F}, +, \cdot, \leq)$ an ordered field satisfying the monotone sequence property, and $y \in \mathbb{F}$ satisfying y > 1. Complete the following.

- 1. Define $y^{1/n}$ properly. (Hint: see how we define \sqrt{y} in the last example in class).
- 2. Show that $y^n 1 > n(y 1)$ for all $n \in \mathbb{N} \setminus \{1\}$; thus $y 1 > n(y^{1/n} 1)$.
- 3. Show that if t > 1 and n > (y 1)/(t 1), then $y^{1/n} < t$.
- 4. Show that $\lim_{n \to \infty} y^{1/n} = 1$ as $n \to \infty$.
- Proof. 1. For each $k \in \mathbb{N}$, let N_k be the largest integer satisfying that $\left(\frac{N_k}{n^k}\right)^n \leq y$ but $\left(\frac{N_k+1}{n^k}\right)^n > y$. Define $x_k = \frac{N_k}{n^k}$. Then
 - (a) By binomial expansion, for each $k \in \mathbb{N}$ we have

$$x_k^n \leq y < 1 + C_1^n y + C_2^n y^2 + \dots + C_n^n y^n = (1+y)^n;$$

thus Problem 2 implies that $x_k < 1 + y$. Therefore, $\{x_k\}_{k=1}^{\infty}$ is bounded from above.

(b) For each $k \in \mathbb{N}$,

$$N_k^n \leqslant n^{kn} y \Rightarrow (nN_k)^n \leqslant n^{(k+1)n} y \Rightarrow \left(\frac{nN_k}{n^{k+1}}\right)^n \leqslant y;$$

thus $N_{k+1} \ge nN_k$. Therefore, for each $k \in \mathbb{N}$,

$$x_k = \frac{N_k}{n^k} = \frac{nN_k}{n^{k+1}} \le \frac{N_{k+1}}{n^{k+1}} = x_{k+1}$$

which shows that $\{x_k\}_{k=1}^{\infty}$ is increasing.

Therefore, **MSP** implies that $\{x_k\}_{k=1}^{\infty}$ converges. Assume that $x_k \to x$ as $k \to \infty$ for some $x \in \mathbb{F}$. Then the fact that $x_k^n \leq y$ for all $k \in \mathbb{N}$ implies that $x^n \leq y$. On the other hand,

$$\left(x_k + \frac{1}{n^k}\right)^n \ge y \qquad \forall k \in \mathbb{N};$$

thus AP (a consequence of MSP) implies that

$$x^{n} = \left(\lim_{k \to \infty} x_{k} + \lim_{k \to \infty} \frac{1}{n^{k}}\right)^{n} = \lim_{k \to \infty} \left(x_{k} + \frac{1}{n^{k}}\right)^{n} \ge y.$$

Therefore, $x^n = y$. Problem 2 then shows that there is only one x > 0 satisfying $x^n = y$. This x will be denoted by $y^{\frac{1}{n}}$.

2. For y > 1, let z = y - 1. Then z > 0 so that for n > 1, the binomial expansion shows that

$$y^{n} - 1 = (1+z)^{n} - 1 = 1 + C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n} - 1 = C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n}$$

> $nz = n(y-1)$.

Therefore, replacing y by $y^{\frac{1}{n}}$ in the inequality above, we conclude that

$$y-1 > n(y^{\frac{1}{n}}-1) \qquad \forall n \in \mathbb{N} \setminus \{1\}$$

3. Suppose that $y^{\frac{1}{n}} \ge t > 1$. Then 2 implies that for $n \in \mathbb{N} \setminus \{1\}$,

$$y-1 > n(y^{\frac{1}{n}}-1) \ge n(t-1).$$

Therefore, $n \leq \frac{y-1}{t-1}$, a contradiction.

4. Let $k \in \mathbb{N}$ and $t = 1 + \frac{1}{k}$ in 3. Then for n > k(y - 1),

$$1 \leqslant y^{\frac{1}{n}} < 1 + \frac{1}{k}$$

Since $n \to \infty$ as $k \to \infty$, by the Sandwich Lemma we conclude that $\lim_{n \to \infty} y^{\frac{1}{n}} = 1$.