Advanced Calculus MA-2047 Take Home Midterm

National Central University, Nov. 7 2017 (Due: Nov. 14. 2017)

Problem 1. Let A be a rectangle in \mathbb{R}^n , and $f_k : A \to \mathbb{R}$ be a decreasing sequence of bounded functions. Show that if $\lim_{k \to \infty} f_k(x) = 0$ for all $x \in A$, then

$$\lim_{k \to \infty} \int_A f_k(x) \, dx = 0$$

Problem 2. Let $f : [2, \infty) \to \mathbb{R}$ be given by $f(x) = x^{-1}(\log x)^{-p}$. Show that f is integrable over $[2, \infty)$ if and only if p > 1.

Problem 3. Define the Beta function $B(x,y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt$ whenever the integral makes sense.

- 1. Show that B is well-defined for x, y > 0.
- 2. Show that B(x, y) = B(y, x).
- 3. Find B(2, 2) and B(4, 3).

Problem 4. Suppose that $f: (0, b] \to \mathbb{R}$ is continuous, positive, integrable over (0, b], and that f(x) increases monotonically to ∞ as x approaches 0 from the right. Show that $\lim_{x\to 0^+} xf(x) = 0$.

Problem 5. Prove that $\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = e^{-1}$ by considering Riemann sums for $\int_0^1 \log x \, dx$ based on the partition $\{\frac{1}{n}, \frac{2}{n}, \dots, 1\}$.

Problem 6. Let $A \subseteq \mathbb{R}^n$ be a Riemann measurable set, and $f : A \to \mathbb{R}$ be a Riemann measurable function. Show that if $f : A \to \mathbb{R}$ is integrable over A, so is αf for all $\alpha \in \mathbb{R}$.

Problem 7. Let $f : A \times B \to \mathbb{R}$ be non-negative, uniformly continuous and integrable over $A \times B$. Define $F(x) = \int_{B} f(x, y) \, dy$.

- 1. Show that if B is bounded, then $F: A \to \mathbb{R}$ is continuous. How about if B is not bounded?
- 2. Let f have the additional property that for each $\varepsilon > 0$, there exists K > 0 such that

$$\left|\int_{B \cap D(0,k)} (f \wedge k)(x,y) \, dy - \int_B f(x,y) \, dy\right| < \varepsilon \qquad \forall \, k \ge K \text{ and } x \in A$$

Show that F is continuous on A. In particular, show that if $f(x, y) \leq g(y)$ for all $(x, y) \in A \times B$, and g is integrable over B, then F is continuous.