
Exercise Problems for Advanced Calculus
MA2045, National Central University, Fall Semester 2014

§0.1 Sets and Functions

Problem 1. Let S and T be given sets, A Ď S, B Ď T , and f : S Ñ T . Show that

1. f(f´1(B)) Ď B, and f(f´1(B)) = B if B Ď f(S).

2. f´1(f(A)) Ě A, and f´1(f(A)) = A if f : S Ñ T is one-to-one.

Problem 2. If f : S Ñ T is a function from S into T , show that the following are equivalent;
that is, show that each one of the following implies the other two.

a. f is one-to-one.

b. For every y in T , the set f´1(tyu) contains at most one point.

c. f(D1 X D2) = f(D1) X f(D2) for all subsets D1 and D2 of S.

§1.1 Ordered Fields and the Number Systems

Problem 3. Let (F ,+, ¨,ď) be an ordered field, and a, b, c, d P F .

1. Show that if a ď b and c ď d, then a+ c ď b+ d.

2. Show that if a ď b and c ă d, then a+ c ă b+ d.

Problem 4. Complete the proof of 11, 12 and 13 Proposition 1.16; that is, show that in an
ordered field,

1. If x ď 0 and y ď 0, then x ¨ y ě 0.

2. If x ď 0 and y ě 0, then x ¨ y ď 0.

3. ´1 ă 0.

4. x2 ” x ¨ x ě 0 for all x P F .

Problem 5. Let (F ,+, ¨,ď) be an ordered field. Show that

1. |x| ě 0 for all x P F .

2. ´|x| ď x ď |x| for all x P F .

3. |x| = 0 if and only if x = 0.

4. |x ¨ y| = |x| ¨ |y| for all x, y P F .

5. |x+ y| ď |x| + |y| for all x, y P F .



6.
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x ´ y| for all x, y P F .

Problem 6. Let S be a non-empty subset of N and satisfy that

1. 1, 2 P S.

2. if m and m+ 1 P S, then m+ 2 P S.

Show that S = N.

Problem 7. 1. Let S be a non-empty set. Show that S is countable if and only if there
exists a surjection f : N Ñ S.

2. Let S be a non-empty set, and A be a non-empty subset of S. Show that there exists
a surjection g : S Ñ A.

3. Use 1 and 2 to show that any non-empty subset of a countable set is countable.

4. Let S be a non-empty set. Show that S is countable if and only if there exists a
injection f : S Ñ N.

§1.2 Completeness and the Real Number System

Problem 8. Let F be an ordered field with Archimedean property, and x, y P F . Show
that x ď y if and only if @ ε ą 0, x ă y + ε.

Problem 9. Let F be a complete ordered field, y P F and y ą 1.

1. Define y1/n properly. (Hint: see how we define ?
y in class).

2. Show that yn ´ 1 ą n(y ´ 1) for all n P N; thus y ´ 1 ą n(y1/n ´ 1).

3. Show that if t ą 1 and n ą (y ´ 1)/(t ´ 1), then y1/n ă t.

4. Show that lim
nÑ8

y1/n = 1 as n Ñ 8.

What can you conclude if y ă 1?

Problem 10. Let xn be a monotone increasing sequence in a complete ordered field such
that xn+1 ´ xn ď

1

n
. Must xn converge? How about if xn+1 ´ xn ď

1

2n
?

§1.3 Least Upper Bounds

Problem 11. Let A be a non-empty set of R which is bounded below. Define the set ´A

by ´A ”
␣

´ x P R
ˇ

ˇx P A
(

. Prove that

infA = ´ sup(´A) .



Problem 12. Let A,B be non-empty subset of R. Define A + B = tx + y | x P A, y P Bu.
Justify if the following statements are true or false by providing a proof for the true statement
and giving a counter-example for the false ones.

1. sup(A+B) = supA+ supB.

2. inf(A+B) = infA+ infB.

3. sup(A X B) ď mintsupA, supBu.

4. sup(A X B) = mintsupA, supBu.

5. sup(A Y B) ě maxtsupA, supBu.

6. sup(A Y B) = maxtsupA, supBu.

Problem 13. Let S Ď R be bounded below and non-empty. Show that

infS = sup
␣

x P R
ˇ

ˇx is a lower bound for S
(

.

Problem 14. Fix b ą 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if r, s in Q, then br+s = br ¨ bs.

(b) if r, s in Q, then br¨s = (br)s.

2. For x P R, let B(x) =
␣

bt P R
ˇ

ˇ t P Q, t ď x
(

. Show that br = supB(r) if r P Q.
Therefore, it makes sense to define bx = supB(x) for x P R. Show that the law of
exponents (for real exponents) are also valid.

3. Let y ą 0 be given. Using 4 of Problem 9 to show that if u, v P R such that bu ă y

and bv ą y, then bu+1/n ă y and bv´1/n ą y for sufficiently large n.

4. Let y ą 0 be given, and A be the set of all w such that bw ă y. Show that x = supA

satisfies bx = y.

5. Prove that if x1, x2 are two real numbers satisfying bx1 = bx2 , then x1 = x2.

The number x satisfying bx = y is called the logarithm of y to the base b, and is denoted by
logb y.

Problem 15. Prove or disprove the following statement: let A Ď R satisfy

sup
!

ÿ

bPB

|b|
ˇ

ˇ

ˇ
B is a non-empty finite subset of A

)

ă 8 .

Then
␣

x P A
ˇ

ˇx ‰ 0u is countable.



§1.4 Cauchy Sequences

Problem 16. Let F be an ordered field, and txnu8
n=1 be a sequence in F . Show that

txnu8
n=1 is Cauchy if and only if

@ ε ą 0, D y P F Q #
␣

n P N
ˇ

ˇxn R (y ´ ε, y + ε)
(

ă 8 .

Problem 17. Let tanu8
n=1 and txnu8

n=1 be two sequences in R, and define Sk =
k
ř

n=1

an (so

tSku8
k=1 is also a sequence). Suppose that |xn ´xn+1| ă an for all n P N. Show that txnu8

n=1

converges if tSku8
k=1 converges.

Problem 18. Suppose that txnu8
n=1 and tynu8

n=1 are two Cauchy sequence in R. Show that
the sequence

␣

|xn ´ yn|
(8

n=1
converges.

Problem 19. True or false. Provide a proof if the statement is true, and provide a counter-
example if the statement is wrong.

1. If a bounded sequence txnu8
n=1 in R satisfies xn+1 ´ ϵn ď xn for n P N, where

8
ř

n=1

ϵn

is an absolute convergent series; that is, the partial sum
k
ř

n=1

|ϵn| converges as k Ñ 8,

then txnu8
n=1 converges.

2. Let π : N Ñ N be one-to-one and onto (such map π is called a rearrangement), and
txnu8

n=1 is a convergent sequence. Then
␣

xπ(n)

(8

n=1
is also convergent.

§1.5 Cluster Points; lim inf and lim sup

Problem 20. Let txnu8
n=1 and tynu8

n=1 be sequences in R. Prove the following inequalities:

lim inf
nÑ8

xn + lim inf
nÑ8

yn ď lim inf
nÑ8

(xn + yn) ď lim inf
nÑ8

xn + lim sup
nÑ8

yn

ď lim sup
nÑ8

(xn + yn) ď lim sup
nÑ8

xn + lim sup
nÑ8

yn ;

(lim inf
nÑ8

|xn|)(lim inf
nÑ8

|yn|) ď lim inf
nÑ8

|xnyn| ď (lim inf
nÑ8

|xn|)(lim sup
nÑ8

|yn|)

ď lim sup
nÑ8

|xnyn| ď (lim sup
nÑ8

|xn|)(lim sup
nÑ8

|yn|) .

Give examples showing that the equalities are generally not true.

Problem 21. Prove that

lim inf
nÑ8

|xn+1|

|xn|
ď lim inf

nÑ8

n
a

|xn| ď lim sup
nÑ8

n
a

|xn| ď lim sup
nÑ8

|xn+1|

|xn|
.

Give examples to show that the equalities are not true in general. Is it true that lim
nÑ8

n
a

|xn|

exists implies that lim
nÑ8

|xn+1|

|xn|
also exists?



Problem 22. Given the following sets consisting of elements of some sequence of real
numbers. Find their sup and inf, and also the limsup and liminf of the sequence.

1.
␣

cosm
ˇ

ˇm = 0, 1, 2, ¨ ¨ ¨
(

.

2.
␣

(1 +
1

m
) sin mπ

6

ˇ

ˇm = 1, 2, ¨ ¨ ¨
(

.

Hint: For 1, first show that for all irrational α, the set

S =
␣

x P [0, 1]
ˇ

ˇx = kα (mod 1) for some k P N
(

is dense in [0, 1]; that is, for all y P [0, 1] and ε ą 0, there exists x P S X (y ´ ε, y+ ε). Then
choose α =

1

2π
to conclude that

T =
␣

x P [0, 2π]
ˇ

ˇx = k (mod 2π) for some k P N
(

is dense in [0, 2π]. To prove that S is dense in [0, 1], you might want to consider the following
set

Sk =
␣

x P [0, 1]
ˇ

ˇx = ℓα (mod 1) for some 1 ď ℓ ď k + 1
(

Note that there must be two points in Sk whose distance is less than 1

k
. What happened to

(the multiples of) the difference of these two points?

§1.6 Euclidean Space

Problem 23. Show that the p-norm on Euclidean space Rn given by

}x}p ”

$

’

&

’

%

( n
ÿ

i=1

|xi|
p
) 1

p if 1 ď p ă 8 ,

max
␣

|x1|, ¨ ¨ ¨ , |xn|
(

if p = 8 ,

x = (x1, ¨ ¨ ¨ , xn)

is indeed a norm.

§1.7 Norms, Inner Products, and Metrics

Problem 24. Let M be the collection of all n ˆ m matrices with real entries. Define a
function } ¨ } : M Ñ R by

}A} = sup
xPRm
x‰0

}Ax}2

}x}2
,

here we recall that } ¨ }2 is the 2-norm on Euclidean space given by

}x}2 =
( k
ÿ

i=1

x2
i

)1/2

if x = (x1, ¨ ¨ ¨ , xk) P Rk .

Show that

1. }A} = sup
xPRm

}x}2=1

}Ax}2 = inf
␣

M P R
ˇ

ˇ }Ax}2 ď M}x}2 @ x P Rm
(

.



2. }Ax}2 ď }A}}x}2 for all x P Rm.

3. } ¨ } defines a norm on M.

Problem 25. Let (V ,+, ¨, x¨, ¨y) be an inner product space, and define }v} = xv, vy1/2 for
all v P V . Show that

1. 2}x}2 + 2}y}2 = }x+ y}2 + }x ´ y}2 (parallelogram law).

2. }x+ y}}x ´ y} ď }x}2 + }y}2.

3. 4xx, yy = }x+ y}2 ´ }x ´ y}2 (polarization identity).

Can the p-norm } ¨ }p on Rn be induced from any inner product (on Rn) for p ‰ 2?

Problem 26. Let (M,d) be a metric space. Define ρ : M ˆ M Ñ R by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Show that (M,ρ) is also a metric space.

§2.1 Open Sets

Problem 27. Show that every open set in R is the union of at most countable collection
of disjoint open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.

Problem 28. Let (M,d) be a metric space, and A Ď M . An open cover of A is a collection
of open sets whose union contains A; that is, tUiuiPI is called an open cover of A if

1. Ui is open for all i P I.

2. A Ď
Ť

iPI
Ui.

Show that

1. if
␣

(ak, bk)
(8

k=1
is an open cover of [a, b] Ď R, then there exists N ą 0 such that

N
Ť

k=1

(ak, bk) Ě [a, b].

2. Using Exercise 27 to show that if tUku8
k=1 is an open cover of [a, b], then there exists

N ą 0 such that
N
Ť

k=1

Uk Ě [a, b].

§2.2 Interior of a set



Problem 29. Let A and B be subsets of a metric space (M,d). Show that

1. int(int(A)) = int(A).

2. int(A X B) = int(A) X int(B).

§2.3 Closed Sets, §2.4 Accumulation Points, Limit Points, and Isolated Points

Problem 30. Let (M,d) be a metric space, and A Ď M . Show (by definition) that sA is
closed .

Problem 31. Let (M,d) be a metric space, and A Ď M be a subset. Suppose txnu8
n=1 Ď A

is a convergent sequence with values in A. Show that the limit of txnu8
n=1 belongs to sA.

Problem 32. True or false. Provide a proof if the statement is true, and provide a counter-
example if the statement is wrong.

1. An interior point of a subset A of a metric space (M,d) is an accumulation point of
that set.

2. Let (M,d) be a metric space, and A Ď M . Then (A1)1 = A1.

Problem 33. Let (M,d) be a metric space, and A Ď M . Show that A1 = sAz(AzA1). In
other words, the derived set consists of all limit points that are not isolated points. Also
show that sAzA1 = AzA1.

§2.5 Closure of Sets

Problem 34. Let A and B be subsets of a metric space (M,d). Show that

1. cl(cl(A)) = cl(A).

2. cl(A Y B) = cl(A) Y cl(B).

§2.6 Boundary of Sets

Problem 35. Let (M,d) be a metric space, and A Ď M be a subset. Show that

BA =
(
A X cl(MzA)

)
Y
(
cl(A)zA

)
.

Problem 36. Let A and B be subsets of a metric space (M,d). Show that

1. BA = B(MzA).

2. B(BA) Ď B(A). Find examples of that B(BA) Ĺ BA.

3. B(A Y B) Ď BA Y BB Ď B(A Y B) Y A Y B. Find examples of that equalities do not
hold.



4. If cl(A) X cl(B) = H, then B(A Y B) = BA Y BB.

5. B(B(BA)) = B(BA).

Problem 37. Let (M,d) be a metric space, and A Ď M be a subset. Determine which of
the following statements are true.

1. intA = AzBA.

2. cl(A) = Mzint(MzA).

3. int(cl(A)) = int(A).

4. cl(int(A)) = A.

5. B(cl(A)) = BA.

6. If A is open, then BA Ď MzA.

7. If A is open, then A = cl(A)zBA. How about if A is not open?

Problem 38. Let (M,d) be a metric space. A set A Ď M is said to be perfect if A = A1

(that is, A has no isolated points). The Cantor set is constructed by the following procedure:
let E0 = [0, 1]. Remove the segment

(1
3
,
2

3

)
, and let E1 be the union of the intervals

[
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that

(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;

(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set.

2. Show that C is uncountable.

3. Find int(C).

Problem 39. Complete the following.

1. Show that if A is dense in S and if S is dense in T , then A is dense in T .



2. Show that if A is dense in S and B Ď S is open, then B Ď cl(A X B).

§2.7 Sequences, §2.8 Completeness

Problem 40. Let (M,d) be a metric space, and N Ď M . Show that if (N, d) is complete,
then N is closed.
Remark: In class we have shown that if (M,d) is a complete metric space, and N is a
closed subset of M , then (N, d) is complete. This problem gives a reverse statement.

Problem 41. (本題期中考不考，有興趣的同學自己練習) Let (M,d) be a metric space.
Call two Cauchy sequences tpnu8

n=1 and tqnu8
n=1 in M equivalent, denoted by tpnu8

n=1 „

tqnu8
n=1, if

lim
nÑ8

d(pn, qn) = 0 .

1. Prove that „ is an equivalence relation; that is, show that

(a) tpnu8
n=1 „ tpnu8

n=1.

(b) If tpnu8
n=1 „ tqnu8

n=1, then tqnu8
n=1 „ tpnu8

n=1.

(c) If tpnu8
n=1 „ tqnu8

n=1 and tqnu8
n=1 „ trnu8

n=1, then tpnu8
n=1 „ trnu8

n=1.

2. Let tpnu8
n=1 and tqnu8

n=1 be two Cauchy sequence, show that the sequence
␣

d(pn, qn)
(8

n=1

is a Cauchy sequence in R; thus is convergent.

3. Let M˚ be the set of all equivalence classes. If P,Q P M˚, we define

d˚(P,Q) = lim
nÑ8

d(pn, qn) ,

where tpnu8
n=1 P P and tqnu8

n=1 P Q. Show that the definition above is well-defined;
that is, show that f tp1

nu8
n=1 P P and tq1

nu8
n=1 P Q are another two Cauchy sequences,

then lim
nÑ8

d(pn, qn) = lim
nÑ8

d(p1
n, q

1
n).

4. Define φ : M Ñ M˚ as follows: for each x P M , txnu8
n=1, where xn ” x for all n P N,

is a Cauchy sequence in M . Then txnu8
n=1 P φ(x) for one particular φ(x) P M˚. In

other words, φ(x) is the equivalence class where txnu8
n=1 belongs to. Show that

d˚
(
φ(x), φ(y)

)
= d(x, y) @x, y P M.

5. Show that φ(M) is dense in M˚.

6. Show that (M˚, d˚) is a complete metric space. The metric space (M˚, d˚) is called
the completion of (M,d).

§2.9 Series of Real Numbers and Vectors

Problem 42. Prove the root test and the alternative series test in Theorem 2.88 of the
lecture note.



§3.1 Compactness

Problem 43. Let (M,d) be a metric space.

1. Show that the union of a finite number of compact subsets of M is compact.

2. Show that the intersection of an arbitrary collection of compact subsets of M is com-
pact.

Problem 44. A metric space (M,d) is said to be separable if there is a countable subset
A which is dense in M . Show that every compact set is separable.

Problem 45. Let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

1. Show that d is a metric on R2. In other words, (R2, d) is a metric space.

2. Find D(x, r) with r ă 1, r = 1 and r ą 1.

3. Show that the set tcu ˆ [a, b] Ď (R2, d) is closed and bounded.

4. Examine whether the set tcu ˆ [a, b] Ď (R2, d) is compact or not.

Problem 46. Let (M,d) be a complete metric space, and A Ď M be totally bounded.
Show that cl(A) is compact.

Problem 47. Let txku8
k=1 be a convergent sequence in a metric space, and xk Ñ x as

k Ñ 8. Show that the set A ” tx1, x2, ¨ ¨ ¨ , u Y txu is compact by

1. showing that A is sequentially compact; and

2. showing that every open cover of A has a finite subcover; and

3. showing that A is totally bounded and complete.

Problem 48. Let (M,d) be a metric space, K Ď M be compact, and tUαuαPI is an open
cover of K. Show that there exists r ą 0 such that if x P K, then D(x, r) Ď Uα for some
α P I.

Remark. The supremum of all such r ą 0 is called the Lebesgue number for the cover
tUαuαPI .

Problem 49. Prove Theorem 3.24 in the lecture note; that is, show that if (M,d) is a
metric space, and K Ď M , then K is compact if and only if every collection of closed sets
with the finite intersection property for K has non-empty intersection with K.



Problem 50. Let X be the collection of all sequences txku8
k=1 Ď R such that sup

kě1
|xk| ă 8.

In other words,
X =

␣

txku8
k=1

ˇ

ˇ xk P R for all k P N, sup
kě1

|xk| ă 8
(

.

Define } ¨ } : X Ñ R by
›

›txku8
k=1

›

› = sup
kě1

|xk| .

1. Show that } ¨ } is a norm on X. The normed space (X, } ¨ }) usually is denoted by ℓ8.

2. Show that (X, } ¨ }) is complete.

3. Let A,B,C,D be a subsets of X given by

A =
␣

txku8
k=1

ˇ

ˇ |xk| ď
1

k
for all k P N

(

,

B =
␣

txku8
k=1

ˇ

ˇxk Ñ 0 as k Ñ 8
(

,

C =
␣

txku8
k=1

ˇ

ˇ the sequence txku8
k=1 converges

(

,

D =
␣

txku8
k=1

ˇ

ˇ sup
kě1

|xk| = 1
(

.

Determine whether A,B,C,D are compact or not.

Problem 51. Let Y be the collection of all sequences tyku8
k=1 Ď R such that

8
ř

k=1

|yk|2 ă 8.
In other words,

Y =
␣

tyku8
k=1

ˇ

ˇ yk P R for all k P N,
8
ÿ

k=1

|yk|2 ă 8
(

.

Define } ¨ } : Y Ñ R by
›

›tyku8
k=1

›

› =
( 8
ÿ

k=1

|yk|2
) 1

2
.

1. Show that } ¨ } is a norm on Y . The normed space (Y, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ } is induced by an inner product.

3. Show that (Y, } ¨ }) is complete.

4. Let E =
␣

y P Y
ˇ

ˇ }y} ď 1
(

. Is E compact or not?

Problem 52. Let A,B be two non-empty subsets in Rn. Define

d(A,B) = inf
␣

}x ´ y}2
ˇ

ˇx P A, y P B
(

to be the distance between A and B. When A = txu is a point, we write d(A,B) as d(x,B).

(1) Prove that d(A,B) = inf
␣

d(x,B)
ˇ

ˇx P A
(

.

(2) Show that
ˇ

ˇd(x1, B) ´ d(x2, B)
ˇ

ˇ ď }x1 ´ x2}2 for all x1, x2 P Rn.



(3) Define Bε =
␣

x P Rn
ˇ

ˇ d(x,B) ă ε
(

be the collection of all points whose distance from
B is less than ε. Show that Bε is open and

Ş

εą0

Bε = cl(B).

(4) If A is compact, show that there exists x P A such that d(A,B) = d(x,B).

(5) If A is closed and B is compact, show that there exists x P A and y P B such that
d(A,B) = d(x, y).

(6) If A and B are both closed, does the conclusion of (5) hold?

§3.2 The Heine-Borel Theorem

Problem 53. Let M =
␣

(x, y) P R2 |x2 + y2 ď 1
(

with the standard metric } ¨ }2. Show
that A Ď M is compact if and only if A is closed.

§3.3 Nested Set Property

Problem 54. 1. Let txku8
k=1 Ď R be a sequence in (R, | ¨ |) that converges to x and let

Ak = txk, xk+1, ¨ ¨ ¨ u. Show that txu =
8
Ş

k=1

ĎAk. Is this true in any metric space?

2. Suppose that tKju
8
j=1 is a sequence of comapct non-empty sets satisfying the nested

set property; that is, Kj Ě Kj+1, and diameter(Kj) Ñ 0 as j Ñ 8, where

diameter(Kj) = sup
␣

d(x, y)
ˇ

ˇ x, y P Kj

(

.

Show that there is exactly one point in
8
Ş

j=1

Kj.

§3.4 Connectedness

Problem 55. Let (M,d) be a metric space, and A Ď M . Show that A is disconnected (not
connected) if and only if there exist non-empty closed set F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 .

Problem 56. Prove that if A is connected in a metric space (M,d) and A Ď B Ď sA, then
B is connected.

Problem 57. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is
connected and contain more than one point. Show that A Ď A1.

Problem 58. Show that the Cantor set C defined in Problem 38 is totally disconnected;
that is, if x, y P C, and x ‰ y, then x P U and y P V for some open sets U , V separate C.

Problem 59. Let Fk be a nest of connected compact sets (that is, Fk+1 Ď Fk and Fk is
connected for all k P N). Show that

8
Ş

k=1

Fk is connected. Give an example to show that

compactness is an essential condition and we cannot just assume that Fk is a nest of closed
connected sets.



§4.1 Continuity
Started from this section, for all n P N Rn always denotes the normed space (Rn, } ¨ }2).

Problem 60. Complete the following.

1. Find a function f : R2 Ñ R such that

lim
xÑ0

lim
yÑ0

f(x, y) and lim
yÑ0

lim
xÑ0

f(x, y)

exist but are not equal.

2. Find a function f : R2 Ñ R such that the two limits above exist and are equal but f

is not continuous.

3. Find a function f : R2 Ñ R that is continuous on every line through the origin but is
not continuous.

Problem 61. Complete the following.

1. Show that the projection map f :
R2 Ñ R

(x, y) ÞÑ x
is continuous.

2. Show that if U Ď R is open, then A =
␣

(x, y) P R2
ˇ

ˇx P U
(

is open.

3. Give an example of a continuous function f : R Ñ R and an open set U Ď R such
that f(U) is not open.

Problem 62. Show that f : A Ñ Rm, where A Ď Rn, is continuous if and only if for every
B Ď A,

f(cl(B) X A) Ď cl(f(B)) .

§4.2 Images of Compact and Connected Sets under Continuous Mappings

Problem 63. Complete the following.

1. Show that if f : Rn Ñ Rm is continuous, and B Ď Rn is bounded, then f(B) is
bounded.

2. If f : R Ñ R is continuous and K Ď R is compact, is f´1(K) necessarily compact?

3. If f : R Ñ R is continuous and C Ď R is connected, is f´1(C) necessarily connected?

Problem 64. Consider a compact set K Ď Rn and let f : K Ñ Rm be continuous and
one-to-one. Show that the inverse function f´1 : f(K) Ñ K is continuous. How about if K
is not compact but connected?

§4.6 Uniform Continuity

Problem 65. Check if the following functions on uniformly continuous.



1. f : (0,8) Ñ R defined by f(x) = sin log x.

2. f : (0, 1) Ñ R defined by f(x) = x sin 1

x
.

3. f : (0,8) Ñ R defined by f(x) =
?
x.

Problem 66. A function f : A ˆ B Ñ Rm, where A Ď R and B Ď Rp, is said to be
separately continuous if for each x0 P A, the map g(y) = f(x0, y) is continuous and for
y0 P B, h(x) = f(x, y0) is continuous. f is said to be continuous on A uniformly with
respect to B if

@ ε ą 0, D δ ą 0 Q }f(x, y) ´ f(x0, y)}2 ă ε whenever }x ´ x0}2 ă δ and y P B .

Show that if f is separately continuous and is continuous on A uniformly with respect to
B, then f is continuous on A ˆ B.

Problem 67. Complete the following.

1. Suppose that f : R Ñ R is a continuous periodic function; that is, D p ą 0 such
that f(x + p) = f(x) for all x P R (and f is continuous). Show that f is uniformly
continuous on R.

2. Suppose that a, b P R and f : (a, b) Ñ R is continuous. Show that f is uniformly
continuous on (a, b) if and only if the two limits

lim
xÑa+

f(x) and lim
xÑb´

f(x)

exist. How about if (a, b) is not a finite interval?

3. Suppose that f : [a, b] Ñ R is Hölder continuous with exponent α; that is, there
exist M ą 0 and α P (0, 1] such that

|f(x1) ´ f(x2)| ď M |x1 ´ x2|α @x1, x2 P [a, b] .

Show that f is uniformly continuous on [a, b]. Show that f : [0,8) Ñ R defined by
f(x) =

?
x is Hölder continuous with exponent 1

2
.

Problem 68. Let (M,d) be a metric space, A Ď M , and f, g : A Ñ R be uniformly
continuous on A. Show that if f and g are bounded, then fg is uniformly continuous on A.
Does the conclusion still hold if f or g is not bounded?

§4.7 Differentiation of Functions of One Variable

Problem 69. Suppose that f, g : R Ñ R are differentiable, and f ě 0. Find d

dx
f(x)g(x).



Problem 70. Suppose α and β are real numbers, β ą 0 and f : [´1, 1] Ñ R is defined by

f(x) =

"

xα sin(x´β) if x ‰ 0 ,

0 if x = 0 .

Prove the following statements.

1. f is continuous if and only if α ą 0.

2. f 1(0) exists if and only if α ą 1.

3. f 1 is bounded if and only if α ě 1 + β.

4. f 1 is continuous if and only if α ą 1 + β.

5. f 2(0) exists if and only if α ą 2 + β.

6. f 2 is bounded if and only if α ě 2 + 2β.

7. f 2 is continuous if and only if α ą 2 + 2β.

Problem 71. Prove the following two variations of L’Hôspital’s rule.

1. Let f, g : R Ñ R be differentiable functions. Suppose that lim
xÑ8

f(x) = lim
xÑ8

g(x) = 0,

g1(x) ‰ 0 for all x " 1, and the limit lim
xÑ8

f 1(x)

g1(x)
exists. Show that the limit lim

xÑ8

f(x)

g(x)
also exists, and

lim
xÑ8

f(x)

g(x)
= lim

xÑ8

f 1(x)

g1(x)
.

2. Let f, g : (a, b) Ñ R be differentiable functions. Suppose that for some x0 P ta, bu,

lim
xÑx0

f(x) = lim
xÑx0

g(x) = 8, g1(x) ‰ 0, and the limit lim
xÑx0

f 1(x)

g1(x)
exists. Show that the

limit lim
xÑx0

f(x)

g(x)
also exists, and

lim
xÑx0

f(x)

g(x)
= lim

xÑx0

f 1(x)

g1(x)
.

3. Find an example that the limit lim
xÑx0

f(x)

g(x)
exists but the limit lim

xÑx0

f 1(x)

g1(x)
does not

exist.

Problem 72. Let f : (a, b) Ñ R be differentiable everywhere on (a, b) except perhaps at
x = x0 P (a, b), and lim

xÑx0

f 1(x) exists. Show that f is differentiable at x0, and lim
xÑx0

f 1(x) =

f 1(x0).

§4.8 Integration of Functions of One Variable

Problem 73. Let f, g : [a, b] Ñ R, g continuous, f ě 0 and f Riemann integrable. Show
that



1. fg is Riemann integrable.

2. D x0 P (a, b) such that
ż b

a

f(x)g(x)dx = g(x0)

ż b

a

f(x)dx .

Problem 74. Let f : [a, b] Ñ R be differentiable and assume that f 1 is Riemann integrable.

Prove that
ż b

a
f 1(x)dx = f(b) ´ f(a).

Hint: Use the Mean Value Theorem.

Problem 75. Suppose that f : [a, b] Ñ R is Riemann integrable, m ď f(x) ď M for all
x P [a, b], and φ : [m,M ] Ñ R is continuous. Show that φ˝f is Riemann integrable on [a, b].


