Exercises for Chapter 7

15. Consider the map $\mathcal{L}^{-1}: G L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow G L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), A \mapsto A^{-1}$, taking a matrix to its inverse. show that the derivative of this map is given by

$$
D \mathcal{L}^{-1}(A) \cdot B=-A^{-1} \circ B \circ A^{-1} .
$$

Proof. The goal is to show that

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|(A+h)^{-1}-A^{-1}-\left(-A^{-1} h A^{-1}\right)\right\|}{\|h\|}=0
$$

where $\|h\|=\sup _{\|x\|_{\mathbb{R}^{n}=1}}\|h x\|_{\mathbb{R}^{n}}$. We first note that

$$
(A+h)^{-1}-A^{-1}=A^{-1} A(A+h)^{-1}-A^{-1}(A+h)(A+h)^{-1}=-A^{-1} h(A+h)^{-1}
$$

thus

$$
(A+h)^{-1}-A^{-1}-\left(-A^{-1} h A^{-1}\right)=A^{-1} h\left[A^{-1}-(A+h)^{-1}\right]=A^{-1} h A^{-1} h(A+h)^{-1} .
$$

Therefore, by that $\|A B\| \leq\|A\|\|B\|$ for all $A, B \in G L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, we find that

$$
\frac{\left\|(A+h)^{-1}-A^{-1}-\left(-A^{-1} h A^{-1}\right)\right\|}{\|h\|} \leq\left\|A^{-1}\right\|^{2}\left\|(A+h)^{-1}\right\|\|h\| \rightarrow 0
$$

as $\|h\| \rightarrow 0$.

