Qualifying Exam.: Ordinary Differential Equations

Department of Mathematics, National Central University, August, 2015.
1.(15\%) Let $u(t)$ and $f(t)$ be nonnegative continuous functions in a real interval $I=$ $[a, b]$. Suppose $k(t, s)$ and $k_{t}(t, s)$ are continuous functions such that $k(t, s) \geq 0$ and $k_{t}(t, s) \leq 0$ for $t, s \in I$. Suppose

$$
u(t) \leq c+\int_{a}^{t} f(s) u(s) d s+\int_{a}^{t} f(s)\left(\int_{a}^{s} k(s, \tau) u(\tau) d \tau\right) d s, a \leq \tau \leq s \leq t \leq b
$$

where c is a nonnegative constant. Prove that

$$
u(t) \leq c\left[1+\int_{a}^{t} f(s) \exp \left\{\int_{a}^{s}(f(\tau)+k(\tau, \tau)) d \tau\right\} d s\right], t \in I
$$

2. (20%) For the nonlinear system:

$$
\left\{\begin{array}{l}
x^{\prime}=x-y+x^{2}-x y \\
y^{\prime}=-y+x^{2}
\end{array}\right.
$$

(1) determine the critical points for the equation;
(2) determine the linearized system for each critical point and discuss whether it can be used to approximate the behaviour of the non-linear system;
(3) what is the type and stability of each critical point?
3. (15%) Show that the nonlinear system

$$
\left\{\begin{aligned}
x^{\prime} & =3 x-y-4 x^{3}-7 x y^{2} \\
y^{\prime} & =x+3 y-4 x^{2} y-7 y^{3}
\end{aligned}\right.
$$

has at least one periodic orbit in the annulus $\sqrt{3 / 7}<x^{2}+y^{2}<\sqrt{3} / 2$.
4. $(20 \%)(1)(10 \%)$ Consider the equation:

$$
(2-t) y^{\prime \prime \prime}+(2 t-3) y^{\prime \prime}-t y^{\prime}+y=0, \quad t<2 .
$$

Find the general solution of the equation by using the particular solution e^{t}.
(2) (10\%) Solve the following inhomogeneous initial value problem explicitly:

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \mathbf{X}+\binom{t}{1}, \quad \mathbf{X}(0)=\binom{1}{0} .
$$

5. (15\%) Consider the system:

$$
\left\{\begin{array}{l}
x^{\prime}=x\left(1-\frac{x}{2}\right)-3 x y, \\
y^{\prime}=2 y\left(1-\frac{y}{3}\right)-4 x y,
\end{array} \quad x(0), y(0)>0 .\right.
$$

Prove that there is no periodic solution in the first quadrant.
6. (15\%) Consider the system:

$$
\left\{\begin{array}{l}
x^{\prime}=x-y-x^{3}-x y^{2}, \\
y^{\prime}=x+y-x^{2} y-y^{3} \\
z^{\prime}=2 z
\end{array}\right.
$$

Compute the Poincaré map and the Floquet's (characteristic) exponent for the periodic solution $\gamma(t):=(\cos t, \sin t, 0)$.

