國立中央大學数學系105學年度博士班入學考試題 〔分析〕

（1）Assume f is Lebesgue integrable on \mathbb{R} ．Prove that $g(y) \equiv \int_{-\infty}^{\infty} f(x) e^{-\left(x^{2} y^{2}\right)} d x$ is a bounded，con－ tinuous function on \mathbb{R} ．（ 10% ）
（2）Let $\left\{f_{n}\right\}$ and f be real－valued measurable functions on a measurable set E ．
（a）Give precise definitions for the following types of convergences：
$f_{n} \rightarrow f$ a．e．，$f_{n} \rightarrow f$ almost uniformly，$f_{n} \rightarrow f$ in measure．（6\％）
（b）For each pair of convergences，say，type I and type II，indicate whether type I implies type II． （6\％）
（3）（a）Let $1 \leq p<q<\infty$ ．Determine whether one of the two spaces $L^{p}([0,1])$ and $L^{q}([0,1])$ is contained in the other，prove your answer．（10\％）
（b）Do the same for ℓ^{1} and ℓ^{2} ．（10\％）
（4）Determine whether the set $C([0,1]) \equiv\{f:[0,1] \rightarrow \mathbb{R}: f$ is continuous on $[0,1]\}$ with the metric

$$
\rho(f, g) \equiv \int_{0}^{1}|f(x)-g(x)| d x
$$

is a complete metric space．Give your reasons．（10\％）
（5）Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{p}([0,1]), 1 \leq p<\infty$ ，which converge almost everywhere to a function f in $L^{p}([0,1])$ ．Show that $\left\{f_{n}\right\}$ converges to f in $L^{p}([0,1])$ if and only if $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ ． （15\％）
（6）Let $F:\left(\ell^{2},\|\cdot\|_{2}\right) \rightarrow \mathbb{R}$ be a bounded linear functional on ℓ^{2} ．Find the unique element $\left(a_{1}, a_{2}, a_{3}, \cdots\right)$ in ℓ^{2} such that

$$
F\left(\left(x_{1}, x_{2}, \cdots\right)\right)=\sum_{n=1}^{\infty} a_{n} x_{n} \quad \text { for any }\left(x_{1}, x_{2}, \cdots\right) \in \ell^{2},
$$

and prove that $\left\|\left(a_{1}, a_{2}, a_{3}, \cdots\right)\right\|_{2}=\|F\| . \quad(10 \%)$
（7）Let $C=C[0,1]$ be the normed space of all continuous real－valued functions on $[0,1]$ with the norm $\|f\|_{\infty}=\sup \{|f(x)|: 0 \leq x \leq 1\}$ ．Let $U=\left\{f \in C:\|f\|_{\infty} \leq 1\right\} ;$
$V=\{f \in C: f(x)>0$ for all $x \in[0,1]\} ;$
$W=\left\{f \in C: 1<\int_{0}^{1} f(x) d x<2\right\} ;$
$X=\left\{f_{0}, f_{1}, f_{2}, f_{3}, \cdots\right\}$ ，where $f_{n} \in C$ for all n and $f_{n} \rightarrow f_{0}$ uniformly on $[0,1] ;$
$Y=$ the closure of $A \equiv\left\{f \in C: f\right.$ is differentiable on $(0,1), f(0)=1$ and $\left.\left|f^{\prime}\right| \leq 2\right\}$ in C ；
$Z=$ the closure of $B \equiv\{p \in C: p$ is a polynomial $\}$ in C ．
（a）Which sets are open in C ？（Don＇t need to prove them．）（5\％）
（b）Which sets are complete in C ？（Don＇t need to prove them．）（5\％）
（c）Which sets are compact in C ？If the set is compact，give your proof．（13\％）

