國立中央大學數學系105學年度博士班入學考試題〔分析〕

- (1) Assume f is Lebesgue integrable on \mathbb{R} . Prove that $g(y) \equiv \int_{-\infty}^{\infty} f(x)e^{-(x^2y^2)}dx$ is a bounded, continuous function on \mathbb{R} . (10%)
- (2) Let $\{f_n\}$ and f be real-valued measurable functions on a measurable set E.
 - (a) Give precise definitions for the following types of convergences: $f_n \to f$ a.e., $f_n \to f$ almost uniformly, $f_n \to f$ in measure. (6%)
 - (b) For each pair of convergences, say, type I and type II, indicate whether type I implies type II. (6%)
- (3) (a) Let $1 \le p < q < \infty$. Determine whether one of the two spaces $L^p([0,1])$ and $L^q([0,1])$ is contained in the other, prove your answer. (10%)
 - (b) Do the same for ℓ^1 and ℓ^2 . (10%)
- (4) Determine whether the set $C([0,1]) \equiv \{f : [0,1] \to \mathbb{R} : f \text{ is continuous on } [0,1]\}$ with the metric

$$\rho(f,g) \equiv \int_0^1 |f(x) - g(x)| dx$$

is a complete metric space. Give your reasons. (10%)

- (5) Let $\{f_n\}$ be a sequence of functions in $L^p([0,1])$, $1 \le p < \infty$, which converge almost everywhere to a function f in $L^p([0,1])$. Show that $\{f_n\}$ converges to f in $L^p([0,1])$ if and only if $||f_n||_p \to ||f||_p$. (15%)
- (6) Let $F : (\ell^2, \|\cdot\|_2) \to \mathbb{R}$ be a bounded linear functional on ℓ^2 . Find the unique element (a_1, a_2, a_3, \cdots) in ℓ^2 such that

$$F((x_1, x_2, \cdots)) = \sum_{n=1}^{\infty} a_n x_n$$
 for any $(x_1, x_2, \cdots) \in \ell^2$,

and prove that $||(a_1, a_2, a_3, \cdots)||_2 = ||F||.$ (10%)

(7) Let C = C[0, 1] be the normed space of all continuous real-valued functions on [0, 1] with the norm $||f||_{\infty} = \sup\{|f(x)|: 0 \le x \le 1\}$. Let

$$U = \{ f \in C : \|f\|_{\infty} \le 1 \};$$

- $V = \{ f \in C : f(x) > 0 \text{ for all } x \in [0, 1] \};$
- $W = \{ f \in C : 1 < \int_0^1 f(x) dx < 2 \};$
- $X = \{f_0, f_1, f_2, f_3, \dots\}$, where $f_n \in C$ for all n and $f_n \to f_0$ uniformly on [0, 1];
- Y = the closure of $A \equiv \{f \in C : f \text{ is differentiable on } (0,1), f(0) = 1 \text{ and } |f'| \le 2\}$ in C;

Z = the closure of $B \equiv \{p \in C : p \text{ is a polynomial}\}$ in C.

- (a) Which sets are open in C? (Don't need to prove them.) (5%)
- (b) Which sets are complete in C? (Don't need to prove them.) (5%)
- (c) Which sets are compact in C? If the set is compact, give your proof. (13%)