
Problem 22. Let I : C ([0, 1];R) Ñ R be defined by

I(f) =

ż 1

0

f(x)2dx .

Show that I is differentiable at every “point” f P C ([0, 1];R).
Hint: Figure out what (DI)(f) is by computing I(f + h) ´ I(f), where h P C ([0, 1];R) is
a “small” continuous function.
Remark. A map from a space of functions such as C ([0, 1];R) to a scalar field such as R
or C is usually called a functional. The derivative of a functional I is usually denoted by
δI instead of DI.

Proof. For each f P C ([0, 1];R), define Lf (h) = 2
ż 1

0
f(x)h(x)dx.

claim: Lf P B(C ([0, 1];R),R).
Proof of claim: It is trivial that Lf P L (C ([0, 1];R),R). Let h P C ([0, 1];R). Then

ˇ

ˇLf (h)
ˇ

ˇ ď 2

ż 1

0

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇh(x)
ˇ

ˇdx ď 2}f}8}h}8 ;

thus
}Lf}B(C ([0,1];R),R) = sup

}h}8=1

ˇ

ˇLf (h)
ˇ

ˇ ď 2}f}8 ă 8 .

Claim: lim
}h}8Ñ0

ˇ

ˇI(f + h) ´ I(f) ´ Lf (h)
ˇ

ˇ

}h}8

= 0.

Proof of claim: Since

ˇ

ˇI(f + h) ´ I(f) ´ Lf (h)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż 1

0

[(
f(x) + h(x)

)2
´ f(x)2 ´ 2f(x)h(x)

]
dx

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

ż 1

0

h(x)2dx
ˇ

ˇ

ˇ
ď }h}28 ,

by the sandwich lemma we conclude that

0 ď lim
}h}8Ñ0

ˇ

ˇI(f + h) ´ I(f) ´ Lf (h)
ˇ

ˇ

}h}8

ď lim
}h}8Ñ0

}h}28

}h}8

= 0 .

Therefore, I is differentiable at f , and (DI)(f)(h) = Lf (h). ˝

Problem 30. Let f : R Ñ R be differentiable. Assume that for all x P R, 0 ď f 1(x) ď f(x).
Show that g(x) = e´xf(x) is decreasing. If f vanishes at some point, conclude that f is
zero.

Proof. To see that g is decreasing, we compute the derivative of g and find that

g1(x) = ´e´xf(x) + e´xf 1(x) = e´x(f 1(x) ´ f(x)) ď 0 ;

thus g is a decreasing function. Now suppose that f(c) = 0 for some c P R.



1. Since g is decreasing, g(x) ď g(c) = 0 for all x ě c; thus f(x) = exg(x) = 0 for all
x ě c.

2. Since f 1(x) ě 0, f is an increasing function, thus f(x) ď f(c) = 0 for all x ď c. Since
f is assumed to be non-negative, we must have f(x) = 0 for all x ď c.

Combining 1 and 2, we conclude that f(x) = 0 for all x P R. ˝

Problem 32. 1. If f : A Ď Rn Ñ Rm and g : B Ď Rm Ñ Rℓ are twice differentiable and
f(A) Ď B, then for x0 P A, u, v P Rn, show that

D2(g ˝ f)(x0)(u, v)

= (D2g)(f(x0))
(
(Df)(x0)(u), Df(x0)(v)

)
+ (Dg)(f(x0))

(
(D2f)(x0)(u, v)

)
.

2. If p : Rn Ñ Rm is a linear map plus some constant; that is, p(x) = Lx + c for some
L P B(Rn,Rm), and f : A Ď Rm Ñ Rs is k-times differentiable, prove that

Dk(f ˝ p)(x0)(u
(1), ¨ ¨ ¨ , u(k)) = (Dkf)

(
p(x0)

)(
(Dp)(x0)(u

(1)), ¨ ¨ ¨ , (Dp)(x0)(u
(k)
)
.

Proof. 1. First of all, we show that g ˝ f is twice differentiable. Since g and f are both
differentiable, the chain rule implies that g ˝ f is differentiable and

D(g ˝ f)(x) = (Dg)(f(x))(Df)(x) =
((

(Dg) ˝ f
)
(Df)

)
(x) .

Since g and f are twice differentiable, Dg and Df are differentiable. By the chain rule
again, (Dg) ˝ f is differentiable; thus the product rule implies that

(
(Dg) ˝ f

)
(Df) is

differentiable. Therefore, g ˝ f is twice differentiable.

Now by Proposition 6.69 in 共筆, we have

D2(g ˝ f)(x0)(u, v) =
n

ÿ

i,j=1

B2(g ˝ f)

BxjBxi
(x0)uivj .

By the chain rule,

B2(g ˝ f)

BxjBxi
(x0) =

B

Bxj

ˇ

ˇ

ˇ

x=x0

B(g ˝ f)

Bxi
(x) =

B

Bxj

ˇ

ˇ

ˇ

x=x0

m
ÿ

k=1

[ Bg

Byk
(f(x))

Bfk
Bxi

(x)
]

=
m
ÿ

k=1

B

Bxj

ˇ

ˇ

ˇ

x=x0

[ Bg

Byk
(f(x))

Bfk
Bxi

(x)
]

=
m
ÿ

k=1

m
ÿ

ℓ=1

B2g

ByℓByk
(f(x0))

Bfℓ
Bxj

(x0)
Bfk
Bxi

(x0) +
m
ÿ

k=1

Bg

Byk
(f(x0))

B2fk
BxjBxi

(x0) ;



thus

D2(g ˝ f)(x0)(u, v)

=
n

ÿ

i,j=1

[ m
ÿ

k,ℓ=1

B2g

ByℓByk
(f(x0))

Bfℓ
Bxj

(x0)
Bfk
Bxi

(x0) +
m
ÿ

k=1

Bg

Byk
(f(x0))

B2fk
BxjBxi

(x0)
]
uivj

=
m
ÿ

k,ℓ=1

B2g

ByℓByk
(f(x0))

( n
ÿ

j=1

Bfℓ
Bxj

(x0)vj

)( n
ÿ

i=1

Bfk
Bxi

(x0)ui

)
+

m
ÿ

k=1

Bg

Byk
(f(x0))

( n
ÿ

i,j=1

B2fk
BxjBxi

(x0)uivj

)
.

Letting
(
(Df)(x0)(w)

)
r

denote the r-th component of (Df)(x0)(w), we obtain that

D2(g ˝ f)(x0)(u, v)

=
m
ÿ

k,ℓ=1

B2g

ByℓByk
(f(x0))

(
(Df)(x0)(v)

)
ℓ

(
(Df)(x0)(u)

)
k

+
m
ÿ

k=1

Bg

Byk
(f(x0))

(
D2f)(x0)(u, v)

)
k

= (D2g)(f(x0))
(
(Df)(x0)u, (Df)(x0)v

)
+ (Dg)(f(x0))

(
(D2f)(x0)(u, v)

)
.

2. The validity of the desired equality for the case k = 1 is the chain rule. Suppose that
the desired holds for k = K. Then for k = K+1, by Corollary 6.70 in共筆 we obtain
that

DK+1(f ˝ p)(x0)(u
(1), ¨ ¨ ¨ , u(K+1)) =

n
ÿ

j=1

u
(K+1)
j

B

Bxj

ˇ

ˇ

ˇ

x=x0

(DK(f ˝ p))(x)(u(1), ¨ ¨ ¨ , u(K))

=
n

ÿ

j=1

u
(K+1)
j

B

Bxj

ˇ

ˇ

ˇ

x=x0

(Dkf)
(
p(x)

)(
(Dp)(x)(u(1)), ¨ ¨ ¨ , (Dp)(x)(u(k)

)
.

Noting that (Dp)(x)(ur) = Lu(r) (which is independent of x), by Proposition 6.69 in
共筆 we find that

(DKf)
(
p(x)

)(
(Dp)(x)(u(1)), ¨ ¨ ¨ , (Dp)(x)(u(K)

)
=

n
ÿ

j1,¨¨¨ ,jK=1

BKf

ByjK ¨ ¨ ¨ Byj1
(p(x))(Lu(1))j1 ¨ ¨ ¨ (Lu(K))jK ,



where (Lur)s denotes the s-th component of the vector Lu(r). As a consequence,
n

ÿ

j=1

u
(K+1)
j

B

Bxj

ˇ

ˇ

ˇ

x=x0

(DKf)
(
p(x)

)(
(Dp)(x)(u(1)), ¨ ¨ ¨ , (Dp)(x)(u(K)

)
=

n
ÿ

j=1

u
(K+1)
j

B

Bxj

ˇ

ˇ

ˇ

x=x0

n
ÿ

j1,¨¨¨ ,jK=1

BKf

ByjK ¨ ¨ ¨ Byj1
(p(x))(Lu(1))j1 ¨ ¨ ¨ (Lu(K))jK

=
n

ÿ

j=1

u
(K+1)
j

n
ÿ

j1,¨¨¨ ,jK ,jK+1=1

BK+1f

ByjK+1
¨ ¨ ¨ Byj1

(p(x0))
BpK+1

Bxj
(x0)(Lu

(1))j1 ¨ ¨ ¨ (Lu(K))jK

=
n

ÿ

j1,¨¨¨ ,jK ,jK+1=1

BK+1f

ByjK+1
¨ ¨ ¨ Byj1

(p(x0))
( n

ÿ

j=1

u
(K+1)
j

BpK+1

Bxj
(x0)

)
(Lu(1))j1 ¨ ¨ ¨ (Lu(K))jK

=
n

ÿ

j1,¨¨¨ ,jK ,jK+1=1

BK+1f

ByjK+1
¨ ¨ ¨ Byj1

(p(x0))
(
(Dp)(x0)u

(K+1)
)
jK+1

(Lu(1))j1 ¨ ¨ ¨ (Lu(K))jK

=
n

ÿ

j1,¨¨¨ ,jK ,jK+1=1

BK+1f

ByjK+1
¨ ¨ ¨ Byj1

(p(x0))(Lu
(1))j1 ¨ ¨ ¨ (Lu(K))jK (Lu

(K+1))jK+1

= (DK+1f)
(
p(x0)

)(
(Dp)(x0)(u

(1)), ¨ ¨ ¨ , (Dp)(x0)(u
(K+1)

)
which shows the validity of the desired equality for the case k = K + 1. ˝

Problem 34. Let f : Rn Ñ Rm be differentiable, and Df is a constant map in B(Rn,Rm);
that is, (Df)(x1)(u) = (Df)(x2)(u) for all x1, x2 P Rn and u P Rn. Show that f is a linear
term plus a constant and that the linear part of f is the constant value of Df .

Proof. Since Df is a constant map, Df is continuous; thus f P C 1. Therefore, the Taylor
Theorem implies that

f(x) = f(0) + (Df)(c)(x ´ 0)

for some c on the line segment joining x and 0. Let L = (Df)(x). Then

f(x) = f(0) + L(x ´ 0) = Lx+ f(0) . ˝

Problem 38. Prove Corollary 7.5; that is, show that if U Ď Rn is open, f : U Ñ Rn is
of class C 1, and (Df)(x) is invertible for all x P U , then f(W) is open for every open set
W Ď U .

Proof. Let W Ď U be an open set. For each x P W , (Df)(x) is invertible; thus the inverse
function theorem implies that there exists δx ą 0 such that

(a) D(x, δx) Ď W ; (b) f
(
D(x, δx)

)
is open; (c) f : D(x, δ) Ñ f

(
D(x, δx)

)
is one-to-one

and onto.

Since W =
Ť

xPU D(x, δx),
f(W) =

ď

xPU
f
(
D(x, δx)

)
is the union of infinitely many open sets; thus f(W) is open. ˝



Problem 40. Let f : R2 Ñ R be of class C 1, and for some (a, b) P R2, f(a, b) = 0 and
fy(a, b) ‰ 0. Show that there exist open neighborhoods U of a and V of b such that every
y P V corresponds to a unique x P U such that f(x, y) = 0. In other words, there exists a
function y = y(x) such that y(a) = b and f(x, y(x)) = 0 for all x P U .

Proof. Let z = (x, y) and w = (u, v), where x, y, u, v P R. Define w = F (z), where F is
given by F (x, y) =

(
x, f(x, y)

)
. Then F : D Ñ R2, and

[
(DF )(z)

]
=

[
1 0

fx(x, y) fy(x, y)

]
.

We note that the Jacobian of F at (a, b) is fy(a, b) ‰ 0, so the inverse function theorem
implies that there exists open neighborhoods O Ď R2 of (a, b) and W Ď R2 of

(
a, f(a, b)

)
=

(a, 0) such that

(a) F : O Ñ W is one-to-one and onto;

(b) the inverse function F´1 : W Ñ O is of class C r;

(c) (DF´1)
(
x, f(x, y)

)
=

(
(DF )(x, y)

)´1.

W.L.O.G. we can assume that O = U ˆ V , where U Ď R and V Ď R are open, and a P U ,
b P V .

Write F´1(u, v) =
(
φ(u, v), ψ(u, v)

)
, where φ : W Ñ U and ψ : W Ñ V . Then

(u, v) = F
(
φ(u, v), ψ(u, v)

)
=

(
φ(u, v), f(u, ψ(u, v))

)
which implies that φ(u, v) = u and v = f(u, ψ(u, v)). Let y(x) = ψ(x, 0). Then

(
u, f(u)

)
P

U ˆ V is the unique point satisfying f
(
u, y(u)

)
= 0 if u P U . Therefore, f : U Ñ V , and

f
(
x, y(x)

)
= 0 @x P U .

Since G(a, b) = (a, 0) = G
(
a, f(a)

)
, (a, b),

(
a, f(a)

)
P O, and G : O Ñ W is one-to-one, we

must have b = f(a). ˝


