Problem 22. Let $I: \mathscr{C}([0,1] ; \mathbb{R}) \rightarrow \mathbb{R}$ be defined by

$$
I(f)=\int_{0}^{1} f(x)^{2} d x
$$

Show that I is differentiable at every "point" $f \in \mathscr{C}([0,1] ; \mathbb{R})$.
Hint: Figure out what $(D I)(f)$ is by computing $I(f+h)-I(f)$, where $h \in \mathscr{C}([0,1] ; \mathbb{R})$ is a "small" continuous function.
Remark. A map from a space of functions such as $\mathscr{C}([0,1] ; \mathbb{R})$ to a scalar field such as \mathbb{R} or \mathbb{C} is usually called a functional. The derivative of a functional I is usually denoted by δI instead of $D I$.
Proof. For each $f \in \mathscr{C}([0,1] ; \mathbb{R})$, define $L_{f}(h)=2 \int_{0}^{1} f(x) h(x) d x$.
claim: $L_{f} \in \mathscr{B}(\mathscr{C}([0,1] ; \mathbb{R}), \mathbb{R})$.
Proof of claim: It is trivial that $L_{f} \in \mathscr{L}(\mathscr{C}([0,1] ; \mathbb{R}), \mathbb{R})$. Let $h \in \mathscr{C}([0,1] ; \mathbb{R})$. Then

$$
\left|L_{f}(h)\right| \leqslant 2 \int_{0}^{1}\left|f(x)\|h(x) \mid d x \leqslant 2\| f\left\|_{\infty}\right\| h \|_{\infty} ;\right.
$$

thus

$$
\left\|L_{f}\right\|_{\mathscr{B}(\mathscr{C}([0,1] ; \mathbb{R}), \mathbb{R})}=\sup _{\|h\|_{\infty}=1}\left|L_{f}(h)\right| \leqslant 2\|f\|_{\infty}<\infty .
$$

Claim: $\lim _{\|h\|_{\infty} \rightarrow 0} \frac{\left|I(f+h)-I(f)-L_{f}(h)\right|}{\|h\|_{\infty}}=0$.
Proof of claim: Since

$$
\begin{aligned}
\left|I(f+h)-I(f)-L_{f}(h)\right| & =\left|\int_{0}^{1}\left[(f(x)+h(x))^{2}-f(x)^{2}-2 f(x) h(x)\right] d x\right| \\
& =\left|\int_{0}^{1} h(x)^{2} d x\right| \leqslant\|h\|_{\infty}^{2},
\end{aligned}
$$

by the sandwich lemma we conclude that

$$
0 \leqslant \lim _{\|h\|_{\infty} \rightarrow 0} \frac{\left|I(f+h)-I(f)-L_{f}(h)\right|}{\|h\|_{\infty}} \leqslant \lim _{\|h\|_{\infty} \rightarrow 0} \frac{\|h\|_{\infty}^{2}}{\|h\|_{\infty}}=0 .
$$

Therefore, I is differentiable at f, and $(D I)(f)(h)=L_{f}(h)$.
Problem 30. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Assume that for all $x \in \mathbb{R}, 0 \leqslant f^{\prime}(x) \leqslant f(x)$. Show that $g(x)=e^{-x} f(x)$ is decreasing. If f vanishes at some point, conclude that f is zero.

Proof. To see that g is decreasing, we compute the derivative of g and find that

$$
g^{\prime}(x)=-e^{-x} f(x)+e^{-x} f^{\prime}(x)=e^{-x}\left(f^{\prime}(x)-f(x)\right) \leqslant 0 ;
$$

thus g is a decreasing function. Now suppose that $f(c)=0$ for some $c \in \mathbb{R}$.

1. Since g is decreasing, $g(x) \leqslant g(c)=0$ for all $x \geqslant c$; thus $f(x)=e^{x} g(x)=0$ for all $x \geqslant c$.
2. Since $f^{\prime}(x) \geqslant 0, f$ is an increasing function, thus $f(x) \leqslant f(c)=0$ for all $x \leqslant c$. Since f is assumed to be non-negative, we must have $f(x)=0$ for all $x \leqslant c$.

Combining 1 and 2 , we conclude that $f(x)=0$ for all $x \in \mathbb{R}$.
Problem 32. 1. If $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: B \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$ are twice differentiable and $f(A) \subseteq B$, then for $x_{0} \in A, u, v \in \mathbb{R}^{n}$, show that

$$
\begin{aligned}
& D^{2}(g \circ f)\left(x_{0}\right)(u, v) \\
& \quad=\left(D^{2} g\right)\left(f\left(x_{0}\right)\right)\left((D f)\left(x_{0}\right)(u), D f\left(x_{0}\right)(v)\right)+(D g)\left(f\left(x_{0}\right)\right)\left(\left(D^{2} f\right)\left(x_{0}\right)(u, v)\right) .
\end{aligned}
$$

2. If $p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map plus some constant; that is, $p(x)=L x+c$ for some $L \in \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, and $f: A \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ is k-times differentiable, prove that

$$
D^{k}(f \circ p)\left(x_{0}\right)\left(u^{(1)}, \cdots, u^{(k)}\right)=\left(D^{k} f\right)\left(p\left(x_{0}\right)\right)\left((D p)\left(x_{0}\right)\left(u^{(1)}\right), \cdots,(D p)\left(x_{0}\right)\left(u^{(k)}\right) .\right.
$$

Proof. 1. First of all, we show that $g \circ f$ is twice differentiable. Since g and f are both differentiable, the chain rule implies that $g \circ f$ is differentiable and

$$
D(g \circ f)(x)=(D g)(f(x))(D f)(x)=(((D g) \circ f)(D f))(x)
$$

Since g and f are twice differentiable, $D g$ and $D f$ are differentiable. By the chain rule again, $(D g) \circ f$ is differentiable; thus the product rule implies that $((D g) \circ f)(D f)$ is differentiable. Therefore, $g \circ f$ is twice differentiable.

Now by Proposition 6.69 in 共筆, we have

$$
D^{2}(g \circ f)\left(x_{0}\right)(u, v)=\sum_{i, j=1}^{n} \frac{\partial^{2}(g \circ f)}{\partial x_{j} \partial x_{i}}\left(x_{0}\right) u_{i} v_{j} .
$$

By the chain rule,

$$
\begin{aligned}
\frac{\partial^{2}(g \circ f)}{\partial x_{j} \partial x_{i}}\left(x_{0}\right) & =\left.\frac{\partial}{\partial x_{j}}\right|_{x=x_{0}} \frac{\partial(g \circ f)}{\partial x_{i}}(x)=\left.\frac{\partial}{\partial x_{j}}\right|_{x=x_{0}} \sum_{k=1}^{m}\left[\frac{\partial g}{\partial y_{k}}(f(x)) \frac{\partial f_{k}}{\partial x_{i}}(x)\right] \\
& =\left.\sum_{k=1}^{m} \frac{\partial}{\partial x_{j}}\right|_{x=x_{0}}\left[\frac{\partial g}{\partial y_{k}}(f(x)) \frac{\partial f_{k}}{\partial x_{i}}(x)\right] \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{m} \frac{\partial^{2} g}{\partial y_{\ell} \partial y_{k}}\left(f\left(x_{0}\right)\right) \frac{\partial f_{\ell}}{\partial x_{j}}\left(x_{0}\right) \frac{\partial f_{k}}{\partial x_{i}}\left(x_{0}\right)+\sum_{k=1}^{m} \frac{\partial g}{\partial y_{k}}\left(f\left(x_{0}\right)\right) \frac{\partial^{2} f_{k}}{\partial x_{j} \partial x_{i}}\left(x_{0}\right) ;
\end{aligned}
$$

thus

$$
\begin{aligned}
& D^{2}(g \circ f)\left(x_{0}\right)(u, v) \\
&= \sum_{i, j=1}^{n}\left[\sum_{k, \ell=1}^{m} \frac{\partial^{2} g}{\partial y_{\ell} \partial y_{k}}\left(f\left(x_{0}\right)\right) \frac{\partial f_{\ell}}{\partial x_{j}}\left(x_{0}\right) \frac{\partial f_{k}}{\partial x_{i}}\left(x_{0}\right)+\sum_{k=1}^{m} \frac{\partial g}{\partial y_{k}}\left(f\left(x_{0}\right)\right) \frac{\partial^{2} f_{k}}{\partial x_{j} \partial x_{i}}\left(x_{0}\right)\right] u_{i} v_{j} \\
&= \sum_{k, \ell=1}^{m} \frac{\partial^{2} g}{\partial y_{\ell} \partial y_{k}}\left(f\left(x_{0}\right)\right)\left(\sum_{j=1}^{n} \frac{\partial f_{\ell}}{\partial x_{j}}\left(x_{0}\right) v_{j}\right)\left(\sum_{i=1}^{n} \frac{\partial f_{k}}{\partial x_{i}}\left(x_{0}\right) u_{i}\right) \\
&+\sum_{k=1}^{m} \frac{\partial g}{\partial y_{k}}\left(f\left(x_{0}\right)\right)\left(\sum_{i, j=1}^{n} \frac{\partial^{2} f_{k}}{\partial x_{j} \partial x_{i}}\left(x_{0}\right) u_{i} v_{j}\right) .
\end{aligned}
$$

Letting $\left((D f)\left(x_{0}\right)(w)\right)_{r}$ denote the r－th component of $(D f)\left(x_{0}\right)(w)$ ，we obtain that

$$
\begin{aligned}
D^{2}(g \circ & f)\left(x_{0}\right)(u, v) \\
= & \sum_{k, \ell=1}^{m} \frac{\partial^{2} g}{\partial y_{\ell} \partial y_{k}}\left(f\left(x_{0}\right)\right)\left((D f)\left(x_{0}\right)(v)\right)_{\ell}\left((D f)\left(x_{0}\right)(u)\right)_{k} \\
& \left.+\sum_{k=1}^{m} \frac{\partial g}{\partial y_{k}}\left(f\left(x_{0}\right)\right)\left(D^{2} f\right)\left(x_{0}\right)(u, v)\right)_{k} \\
= & \left(D^{2} g\right)\left(f\left(x_{0}\right)\right)\left((D f)\left(x_{0}\right) u,(D f)\left(x_{0}\right) v\right)+(D g)\left(f\left(x_{0}\right)\right)\left(\left(D^{2} f\right)\left(x_{0}\right)(u, v)\right) .
\end{aligned}
$$

2．The validity of the desired equality for the case $k=1$ is the chain rule．Suppose that the desired holds for $k=K$ ．Then for $k=K+1$ ，by Corollary 6.70 in 共筆 we obtain that

$$
\begin{aligned}
& D^{K+1}(f \circ p)\left(x_{0}\right)\left(u^{(1)}, \cdots, u^{(K+1)}\right)=\left.\sum_{j=1}^{n} u_{j}^{(K+1)} \frac{\partial}{\partial x_{j}}\right|_{x=x_{0}}\left(D^{K}(f \circ p)\right)(x)\left(u^{(1)}, \cdots, u^{(K)}\right) \\
& \quad=\left.\sum_{j=1}^{n} u_{j}^{(K+1)} \frac{\partial}{\partial x_{j}}\right|_{x=x_{0}}\left(D^{k} f\right)(p(x))\left((D p)(x)\left(u^{(1)}\right), \cdots,(D p)(x)\left(u^{(k)}\right)\right.
\end{aligned}
$$

Noting that $(D p)(x)\left(u^{r}\right)=L u^{(r)}$（which is independent of x ），by Proposition 6.69 in共筆 we find that

$$
\begin{aligned}
&\left(D^{K} f\right)(p(x))\left((D p)(x)\left(u^{(1)}\right), \cdots,(D p)(x)\left(u^{(K)}\right)\right. \\
& \quad=\sum_{j_{1}, \cdots, j_{K}=1}^{n} \frac{\partial^{K} f}{\partial y_{j_{K}} \cdots \partial y_{j_{1}}}(p(x))\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}}
\end{aligned}
$$

where $\left(L u^{r}\right)_{s}$ denotes the s-th component of the vector $L u^{(r)}$. As a consequence,

$$
\begin{aligned}
& \left.\sum_{j=1}^{n} u_{j}^{(K+1)} \frac{\partial}{\partial x_{j}}\right|_{x=x_{0}}\left(D^{K} f\right)(p(x))\left((D p)(x)\left(u^{(1)}\right), \cdots,(D p)(x)\left(u^{(K)}\right)\right. \\
& =\left.\sum_{j=1}^{n} u_{j}^{(K+1)} \frac{\partial}{\partial x_{j}}\right|_{x=x_{0}} \sum_{j_{1}, \cdots, j_{K}=1}^{n} \frac{\partial^{K} f}{\partial y_{j_{K}} \cdots \partial y_{j_{1}}}(p(x))\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}} \\
& =\sum_{j=1}^{n} u_{j}^{(K+1)} \sum_{j_{1}, \cdots, j_{K}, j_{K+1}=1}^{n} \frac{\partial^{K+1} f}{\partial y_{j_{K+1}} \cdots \partial y_{j_{1}}}\left(p\left(x_{0}\right)\right) \frac{\partial p_{K+1}}{\partial x_{j}}\left(x_{0}\right)\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}} \\
& =\sum_{j_{1}, \cdots, j_{K}, j_{K+1}=1}^{n} \frac{\partial^{K+1} f}{\partial y_{j_{K+1}} \cdots \partial y_{j_{1}}}\left(p\left(x_{0}\right)\right)\left(\sum_{j=1}^{n} u_{j}^{(K+1)} \frac{\partial p_{K+1}}{\partial x_{j}}\left(x_{0}\right)\right)\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}} \\
& =\sum_{j_{1}, \cdots, j_{K}, j_{K+1}=1}^{n} \frac{\partial^{K+1} f}{\partial y_{j_{K+1}} \cdots \partial y_{j_{1}}}\left(p\left(x_{0}\right)\right)\left((D p)\left(x_{0}\right) u^{(K+1)}\right)_{j_{K+1}}\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}} \\
& =\sum_{j_{1}, \cdots, j_{K}, j_{K+1}=1}^{n} \frac{\partial^{K+1} f}{\partial y_{j_{K+1}} \cdots \partial y_{j_{1}}}\left(p\left(x_{0}\right)\right)\left(L u^{(1)}\right)_{j_{1}} \cdots\left(L u^{(K)}\right)_{j_{K}}\left(L u^{(K+1)}\right)_{j_{K+1}} \\
& =\left(D^{K+1} f\right)\left(p\left(x_{0}\right)\right)\left((D p)\left(x_{0}\right)\left(u^{(1)}\right), \cdots,(D p)\left(x_{0}\right)\left(u^{(K+1)}\right)\right.
\end{aligned}
$$

which shows the validity of the desired equality for the case $k=K+1$.
Problem 34. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable, and $D f$ is a constant map in $\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$; that is, $(D f)\left(x_{1}\right)(u)=(D f)\left(x_{2}\right)(u)$ for all $x_{1}, x_{2} \in \mathbb{R}^{n}$ and $u \in \mathbb{R}^{n}$. Show that f is a linear term plus a constant and that the linear part of f is the constant value of $D f$.

Proof. Since $D f$ is a constant map, $D f$ is continuous; thus $f \in \mathscr{C}{ }^{1}$. Therefore, the Taylor Theorem implies that

$$
f(x)=f(0)+(D f)(c)(x-0)
$$

for some c on the line segment joining x and 0 . Let $L=(D f)(x)$. Then

$$
f(x)=f(0)+L(x-0)=L x+f(0)
$$

Problem 38. Prove Corollary 7.5; that is, show that if $\mathcal{U} \subseteq \mathbb{R}^{n}$ is open, $f: \mathcal{U} \rightarrow \mathbb{R}^{n}$ is of class \mathscr{C}^{1}, and $(D f)(x)$ is invertible for all $x \in \mathcal{U}$, then $f(\mathcal{W})$ is open for every open set $\mathcal{W} \subseteq \mathcal{U}$.

Proof. Let $\mathcal{W} \subseteq \mathcal{U}$ be an open set. For each $x \in \mathcal{W},(D f)(x)$ is invertible; thus the inverse function theorem implies that there exists $\delta_{x}>0$ such that
(a) $D\left(x, \delta_{x}\right) \subseteq \mathcal{W}$; (b) $f\left(D\left(x, \delta_{x}\right)\right)$ is open; (c) $f: D(x, \delta) \rightarrow f\left(D\left(x, \delta_{x}\right)\right)$ is one-to-one and onto.

Since $\mathcal{W}=\bigcup_{x \in \mathcal{U}} D\left(x, \delta_{x}\right)$,

$$
f(\mathcal{W})=\bigcup_{x \in \mathcal{U}} f\left(D\left(x, \delta_{x}\right)\right)
$$

is the union of infinitely many open sets; thus $f(\mathcal{W})$ is open.

Problem 40. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class \mathscr{C}^{1}, and for some $(a, b) \in \mathbb{R}^{2}, f(a, b)=0$ and $f_{y}(a, b) \neq 0$. Show that there exist open neighborhoods \mathcal{U} of a and \mathcal{V} of b such that every $y \in \mathcal{V}$ corresponds to a unique $x \in \mathcal{U}$ such that $f(x, y)=0$. In other words, there exists a function $y=y(x)$ such that $y(a)=b$ and $f(x, y(x))=0$ for all $x \in \mathcal{U}$.

Proof. Let $z=(x, y)$ and $w=(u, v)$, where $x, y, u, v \in \mathbb{R}$. Define $w=F(z)$, where F is given by $F(x, y)=(x, f(x, y))$. Then $F: \mathcal{D} \rightarrow \mathbb{R}^{2}$, and

$$
[(D F)(z)]=\left[\begin{array}{cc}
1 & 0 \\
f_{x}(x, y) & f_{y}(x, y)
\end{array}\right]
$$

We note that the Jacobian of F at (a, b) is $f_{y}(a, b) \neq 0$, so the inverse function theorem implies that there exists open neighborhoods $\mathcal{O} \subseteq \mathbb{R}^{2}$ of (a, b) and $\mathcal{W} \subseteq \mathbb{R}^{2}$ of $(a, f(a, b))=$ $(a, 0)$ such that
(a) $F: \mathcal{O} \rightarrow \mathcal{W}$ is one-to-one and onto;
(b) the inverse function $F^{-1}: \mathcal{W} \rightarrow \mathcal{O}$ is of class \mathscr{C}^{r};
(c) $\left(D F^{-1}\right)(x, f(x, y))=((D F)(x, y))^{-1}$.
W.L.O.G. we can assume that $\mathcal{O}=\mathcal{U} \times \mathcal{V}$, where $\mathcal{U} \subseteq \mathbb{R}$ and $\mathcal{V} \subseteq \mathbb{R}$ are open, and $a \in \mathcal{U}$, $b \in \mathcal{V}$.

Write $F^{-1}(u, v)=(\varphi(u, v), \psi(u, v))$, where $\varphi: \mathcal{W} \rightarrow \mathcal{U}$ and $\psi: \mathcal{W} \rightarrow \mathcal{V}$. Then

$$
(u, v)=F(\varphi(u, v), \psi(u, v))=(\varphi(u, v), f(u, \psi(u, v)))
$$

which implies that $\varphi(u, v)=u$ and $v=f(u, \psi(u, v))$. Let $y(x)=\psi(x, 0)$. Then $(u, f(u)) \in$ $\mathcal{U} \times \mathcal{V}$ is the unique point satisfying $f(u, y(u))=0$ if $u \in \mathcal{U}$. Therefore, $f: \mathcal{U} \rightarrow \mathcal{V}$, and

$$
f(x, y(x))=0 \quad \forall x \in \mathcal{U} .
$$

Since $G(a, b)=(a, 0)=G(a, f(a)),(a, b),(a, f(a)) \in \mathcal{O}$, and $G: \mathcal{O} \rightarrow \mathcal{W}$ is one-to-one, we must have $b=f(a)$.

