COMPLEX VARIABLES I

PRACTICE MIDTERM 2

NAME:_____ ID NO.:_____ CLASS: _____

Problem 1: (15 points) Show that $f(z) = \frac{\log(z+5i)}{z^2+3z+2}$ is analytic everywhere except at the points -1, -2, and on the ray $\{(x, y) | x \leq 0, y = -5\}$.

Problem 2:

- (1) (10 points) Show that $\tanh^{-1} z = \frac{1}{2} \log \left(\frac{1+z}{1-z} \right)$.
- (2) (5 points) Compute $\tanh^{-1}(1+2i)$.

Problem 3:(10 points) Determine whether $\log(i^2)$ and $2\log i$ are equal or not when the branch $\log z = \ln r + i\theta(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4})$ is used. Show your work.

Problem 3: (15 points) Consider $I = \int_C \frac{1}{z^3(z+4)} dz$.

- (1) Evaluate the integral I when the contour C is the positively oriented circle |z| = 2.
- (2) Evaluate the integral I when the contour C is the positively oriented circle |z+2| = 3.

Problem 4: (10 points) Consider the function $f(z) = (z - 2)^4$ and the closed rectangular region R with vertices at 0, -1, -1 + 4i, 4i. Find the points on or inside R at which |f(z)| attains its maximum and minimum values.

Problem 5: (10 points) Let f be an entire function with the property that $|f(z)| \ge 1$ for all z. Show that f is constant.

Problem 6: (15 points) Compute $\int_C \frac{1}{z^2-z} dz$, where C is a line segment from 2 to 2+i.

Problem 7: (10 points) Let C_R denote the upper half of the circle |z| = R(R > 2), taken in the counterclockwise direction. Use ML bounds to find an upper bound on the modulus of the following contour integral $\int_{C_R} \frac{2z^2-1}{z^4+5z^2+4} dz$.