NAME:_____ ID NO.:_____

___ CLASS: _____

Problem 1: (10 points)

(1) Compute $(\sqrt{3} + i)^6$.

(2) Find the principal argument $\operatorname{Arg} z$ when $z = \frac{-2}{1+\sqrt{3}i}$.

Problem 2: (15 points) Determine and sketch the set of points determined by |z-2| > |z-3|.

Problem 3: (15 points) Find the cube roots of -i in exponential form and also in rectangular coordinates, exhibit them as vertices of a certain regular polygon, and identify the principal root.

Problem 4: (15 points) Let $f(z) = \left(\frac{z}{\overline{z}}\right)^2$ for $z \neq 0$. Determine whether or not the limit of f(z) exists as $z \to 0$. If so, find the limit. If not, explain the reason carefully.

Problem 5: (15 points) Determine where the following function

$$f(z) = x^3 + 3xy^2 + i(y^3 + 3x^2y)$$

is differentiable and where it is analytic. Find the values of f'(z) at the points where it is differentiable. Explain the reason carefully.

Problem 6: (15 points) Show that $u(x, y) = xy^3 - x^3y$ is a harmonic function and find a conjugate harmonic function v(x, y).

Problem 7: (15 points)

- (1) Let z = x + iy and w = u + iv. Find the images of x = 1 and y = 2 on the complex w-plane under the mapping $w = f(z) = z^2$. You must write your answers as functions of u and v only.
- (2) Sketch the image of the rectangle $\{(x, y) : 0 < x < 1, 0 < y < 2\}$ on the complex w-plane under the mapping $w = f(z) = z^2$.