COMPLEX VARIABLES [ PrRACTICE FINAL EXAM

NAME: ID No.: CLASS:

Problem 1: (10 points) Find the Maclaurin series expansion of the function

f(z) = Log(1 + 2)
by differentiating repeatedly and specify the region in which the expansion is valid.
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Problem 2: (15 points) Find three different Laurent series in powers of z for the
function
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Problem 3: (15 points)

(1) Find the first three terms in the Laurent series in powers of z for the function
CSC 2

and specify the regions in which the expansion is valid.
(2) Evaluate the integral
/ csc zdz,
c

where C'is the circle |z| = 1, described in the positive sense.
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Solution.
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Problem 4: (15 points) Find and classify (according to the terms pole, removable,
essential) the singular points of

z
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For each pole, give its order and compute the residue there.

Solution. f(z) has a simple pole at z = 0 and a pole of order 2 at z = 2n7 for n =
1,42, .-
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Problem 5: (15 points) Use the theorem involving only a single residue, to evaluate

the integral
2
/ (32 +2) "
c2(z—1)(2z+5)

where C' is the circle |z| = 3, described in the positive sense.
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Problem 6: (15 points) Compute
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Problem 7: (15 points) Use residues to derive the integration formula

/°° x? o
o (@2 +9) (22 +4)2 200



