
Complex Variables I Midterm 2 Solutions

Name: Id No.: Class:

Problem 1: (10 points) Determine all of the values of z at which the following function

is analytic f(z) = Log(z+3)
z2+i

.

Solution. First, the function 1
z2+i

is analytic everywhere except at
√
2
2
−i
√
2
2

and −
√
2
2

+i
√
2
2

.

Second, the function Log(z + 3) is analytic except at those points where z + 3 = 0, or

where z + 3 lies on the negative real axis, i.e. {(x; y)|x ≤ −3, y = 0}. Hence the function

f(z) = Log(z+3)
z2+i

is analytic everywhere except at the points
√
2
2
− i

√
2
2
,−
√
2
2

+ i
√
2
2

and on

the ray {(x, y)|x ≤ −3, y = −0}. �

Problem 2: (10 points) Solve the equation cos z =
√

2 for z.

Mathod 1. By definition

cos z =
eiz + e−iz

2
=
√

2.

By solving the equation

e2iz − 2
√

2eiz + 1 = 0,

we get

eiz =
√

2± 1.

This implies that

iz = log(
√

2± 1) = ln(
√

2± 1) + i2nπ, n ∈ Z.

Hence the solution is

−i ln(
√

2± 1) + 2nπ, n ∈ Z or ± i ln(
√

2 + 1) + 2nπ, n ∈ Z.

�

Method 2.

cos z = cosx coshy−i sinx sinh y =
√

2.

This implies

cosx coshy =
√

2 and sinx sinh y = 0.

Case 1: sinx = 0.

sinx = 0 and cosx > 0⇒ x = 2nπ, n ∈ Z.(
since cosx coshy =

√
2 and cosh y =

ey + e−y

2
> 0⇒ cosx > 0.

)
⇒ cosx = 1 and cosh y =

ey − e−y

2
=
√

2⇒ ey =
√

2± 1⇒ y = ln(
√

2± 1).

1
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Case 2: sinh y = 0.

sinh y =
ey − e−y

2
= 0⇒ y = 0⇒ cosh y =

ey + e−y

2
= 1

⇒ cosx =
√

2 > 1→←

Therefore, the solution is

z = x+ iy = 2nπ + i ln(
√

2± 1), n ∈ Z.

�

Problem 3:

(1) (15 points) Show that log(i1/2) = 1
2

log i.

(2) (5 points) Find the principal value of [ e
2
(−1−

√
3i)]3πi.

Solution. (1) Homework 4 (Exercise 5 of section 33).

(2)

P.V.[
e

2
(−1−

√
3i)]3πi = exp[3πiLog

e

2
(−1−

√
3i)] = exp[3πiLog

e

2
(2ei(−

2
3
π))]

= exp[3πi(ln e− i2
3
π)] = exp(2π2 + i3π) = −e2π2

.

�

Problem 4: (15 points) Consider I =
∫
C

cos z
(z+π)5

dz.

(1) Evaluate the integral I when the contour C is the square whose edges lie along

the lines x = ±4 and y = ±4 with positive orientation.

Solution. Since −π is in the interior of the contour C, by the extension of Cauchy

integral formula, we have

I =

∫
C

cos z

(z + π)5
dz =

2πi

4!

(
d4

dz4
cos z

) ∣∣∣
z=−π

= −πi
12
.

�

(2) Evaluate the integral I when the contour C is the square whose edges lie along

the lines x = ±1 and y = ±1 with positive orientation.
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Solution. Since there is no singularity, by Cauchy-Goursat theorem, we have

I =

∫
C

cos z

(z + π)5
dz = 0.

�

Problem 5: (10 points) Find the maximum and minimum moduli of z2− z in the disc:

|z| ≤ 1.

Solution. Since z2 − z is analytic throughout the disc and not constant in the interior of

the disc. By the maximum moduli principle, the maximum moduli of z2 − z occur at

the boundary |z| = 1. Note that |z2 − z| = |z(z − 1)| = |z||z − 1|. Hence it is enough

to consider the maximum of |z − 1|. It is not difficult to see that the maximum value 2

occurs at z = −1. Obviously the minimum value of |z2− z| = |z||z− 1| is 0 which occurs

at z = 0, 1. Note that z2 − z = 0 at z = 0 which is in the interior of the disc. Hence the

minimum moduli principle in Exercise 2 of Section 59, where the condition f(z) 6= 0 is

needed, does not apply here. �

Problem 6: (15 points) Let C be the positively oriented circle {|z| = 2}. Evaluate the

contour integral

I =

∫
C

cos(πz)

z(z − 1)
dz.

Solution. The singularities z = 0, 1 are in the interior of C. Let C1 be the positively

oriented circle {|z| = 1/3} and C2 be the positively oriented circle {|z − 1| = 1/3}. Then

C1 and C2 are in the interior of C and disjoint. The function cos(πz)
z(z−1) is analytic in the

region that is inside of C and outside of C1, C2. By the Cauchy-Goursat theorem for

multiply connected domain.∫
C

cos(πz)

z(z − 1)
dz −

∫
C1

cos(πz)

z(z − 1)
dz −

∫
C2

cos(πz)

z(z − 1)
dz = 0.

The function cos z
z−1 is analytic in the interior of C1 and the function cos z

z
is analytic in the

interior of C2. By Cauchy integral formula, we have∫
C1

cos(πz)

z(z − 1)
dz =

∫
C1

cos(πz)/(z − 1)

z
dz = 2πi

cos 0

0− 1
= −2πi

and ∫
C2

cos(πz)

z(z − 1)
dz =

∫
C2

cos(πz)/z

z − 1
dz = 2πi

cosπ

1
= −2πi.

Therefore ∫
C

cos(πz)

z(z − 1)
dz =

∫
C1

cos(πz)

z(z − 1)
dz +

∫
C2

cos(πz)

z(z − 1)
dz = −4πi.
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Problem 7: (10 points) Evaluate the contour integral

I =

∫
C

z−1+idz

where the branch is defined by z−1+i = e(−1+i) log z (|z| > 0, 0 < arg z < 2π) and C is the

positively oriented unit circle |z| = 1.

Solution. Let z(θ) = eiθ, 0 < θ < 2π, then

z′(θ) = ieiθ

and

z(θ)−1+i = e(−1+i)(ln 1+iθ) = e−iθe−θ.

⇒ I =

∫
C

z−1+idz =

∫ 2π

0

e−iθe−θieiθdθ = i

∫ 2π

0

e−θdθ = −i(e−2π − 1).

�

Problem 8: (10 points) Use ML inequality to show that∣∣∣ ∫
C

(z2 + 3)eiz Log z

z2 − 2
dz
∣∣∣ ≤ 7(3 ln 2 + π)π

9
,

where C is the contour {z|z = 2eiθ, 0 ≤ θ ≤ π
3
}.

Proof. By

|z2 − 2| ≥ ||z|2 − 2| = 2, |z2 + 3| ≤ |z|2 + 3 = 7

and

|eiz| = |eix−y| = e−y ≤ 1, |Log z| = | ln 2 + iθ| ≤ ln 2 +
π

3
.

We obtain ∣∣∣(z2 + 3)eiz Log z

z2 − 2

∣∣∣ ≤ M =
7(3 ln 2 + π)

6
.

We also have

L =

∫
C

dz =
2π

3
.

Therefore∣∣∣ ∫
C

(z2 + 3)eiz Log z

z2 − 2
dz
∣∣∣ ≤ ∫

C

∣∣∣(z2 + 3)eiz Log z

z2 − 2

∣∣∣dz ≤ ML =≤ 7(3 ln 2 + π)π

9
.

�


