NAME:_____ ID NO.:_____ CLASS: _____

Problem 1:

(1) (5 points) Compute $(\sqrt{3} - i)^{-10}$.

(2) (5 points) Find the principal argument $\operatorname{Arg} z$ when $z = \frac{2i}{-\sqrt{2}+\sqrt{2}i}$.

Problem 2: Determine and sketch the set of points determined by

- (1) (8 points) |z i| > |z + 1|.
- (2) (7 points) $\{z : | \operatorname{Arg} z \pi/2 | < \pi/2 \}$.

Problem 3: Find all of the roots of $(-32)^{1/5}$

- (1) (5 points) in exponential form.
- (2) (5 points) in rectangular coordinates.
- (3) (5 points) exhibit them as vertices of a certain regular polygon.

Problem 4: (15 points) Let $f(z) = \frac{\text{Im}(z^2)}{|z|^2}$ for $z \neq 0$. Determine whether or not the limit of f(z) exists as $z \to 0$. If so, find the limit. If not, explain the reason carefully.

Problem 5: Let $f(z) = e^{iz^2} = e^{-2xy}e^{i(x^2-y^2)}$.

- (1) (2 points) Write f(z) in rectangular coordinates.
- (2) (10 points) Show that f(z) is an entire function.
- (3) (3 points) Find f'(z) as a function of z.

Problem 6: Let $u(x, y) = e^{-x} \cos y + xy$.

- (1) (5 points) Show that u(x, y) is a harmonic function
- (2) (10 points) Find v(x, y) such that f(z) = u(x, y) + iv(x, y) is analytic and f(0) = 1.
- (3) Bonus problem (5 points) Find f(z) as a function of z.

Problem 7: Let z = x + iy and w = u + iv. Find the images of the mapping $w = z^2$ in each case.

- (1) (5 points) The region $\{(x, y) : x \leq 2\}$. You must write your answer as a function of u and v only.
- (2) (5 points) The region $\{(x, y) : x \ge y\}$.
- (3) (5 points) Sketch the image of the triangle with vertices 0, 2, and 2 + 2i on the complex *w*-plane.