小波理論與應用 MA5110

Homework Assignment 3

Due Nov. 19. 2024

Problem 1. In class we prove the following

Theorem 6.13 (Inversion Formula). Let ψ be a wavelet and $f \in L^2(\mathbb{R})$, then f can be reconstructed by the formula

$$f(t) = \frac{1}{C_{\psi}} \int_{\mathbb{R}} \int_{\mathbb{R}} W_{\psi}[f](a,b)\psi_{a,b}(t) \frac{dbda}{a^2},$$
(6.1)

where the equality holds almost everywhere.

and we mention that the integral on the right-hand side of the equal sign should be understood as

$$\lim_{\varepsilon \to 0^+, A, B \to \infty} \int_{\varepsilon \leqslant |a| \leqslant A} \int_{|b| \leqslant B} W_{\psi}[f](a, b) \psi_{a, b}(t) \, \frac{dbda}{a^2}$$

Prove the (6.1) holds for $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ with $\hat{f} \in L^1(\mathbb{R})$, where the integrals is in the usual Lebesgue sense, by completing the following:

- 1. Show that for a fixed $a \neq 0$, $W_{\psi}[f](a, \cdot) \in L^2(\mathbb{R})$.
- 2. Using the Plancherel identity to Show that

$$\int_{\mathbb{R}} W_{\psi}[f](a,b)\psi_{a,b}(t)\,db = |a|\frac{1}{2\pi}\int_{\mathbb{R}}\widehat{f}(\omega)\cdot e^{it\omega}|\widehat{\psi}(a\omega)|^2\,d\omega$$

so that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} W_{\psi}[f](a,b)\psi_{a,b}(t) \frac{dbda}{a^2} = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{f}(\omega)e^{it\omega} \frac{|\widehat{\psi}(a\omega)|^2}{|a|} d\omega da.$$

3. Show that the Fubini Theorem can be applied to obtain that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} W_{\psi}[f](a,b)\psi_{a,b}(t) \frac{dbda}{a^2} = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{f}(\omega)e^{it\omega} \frac{\left|\widehat{\psi}(a\omega)\right|^2}{|a|} d\omega da.$$

4. Conclude (6.1).

Problem 2. Let $\{e_n\}$ is an orthonormal basis of *H*. Show the following statements.

- (i) $\{e_1, e_1, e_2, e_2, e_3, e_3, \dots\}$ is a tight frame with frame bounds A = B = 2, but it is not exact.
- (ii) $\{\sqrt{2}e_1, e_2, e_3, \dots\}$ is an exact frame but not tight since the frame bounds are easily seen as A = 1 and B = 2.
- (iii) $\left\{e_1, \frac{e_2}{\sqrt{2}}, \frac{e_2}{\sqrt{2}}, \frac{e_3}{\sqrt{3}}, \frac{e_3}{\sqrt{3}}, \frac{e_3}{\sqrt{3}}, \cdots\right\}$ is a tight frame with the frame bound A = B = 1 but not an orthonormal basis.
- (iv) $\left\{e_1, \frac{e_2}{2}, \frac{e_3}{3}, \cdots\right\}$ is a complete orthogonal sequence but is not a frame.

Problem 3. Let $H = \mathbb{R}^2$, $\langle \cdot, \cdot \rangle$ be the usual inner product in \mathbb{R}^2 , $\{e_n\}_{n=1}^3$ be given by

$$e_1 = (0,1), \qquad e_2 = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right), \qquad e_3 = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right).$$

- 1. Show that $\{e_n\}_{n=1}^3$ is a tight frame in H.
- 2. Compute the frame operator Tx for $x \in H$, and find T^{-1} .
- 3. Show that $\sum_{n=1}^{3} \langle x, T^{-1}e_n \rangle e_n = x$ for all $x \in H$ (without using any theorem we proved in class).