小波理論與應用 MA5110

Homework Assignment 1

Due Oct. 08. 2024

Problem 1. Let $\{K_{\lambda}\}_{\lambda>0}$ be summability kernels on \mathbb{R} , and $f \in L^{p}(\mathbb{R})$ for some $p \in [1, \infty)$. In class we show that

$$\lim_{\lambda \to \infty} \|f \ast K_{\lambda} - f\|_{L^p(\mathbb{R})} = 0$$

for the case p = 1. In this exercise problem, show the validity of the identity above for 1 .**Hint**: You may need the Minkowski inequality:

$$\left[\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left|g(x,y)\right| dx\right)^p dy\right]^{\frac{1}{p}} \leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left|g(x,y)\right|^p dy\right)^{\frac{1}{p}} dx$$

as well as the following property: if $f \in L^p(\mathbb{R})$, then

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x) - f(x - y)|^p \, dx = 0.$$

Problem 2. Similar to the summability kernels that we introduce in class, for 2π -periodic functions we have a similar concept called approximations of the identity. Let $\mathscr{C}(\mathbb{T})$ denote the collection of all continuous 2π -periodic functions. A family of functions $\{\varphi_n \in \mathscr{C}(\mathbb{T}) \mid n \in \mathbb{N}\}$ is an approximation of the identity if

(a)
$$\int_{-\pi}^{\pi} \varphi_n(x) dx = 1$$
 for every $n \in \mathbb{N}$;
(b) $\varphi_n(x) \ge 0$ (or there exists $M > 0$ such that $\int_{-\pi}^{\pi} |\varphi_n(x)| dx \le M$ for all $n \in \mathbb{N}$);
(c) $\lim_{n \to \infty} \int_{\delta \le |x| \le \pi} \varphi_n(x) dx = 0$ for every $\delta > 0$.

Complete the following.

1. Show that if $f \in \mathscr{C}(\mathbb{T})$, then the sequence of functions $\{f \star \varphi_n\}_{n=1}^{\infty}$ converges uniformly to f on $[-\pi, \pi]$, where $f \star \varphi_n$ is the "convolution" of φ_n and f defined by

$$(f \star \varphi_n)(x) = \int_{-\pi}^{\pi} f(y)\varphi_n(x-y) \, dy$$

2. Show that if $f \in L^p(0, 2\pi)$ for some $1 \leq p < \infty$, then the sequence of functions $\{f \star \varphi_n\}_{n=1}^{\infty}$ converges to f in $L^p(0, 2\pi)$; that is,

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} \left| (f \star \varphi_n)(x) - f(x) \right|^p dx = 0.$$

Hint:

- 1. Make a slight modification of the proof of " $\lim_{\lambda \to 0} f * K_{\lambda}(c) = f(c)$ whenever $f \in L^{\infty}(\mathbb{R})$ and f is continuous at c" that we proved in class.
- 2. Mimic the proof of Problem 1.

Problem 3. In class we state without proving that if $f \in L^2(0, 2\pi)$ and

$$\int_{0}^{2\pi} f(x)e^{-inx} dx = 0 \qquad \forall n \in \mathbb{Z},$$
(*)

then f = 0. However, it is not clear that the validity of (\star) still implies that f = 0 if we only know that $f \in L^1(0, 2\pi)$. Show that

if
$$f \in L^1(0, 2\pi)$$
 and $\int_0^{2\pi} f(x)e^{-inx} dx = 0$ for all $n \in \mathbb{Z}$, then $f = 0$ (**)

by complete the following.

1. For a given $f \in L^1(\mathbb{R})$, define

$$\sigma_n(f,x) = \frac{1}{2n+1} \sum_{k=-n}^n \sum_{\ell=-k}^k \langle f, e_\ell \rangle e^{i\ell x};$$

that is, $\{\sigma_n(f,\cdot)\}_{n=1}^{\infty}$ is the Cesàro mean of the Fourier series of f. Show that $\{\sigma_n(f,\cdot)\}_{n=1}^{\infty}$ converges to f in $L^1(0, 2\pi)$.

2. Show that if $f \in L^1(0, 2\pi)$ satisfies $\langle f, e_n \rangle = 0$ for all $n \in \mathbb{Z}$, then $\sigma_n(f, \cdot) = 0$ for all $n \in \mathbb{N}$. Therefore, Part 1 shows that $(\star\star)$ holds.

Hint: First note that

$$\sum_{\ell=-k}^{k} \langle f, e_{\ell} \rangle e^{i\ell x} = \sum_{\ell=-k}^{k} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{i(x-y)\ell} \, dy = \int_{-\pi}^{\pi} f(y) D_k(x-y) \, dy$$

where $D_k(t) = \frac{1}{2\pi} \sum_{\ell=-k}^{k} e^{i\ell t}$. Then

$$\sigma_n(f,x) = \frac{1}{2n+1} \sum_{k=-n}^n \int_{-\pi}^{\pi} f(y) D_k(x-y) \, dy = \int_{-\pi}^{\pi} f(y) F_n(x-y) \, dy = (f \star F_n)(x),$$

where $F_n(t) = \frac{1}{2n+1} \sum_{k=-n}^n D_k(t)$ and the convolution is defined in Problem 2. Find the precise form of F_n and show that $\{F_n\}_{n=1}^{\infty}$ is an approximation of the identity introduced in Problem 2, so Part 2 of Problem 2 shows that $\{f \star F_n\}_{n=1}^{\infty}$ converges to f in $L^1(0, 2\pi)$.

Problem 4. Show that if there exists $\delta > 0$ such that

$$|f(x)| + |\hat{f}(x)| \le C(1+|x|)^{-1-\delta} \qquad \forall x \in \mathbb{R},$$

then

$$\sum_{n=-\infty}^{\infty} \check{\widehat{f}}(x+2n\pi) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{inx} \qquad \forall x \in [0, 2\pi].$$

Hint: Note that the condition above implies that $f, \hat{f} \in L^1(\mathbb{R})$, so $f = \check{f}$ a.e..

- 1. Show that $|\check{f}(x)| \leq C(1+|x|)^{-1-\delta}$ for all $x \in \mathbb{R}$ as well.
- 2. Show that $F(x) \equiv \sum_{n=-\infty}^{\infty} \check{f}(x+2n\pi)$ and $G(x) \equiv \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$ both converges uniformly (by the Weierstrass *M*-test), so both series are continuous functions.
- 3. Since F is continuous, $F \in L^2(0, 2\pi)$; thus F equals its Fourier series a.e. Note that G is the Fourier series of F.