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Suppose that N is the product of two unknown prime numbers p, q.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than

?
N is a factor of N.

The worse case scenario is to try this division
?

N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of
two prime numbers”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the
most famous quantum algorithm to factor large numbers, the Shor
algorithm.
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§6.1 RSA Encryption
RSA is an asymmetric encryption (非對稱式加密) technique that
uses two different keys as public and private keys to perform the
encryption and decryption. The public key is represented by the
integers n and e, and the private key by the integer d. A basic
principle behind RSA is to find three very large positive integers e,
d, and n, such that with modular exponentiation all messages m P N
with 0 ď m ă n satisfies

(me)d ” m (mod n)
and that knowing e and n, or even m, it can be extremely difficult
to find d.
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§6.1 RSA Encryption
§6.1.1 Mathematical foundation
Definition (Greatest common divisor)
Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = gcd(a, b), if

1 d is a common divisor of a and b.
2 every common divisor c of a and b is not greater than d.
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§6.1 RSA Encryption
Theorem
Let a and b be positive integers with a ď b. Suppose that b =

aq0 + r1, a = r1q1 + r2, rj´1 = rjqj + rj+1 for 2 ď j ď k, where
0 = rk+1 ă rk ă ¨ ¨ ¨ ă r2 ă r1 ă a and qj P N for all 0 ď j ď k.

1 gcd(a, b) = rk, the last non-zero remainder in the list.
2 If tsjuk

j=´1 and ttjuk
j=´1 are defined by

sj =

$

&

%

1 if j = ´1 ,
0 if j = 0 ,

sj´2 ´ qj´1sj´1 if j ě 1 ,

tj =

$

&

%

0 if j = ´1 ,
1 if j = 0 ,

tj´2 ´ qj´1tj´1 if j ě 1 ,

then
atj + bsj = rj @ 1 ď j ď k .
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§6.1 RSA Encryption
Proof.
Let a and b be positive integers with a ď b. By the Division Al-
gorithm, there exists positive integer q1 and non-negative integer r1
such that b = aq0+r1 and 0 ď r1 ă a. If r1 = 0, the lists terminate;
otherwise, for 0 ă r1 ă a, there exists positive integer q1 and non-
negative integer r2 such that a = r1q1+r2 and 0 ď r2 ă r1. If r2 = 0,
the lists terminate; otherwise, for 0 ă r2 ă r1, there exists positive
integer q2 and non-negative integer r3 such that r1 = r2q2 + r3 and
0 ď r3 ă r2. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers r1, r2, r3, ¨ ¨ ¨ . This lists must
end, so there is an integer k such that rk+1 = 0.
Therefore, with r´1 and r0 denoting b and a respectively, we have

r´1 ě r0 ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj + rj+1 for all 0 ď j ď k . ˝
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§6.1 RSA Encryption
Proof (cont’d).

1 We now show that rk = d ” gcd(a, b).
a⃝ First we note that rk divides rk´1 since rk´1 = rkqk. There-

fore, the fact that rj´1 = rjqj+rj+1 for all 0 ď j ď k implies
that rk divides rj´1 for all 0 ď j ď k.

b⃝ On the other hand, d divides r´1 and r0. Therefore, by the
fact that rj+1 = rj´1 ´ rjqj for all 0 ď j ď k, we find that
d divides rj+1 for all 0 ď j ď k.

By a⃝, rk is a common divisor of a and b. By b⃝, the greatest
common divisor of a and b must divide rk; thus we conclude
that rk = gcd(a, b). ˝
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§6.1 RSA Encryption
Proof (cont’d).

2 To see that for all 1 ď j ď k,
atj + bsj = rj , (‹)

we note that
a⃝ (‹) holds for the case k = 1 since (s1, t1) = (1,´q0) and b =

aq0 + r1.
b⃝ (‹) holds for the case k = 2 since (s2, t2) = (´q1, 1+q0q1) and

at2+bs2 = a(1+q0q1)´bq1 = a´q1(b´aq0) = r0´q1r1 = r2 .

c⃝ Suppose that (‹) holds for k = ℓ, ℓ´ 1, ℓ ě 2. Then

atℓ+1 + bsℓ+1 = a(tℓ´1 ´ qℓtℓ) + b(sℓ´1 ´ qℓsℓ)
= atℓ´1 + bsℓ´1 ´ qℓ(atℓ + bsℓ)
= rℓ´1 ´ qℓrℓ = rℓ+1 .

By induction, we conclude that (‹) holds for 1 ď j ď k. ˝
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§6.1 RSA Encryption
Remark: Let a, b P N with a ď b. The algorithm to compute
gcd(a, b) given in part 1 of the previous theorem is caleed Euclid’s
Algorithm (輾轉相除法), and the algorithm to compute x, y P Z
so that ax + by = gcd(a, b) given in part 2 of the previous theorem
is called Extended Euclid’s Algorithm.
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§6.1 RSA Encryption
Example
We compute gcd(32, 12) using Euclid’s algorithm as follows:

32 = 12 ˆ 2 + 8 , 12 = 8 ˆ 1 + 4 , 8 = 4 ˆ 2 + 0 .

Therefore, 4 = gcd(12, 32). Moreover, by working backward,

4 = 12 ´ 8 ˆ 1 = 12 ´ (32 ´ 12 ˆ 2) ˆ 1 = 12 ˆ 3 + 32 ˆ (´1) .

One can also obtain the “coefficients” 3 and ´1 using Extended
Euclid’s Algorithm:

j rj qj sj tj

-1 32 1 0
0 12 2 0 1
1 8 1 1 ´2
2 4 2 ´1 3
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Theorem
Let a and b be non-zero integers. The gcd of a and b is the smallest
positive linear combination of a and b; that is,

gcd(a, b) = min
␣

am + bn
ˇ

ˇ am + bn ą 0 ,m, n P Z
(

.

Proof.
Let d = am + bn be the smallest positive linear combination of a
and b.

1 By the Division Algorithm, there exist integers q and r such
that a = dq + r, where 0 ď r ă d. Then

r = a ´ dq = a ´ (am + bn)q = a(1 ´ m) + b(´nq) ;
thus r is a linear combination of a and b. Since 0 ď r ă d, we
must have r = 0. Therefore, a = dq; thus d |a. Similarly, d |b ;
thus d is a common divisor of a and b. ˝
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§6.1 RSA Encryption
Proof (cont’d).

2 Let c be a common divisor of a and b. Then c divides d since
d = am + bn. Therefore, c ď d.

By 1⃝ and 2⃝, we find that d = gcd(a, b). ˝

Definition (Euler function)
Let n P N. The function φ : N Ñ N defined by

φ(n) = #
␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

is called the Euler (phi) function. In other words, the Euler function
counts the positive integers up to a given integer n that are coprime
to n.
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§6.1 RSA Encryption
Proposition
For each n P N,

φ(n) = n
ź

p|n
p prime

(
1 ´

1

p
)
.

In particular, by writing n =
r
ś

j=1
pkj

j = pk1
1 pk2

2 ¨ ¨ ¨ pkrr , where

p1, ¨ ¨ ¨ , pr are distinct prime numbers and k1, ¨ ¨ ¨ , kr P N, one has

φ(n) =
r
ź

j=1

pkj´1
j (pj ´ 1) .

Corollary
Let m, n P N be such that gcd(m, n) = 1. Then φ(mn) = φ(m)φ(n).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Definition
Given a P Z and n P N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs r if a = qn + r for some q P Z and r P t0, 1, ¨ ¨ ¨ , n ´ 1u.
For a, b P Z, the notation a ” b (mod n) denotes the fact that
n|(a ´ b); that is, there exists m P Z such that a ´ b = mn.

Definition
The addition ‘ on Zn is defined by

c = a ‘ b if and only if (a + b) mod n outputs c ,

and the multiplication d on Zn is defined by

c = a d b if and only if (a ¨ b) mod n outputs c ,

where + and ¨ are the usual addition and multiplication on Z.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proposition
(Zn,‘) is a group; that is,

1 Zn is closed under addition ‘;
2 there exists an additive identity 0 (that is, a ‘ 0 = a for all

a P Zn), and
3 every element in Zn has an additive inverse (that is, for each

a P Zn there exists b P Zn such that a ‘ b = 0).

Proposition
Let a, b, c, d P Z and n P N be such that a ” c (mod n) and b ” d
(mod n). Then a ¨ b ” c ¨ d (mod n).

Proposition (Cancellation law in Zn)
Let a, n P N be such that gcd(a, n) = 1. If a ¨ b ” a ¨ c (mod n),
then b ” c (mod n).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proposition
Let n ě 2 be an integer, and a, b P Z satisfy a ” b (mod n). Then
gcd(a, n) = 1 if and only if gcd(b, n) = 1.

Proof.
It suffices to shows that if gcd(a, n) ‰ 1, then gcd(b, n) ‰ 1.
Suppose that gcd(a, n) = p ą 1. Then a = pq1 and n = pq2 for
some q1, q2 P Z. Since a ” b (mod n), there exists m P Z such that
a ´ b = mn. Therefore, b = a ´ mn = pq1 ´ pq2m = p(q1 ´ q2m)

which shows that gcd(b, n) ě p. ˝

The proposition above shows that if a P Z satisfies gcd(a, n) = 1,
then (a mod n) is coprime to n.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Theorem
The integers coprime to n from the set t0, 1, ¨ ¨ ¨ , n−1u of n non-
negative integers form a group under multiplication modulo n. In
other words, let S be a subset of Zn consisting of numbers coprime
to n; that is, S =

␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

. Then
(S,d) is a group; that is,

1 S is closed under multiplication d;
2 there exists an multiplicative identity 1 (that is, a d 1 = a for

all a P S), and
3 every element in S has an multiplicative inverse element (that

is, for each a P S there exists b P S such that a d b = 1).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proof.
It suffices to prove 1 and 3.

1 Let a, b P S. Then a ¨ b is coprime to n; thus the previous
proposition implies that a ¨ b mod n is coprime to n as well.
Therefore, a d b P S.

3 Let a P S. Then the set a d S ”
␣

a d s
ˇ

ˇ s P S
(

is a subset of
S. Moreover, if s1, s2 P S satisfying that a d s1 = a d s2; that
is, a ¨ s1 ” a ¨ s2 (mod n), then s1 = s2; thus #(a d S) = φ(n).
This fact shows that there exists s P S such that a d s = 1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Definition
The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z˚

n ,d).

Theorem
Let n P N and a P Z˚

n . If a ¨ x + n ¨ y = 1 for some x, y P Z, then
a´1 ” x (mod n) ,

where a´1 denotes the unique number in Z˚
n satisfying

a d a´1 = a´1 d a = 1 .
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§6.1 RSA Encryption
Theorem
Let a, n P N be such that gcd(a, n) = 1. Then aφ(n) ” 1 (mod n).

Proof.
Let aZ˚

n be the set aZ˚
n ”

␣

a ¨ s
ˇ

ˇ s P Z˚
n
(

. Then the set aZ˚
n mod

n ”
␣

(a ¨ s) mod n
ˇ

ˇ s P Z˚
n
(

is identical to Z˚
n . Therefore,

ź

kPZ˚
n

k ”
ź

kPaZ˚
n

k (mod n) .

Since
ś

kPaZ˚
n

k = aφ(n) ś

kPZ˚
n

k and
ś

kPZ˚
n

k is coprime to n, by the can-

cellation law for Zn we find that aφ(n) ” 1 (mod n). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Corollary (Fermat little theorem)
Let p be a prime number, and a P N satisfy gcd(a, p) = 1. Then
a p´1 ” 1 (mod p).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
‚ Key generation: The keys for the RSA algorithm are generated
in the following way:

1 Choose two distinct prime numbers p and q.
a⃝ For security purposes, p and q should be chosen at random

and should be similar in magnitude but differ in length by
a few digits to make factoring harder.

b⃝ p and q are kept secret.
2 Compute n = pq.

a⃝ n is used as the modulus for both the public and private
keys. Its length, usually expressed in bits, is the key length.

b⃝ n is released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
3 Compute φ(n), where φ is the Euler function. By previous

proposition, φ(n) = (p−1)(q−1). φ(n) is kept secret.
4 Choose an integer e such that 1 ă e ă φ(n) and gcd(e, φ(n)) =

1; that is, e and φ(n) are coprime.
a⃝ e having a short bit-length and small Hamming weight

results in more efficient encryption - the most commonly
chosen value for e is 216 + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for
e has been shown to be less secure in some settings.

b⃝ e is released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
5 Determine d as d ” e´1 (mod φ(n)); that is, d is the modular

multiplicative inverse of e modulo φ(n).
a⃝ This means: solve for d the equation d ¨ e ” 1 (mod
φ(n)); d can be computed efficiently by using the extended
Euclidean algorithm.

b⃝ d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or en-
cryption) exponent e. The private key consists of the private (or
decryption) exponent d, which must be kept secret. p, q, and φ(n)
must also be kept secret because they can be used to calculate d.
In fact, they can all be discarded after d has been computed.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Remark:

1 In modern RSA implementation the use of Euler function φ is
replaced by Carmichael’s totient function λ defined by

λ(n) = min
␣

k P N
ˇ

ˇ ak ” 1 (mod n) for all a P Z˚
n
(

.

If p and q are prime numbers and n = pq, then
λ(n) = lcm(p ´ 1, q ´ 1) ,

the least common multiple（最小公倍數）of p ´ 1 and q ´ 1.
2 If both n and φ(n) are known, then two primes p and q satisfying

n = pq , φ(n) = (p ´ 1)(q ´ 1)

can be solved easily since p and q are zeros of
x 2 +

[
φ(n) ´ (n + 1)

]
x + n = 0 .
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
‚ Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, e) to Bob via a reliable, but not necessarily secret,
route. Alice’s private key (d) is never distributed.

‚ Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 ď m ă n. He then
computes the ciphertext c using Alice’s public key e by

c ” me (mod n) .

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice. Note
that some values of m will yield a ciphertext c equal to m, but this
is very unlikely to occur in practice.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
‚ Decryption: Alice can recover m from c by using her private key
exponent d by computing

c d ” (me)d ” m (mod n) .
Given m, she can recover the original message M by reversing the
padding scheme.
Example
Here is an toy example of RSA encryption and decryption.

1 Choose two prime numbers p = 11 and q = 31.
2 Compute n = pq = 341.
3 Compute φ(n) = (p´1)(q´1) = 300 / (λ(n) = lcm(10, 30) =

30).
4 Choose the encryption key e = 17 so that 1 ă e ă φ(n) and

gcd(e, φ(n)) = 1 / (1 ă e ă λ(n) and gcd(e, λ(n)) = 1).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Example (cont’d)

5 Compute the decryption key d by Extended Euclid’s algorithm:
j rj qj sj tj

-1 300 1 0
0 17 17 0 1
1 11 1 1 ´17
2 6 1 ´1 18
3 5 1 2 ´35
4 1 5 ´3 53

j rj qj sj tj
-1 30 1 0
0 17 1 0 1
1 13 1 1 ´1
2 4 3 ´1 2
3 1 4 4 ´7

which implies that 300ˆ(´3)+17ˆ53 = 1 (30ˆ4+17ˆ(´7) =

1); thus d = 53 (d ” ´7 (mod 30) or d = 23).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Example (cont’d)
Therefore, to encrypt m = 30, we raise to the power of 17 and
obtain the encrypted message:

3017 ” 123 (mod 341) .

To decrypt the encrypted message, we raise it to the power of 53

(23) and obtain that

12353 ” (1233)17 ¨ 1232 ” 3017 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)

(12323 ” (1233)7 ¨ 1232 ” 307 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)) .
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N ą 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x P t2, ¨ ¨ ¨ ,N ´ 1u

which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we
are already done. From now on consider x and N are coprime, so x
is an element of the multiplicative group Z˚

N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Consider the sequence

1 = x 0 mod N , x 1 mod N , x 2 mod N , ¨ ¨ ¨

This sequence will cycle after a while: there is a least 0 ă r ď N
such that x r ” 1 (mod N). The smallest such number r is called
the period of the sequence (a.k.a. the order of the element x in the
group (Z˚

N,d)). If r is even,

x r ” 1 (mod N) ô (x r/2)2 ” 1 (mod N)
ô (x r/2 + 1)(x r/2 ´ 1) ” 0 (mod N)
ô (x r/2 + 1)(x r/2 ´ 1) = kN for some k P N.

Because both x r/2 + 1 ą 0 and x r/2 ´ 1 ą 0 (due to the fact that
x ą 1), we must have k ‰ 0. Hence x r/2 + 1 or x r/2 ´ 1 will share
a factor with N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Note that x r/2 ‰ 1 mod N for otherwise r/2 is a period of f. In other
words, gcd(x r/2 ´ 1,N) ‰ N. It is still possible that gcd(x r/2 ´

1,N) = 1 and this is equivalent to that gcd(x r/2 + 1,N) = N.
Therefore, we are able to factor N if gcd(x r/2 + 1,N) ă N.
Assuming that N is odd and not a prime power, it can be shown that
with probability not less than 1/2, the period r is even and x r/2 +1

and x r/2 ´ 1 are not multiples of N.
Accordingly, with high probability we can obtain an even period r so
that gcd(x r/2 + 1,N) is a non-trivial factor of N. If we are unlucky
we might have chosen an x that does not give a factor (which we
can detect efficiently), but trying a few different random x gives a
high probability of finding a factor.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Factorization Algorithm: Let N be an odd natural number N that
has at least two distinct prime factors.
Step 1: Choose x P t2, ¨ ¨ ¨ ,N ´ 1u and compute gcd(x,N).

1 If gcd(x,N) ą 1, then gcd(x,N) is a non-trivial factor of
N and we are done.

2 If gcd(x,N) = 1, then goto Step 2.
Step 2: Determine the period r of the function f (a) = x a mod N.

1 If r is odd, goto Step 1.
2 If r is even, goto Step 3.

Step 3: Determine gcd(x r/2 + 1,N).
1 If gcd(x r/2 + 1,N) = N, then goto Step 1.
2 If gcd(x r/2 + 1,N) ă N, then gcd(x r/2 + 1,N) is a non-

trivial factor of N and we are done.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Thus the problem of factoring reduces to finding the period r of
the function given by modular exponentiation f (a) = x a mod N. In
general, the period-finding problem can be stated as follows:
The period-finding problem: We are given some function f : N Ñ

t0, 1, ¨ ¨ ¨ ,N ´ 1u with the property that there is some unknown
r P t0, 1, ¨ ¨ ¨ ,N ´ 1u such that f (a) = f (b) if and only if a ” b mod
r. The goal is to find r.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
A naive algorithm is to compute f (0), f (1), f (2), ¨ ¨ ¨ until we en-
counter the value f (0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r
could be huge, polynomial in N. To be efficient, we would like a
runtime that is polynomial in log2 N, since that is the bitsize of the
inputs to f. It is generally believed that classical computers cannot
solve period-finding problems efficiently. This problem can be solved
efficiently on a quantum computer, using only O(log log N) evalu-
ations of f (query) and O(log log N) quantum Fourier transforms.
Even a somewhat more general kind of period-finding can be solved
by Shor’s algorithm with very few f-evaluations, whereas any clas-
sical bounded-error algorithm would need to evaluate the function
Ω(N 1/3/

?
log N) times in order to find the period.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Before proceeding to the discussion of Shor’s algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x P Z˚

N,
the (unitary) map

U |yy = |x d yy ” |x ¨ y mod Ny

has eigenvectors

|ψsy ”
1

?
r

r´1
ÿ

k=0

exp
(́

2πisk
r

)
|x k mod Ny

with 0 ď s ă r since

U |ψsy =
1

?
r

r´1
ÿ

k=0

exp
(́

2πisk
r

)
U |x k mod Ny

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |ψsy is known
(even though we do not know |ψsy for s ‰ 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Now we will show how Shor’s algorithm finds the period r of the func-
tion f, given a “black-box” that maps |ay|0Ky ÞÑ |ay|f (a)y. We can
always efficiently pick some q = 2L such that N 2 ă q ď 2N 2. Then
we can implement the Fourier transform QFT using O((log2 N)2)

gates. Let Of denote the unitary that maps |ay|0Ky ÞÑ |ay|f (a)y,
where the first register consists of L qubits, and the second of
K = [log2 N ] + 1 qubits.

|0Ly QFT
Of

QFT

|0Ky

Figure 1: Shor’s period-finding algorithm
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§6.3 Shor’s Period-Finding Algorithm

Register A
start with |0Ly

|0y

QFT
or

HbL

Of

QFT...

|0y

Register B
start with |0Ky

|0y
...

|0y

Figure 2: Shor’s period-finding algorithm
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Shor’s period-finding algorithm is illustrated in previous figures. Start
with |ψ0y = |0Ly|0Ky. Apply the QFT (or just L Hadamard gates)
to the first register to build the uniform superposition

|ψ1y = (HbL b IK)|ψ0y =
1

?q

q´1
ÿ

a=0

|ay|0Ky ,

where IK denotes the identity map on the second register. The
second register still consists of zeroes. Now use the “black-box” to
compute f (a) in quantum parallel:

|ψ2y = Of |ψ1y =
1

?q

q´1
ÿ

a=0

|ay|f (a)y .

Next we apply the quantum Fourier transform QFT to the first
register to obtain the quantum state |ψ3y = (Fq b IK)|ψ2y. Finally,
we measure the first register and obtain a number b and wish to
find the period of f based on this observation.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Some of the measurement b obtained by Shor’s algorithm above are
useless. The measurement b becomes useful for us to determine the
period r if b belongs to the set

E =
!

b P Z
ˇ

ˇ

ˇ
0 ď b ď q ´ 1 and

ˇ

ˇ

b
q ´

c
r
ˇ

ˇ ă
1

2r 2 for some c P Z˚
r

)

,

where we recall that Z˚
r is the collection of numbers from t1, ¨ ¨ ¨ , r´

1u that are coprime to r so that #Z˚
r = φ(r). We note that E is

indeed unknown to us (since r is unknown to us) but it exists and is
a non-empty set. We will show in Section 6.5 that the probability
of obtaining b P E by Shor’s algorithm is not less than 1

10 ln L . This
implies that if we apply Shor’s algorithm k times, the probability of
obtaining no b P E is less than

(
1 ´

1

10 ln L

)k
which is quite small

when k is large.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Suppose that we apply Shor’s algorithm and obtain one such b P E.
Then there exists c P Z˚

r such that
ˇ

ˇ

b
q ´

c
r
ˇ

ˇ ă
1

2r 2 . We note that in

this inequality we only know b and q (so is the number x = b/q),
and both c and r are unknown to us. Even though c and r are
unknown to us, the fact that c P Z˚

r implies that c
r is an irreducible

fraction（最簡分數）. Therefore, if there is a fast algorithm to find
all irreducible fractions n

m satisfying
ˇ

ˇ

ˇ
x ´

n
m

ˇ

ˇ

ˇ
ă

1

2m2
and m ă N , (1)

we can check whether the denominators m of all such irreducible
fractions is the period of f. In Section 6.4 an efficient algorithm is
proposed to find all irreducible fractions n

m satisfying (1).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-Finding Algorithm
Shor’s period-finding algorithm: Let f : N Y t0u Ñ t0, 1uK be a
periodic function with period r satisfying 19 ď r ă 2L/2 for some
L P N such that f is injective within one period.
Step 1: Measure the first register of the quantum state

(F2L b IK)Uf (HbL b IK)(|0
Ly b |0Ky) .

and obtain b.
Step 2: Find all irreducible fractions n

m satisfying
ˇ

ˇ

b
2L ´

n
m
ˇ

ˇ ă
1

2m2
and m ă 2L/2 .

1 If one of such denominator m is the period of f, we are
done.

2 If none of these denominators m is the period of f, then
b R E and goto Step 1.
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
A continued fraction (連分數), or simply CF, is a real number of
the form

a0 +
1

a1 + 1

a2 +
1

¨ ¨ ¨

.

The continued fraction above is denote by [a0; a1, a2, ¨ ¨ ¨ ] (here the
number of ai’s can be finite or infinite), and the ai’s are called the
partial quotients. We assume these to be positive natural numbers.
[a0; ¨ ¨ ¨ , an] is called the n-th convergent of the continued fraction
[a0; a1, a2, ¨ ¨ ¨ ], and can be simply computed by the following itera-
tive scheme: [a0; ¨ ¨ ¨ , an], in its lowest terms, is pn/qn, where

p0 = a0, p1 = a1a0 + 1, pn = anpn´1 + pn´2 ,

q0 = 1, q1 = a1, qn = anqn´1 + qn´2 .
(2)
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
Note that qn increases at least exponentially with n since qn ě

2qn´2. Given a real number x, the following “algorithm” gives a
continued fraction expansion of x :

a0 ” [x ] , x1 ” 1/(x ´ a0) ,
a1 ” [x1] , x2 ” 1/(x1 ´ a1) ,
a2 ” [x2] , x3 ” 1/(x2 ´ a2) ,

...
Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the
number.
Theorem
For an x P R, the sequence taju constructed from the algorithm
above terminates if and only if x is rational.
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quotient and continue with the inverse of the decimal part of the
number.
Theorem
For an x P R, the sequence taju constructed from the algorithm
above terminates if and only if x is rational.
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
Note that qn increases at least exponentially with n since qn ě

2qn´2. Given a real number x, the following “algorithm” gives a
continued fraction expansion of x :

a0 ” [x ] , x1 ” 1/(x ´ a0) ,
a1 ” [x1] , x2 ” 1/(x1 ´ a1) ,
a2 ” [x2] , x3 ” 1/(x2 ´ a2) ,

...
Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the
number.
Theorem
For an x P R, the sequence taju constructed from the algorithm
above terminates if and only if x is rational.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
Example
Let x =

?
2. Then a0 = 1 and ak = 2 for all k P N. To see this,

we note that x1 =
1

?
2 ´ 1

=
?
2 + 1 so we have a1 = 2. This then

shows that
x2 =

1

x1 ´ a1
=

1
?
2 + 1 ´ 2

=
?
2 + 1

and as a consequence a2 = 2. Repeating this process, we find that
xk =

?
2 + 1 and ak = 2 for all k P N. Using (2), we obtain that

n 1 2 3 4 5 6
pn 3 7 17 41 99 239
qn 2 5 12 29 70 169

ˇ

ˇx ´
pn
qn

ˇ

ˇ 0.0858 0.0142 0.0025 4.2e-4 7.2e-5 1.2e-5
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§6.4 Continued fractions
Example
Let x =

?
2. Then a0 = 1 and ak = 2 for all k P N. To see this,

we note that x1 =
1

?
2 ´ 1

=
?
2 + 1 so we have a1 = 2. This then

shows that
x2 =

1

x1 ´ a1
=

1
?
2 + 1 ´ 2

=
?
2 + 1

and as a consequence a2 = 2. Repeating this process, we find that
xk =

?
2 + 1 and ak = 2 for all k P N. Using (2), we obtain that

n 1 2 3 4 5 6
pn 3 7 17 41 99 239
qn 2 5 12 29 70 169

ˇ

ˇx ´
pn
qn

ˇ

ˇ 0.0858 0.0142 0.0025 4.2e-4 7.2e-5 1.2e-5
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
Example
Let x =

?
2. Then a0 = 1 and ak = 2 for all k P N. To see this,

we note that x1 =
1

?
2 ´ 1

=
?
2 + 1 so we have a1 = 2. This then

shows that
x2 =

1

x1 ´ a1
=

1
?
2 + 1 ´ 2

=
?
2 + 1

and as a consequence a2 = 2. Repeating this process, we find that
xk =

?
2 + 1 and ak = 2 for all k P N. Using (2), we obtain that

n 7 8 9 10 11 12
pn 577 1393 3363 8119 19601 47321
qn 408 985 2378 5741 13860 33461

ˇ

ˇx ´
pn
qn

ˇ

ˇ 2.1e-6 3.6e-7 6.3e-8 1.1e-8 1.8e-9 3.2e-10
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
The convergence of the CF approximate x follows from the fact that

if x = [a0; a1, ¨ ¨ ¨ ], then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ď

1

q2
n
.

Recall that qn increases exponentially with n, so this convergence is
quite fast. Moreover, pn/qn provides the best approximation of x
among all fractions with denominator not greater than qn:

if n ě 1, q ď qn, p
q ‰

pn
qn

, then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
x ´

p
q

ˇ

ˇ

ˇ
.
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
The convergence of the CF approximate x follows from the fact that

if x = [a0; a1, ¨ ¨ ¨ ], then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ď

1

q2
n
.

Recall that qn increases exponentially with n, so this convergence is
quite fast. Moreover, pn/qn provides the best approximation of x
among all fractions with denominator not greater than qn:

if n ě 1, q ď qn, p
q ‰

pn
qn

, then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
x ´

p
q

ˇ

ˇ

ˇ
.
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
Theorem
Let b, q P N be given and let [a0; a1, ¨ ¨ ¨ , an] be the continued frac-
tion of their quotient; that is

b
q = [a0; a1, ¨ ¨ ¨ , an] .

If c, r P N are such that
ˇ

ˇ

b
q ´

c
r
ˇ

ˇ ă
1

2r 2 ,

then c
r is a convergent of the continued fraction of b

q ; that is, there
exists a j P t0, 1, ¨ ¨ ¨ , nu such that

c
r = [a0; a1, ¨ ¨ ¨ , aj] =

pj
qj

where pj and qj are as constructed by (2).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
§6.5.1 Shor’s period-finding algorithm
Shor’s algorithm can be applied to find the period of a more general
class of periodic functions.
Theorem
Let f : N Y t0u Ñ N Y t0u be a periodic function with period r
satisfying 19 ď r ă 2L/2 for some L P N such that f is injective
within one period and is bounded by 2K ´ 1, and Uf be an (L+K)-
qubit quantum gate satisfying

Uf |ay|by = |ay|b ‘ f (a)y , @ a P t0, 1uL, b P t0, 1uK .

Then each application of Shor’s algorithm provides the period r with
a probability of at least 1

10 ln L .
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof.
Let M = max

␣

f (a)
ˇ

ˇ 0 ď a ď 2L ´ 1
(

and K P N with M ă 2K,
and H be the usual qubit Hilbert space with basis t|0y, |1yu. Set
|ψ0y = |0Ly b |0Ky. With IK denoting the identity map on HbK,

|ψ1y ” (HbL b IK)|ψ0y =
1

?
2L

2L´1
ÿ

a=0

|ay b |0Ky .

Applying Uf to |ψ1y, we find that

|ψ2y = Uf |ψ1y =
1

?
2L

2L´1
ÿ

a=0

|ay b |f (a)y . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Define m ”
[2L ´ 1

r
]
, the largest integer smaller than 2L ´ 1

r , and
R ” (2L ´ 1) mod r. Then

|ψ2y =
1

?
2L

2L´1
ÿ

a=0

|ay b |f (a)y =
1

?
2L

ÿ

0ď jr+să2L

| jr + sy b |f ( jr + s)y

=
1

?
2L

m´1
ÿ

j=0

r´1
ÿ

s=0

| jr + sy b |f (s)y +
R
ÿ

s=0

|mr + sy b |f (s)y .

Define ms = m´1(R,8)(s); that is, ms = m if s ď R and ms = m´1

if s ą R. Then

|ψ2y =
1

?
2L

r´1
ÿ

s=0

ms
ÿ

j=0

| jr + sy b |f (s)y . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Define m ”
[2L ´ 1

r
]
, the largest integer smaller than 2L ´ 1

r , and
R ” (2L ´ 1) mod r. Then

|ψ2y =
1

?
2L

2L´1
ÿ

a=0

|ay b |f (a)y =
1

?
2L

ÿ

0ď jr+să2L

| jr + sy b |f ( jr + s)y

=
1

?
2L

m´1
ÿ

j=0

r´1
ÿ

s=0

| jr + sy b |f (s)y +
R
ÿ

s=0

|mr + sy b |f (s)y .

Define ms = m´1(R,8)(s); that is, ms = m if s ď R and ms = m´1

if s ą R. Then

|ψ2y =
1

?
2L

r´1
ÿ

s=0

ms
ÿ

j=0

| jr + sy b |f (s)y . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Next we apply the quantum Fourier transform to the first L qubits
of |ψ2y and obtain that

|ψ3y ” (F2L b IB)|ψ2y =
1

?
2L

r´1
ÿ

s=0

ms
ÿ

j=0

(F2L | jr + sy) b |f (s)y

=
1

2L

r´1
ÿ

s=0

ms
ÿ

j=0

2L´1
ÿ

b=0

exp
(
2πi ( jr + s)b

2L

)
|by b |f (s)y . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Now we measure the input register, and let P(b) denote the proba-
bility of observing |by upon measurement. For b P t0, ¨ ¨ ¨ , 2L ´ 1u,

P(b) = 1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

ms
ÿ

j=0

exp
(
2πi ( jr + s)b

2L

)ˇ
ˇ

ˇ

2

=
1

22L

r´1
ÿ

s=0

[ ms
ÿ

j1,j2=0

exp
(
2πi ( j1r + s)b

2L

)
exp

(́
2πi ( j2r + s)b

2L

)]
=

1

22L

r´1
ÿ

s=0

[ ms
ÿ

j1,j2=0

exp
(
2πi j1rb

2L

)
exp

(́
2πi j2rb

2L

)]
=

1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

[ ms
ÿ

j=0

exp
(
2πi jrb

2L

)ˇ
ˇ

ˇ

2
. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since d

ÿ

j=0

a j =

$

&

%

d + 1 if a = 1 ,

1 ´ ad+1

1 ´ a if a ‰ 1 ,

we obtain that

ms
ÿ

j=0

exp
(
2πi jrb

2L

)
=

$

’

&

’

%

ms + 1 if rb
2L P N Y t0u ,

1 ´ e2πi (ms+1)r b
2L

1 ´ e2πi r b
2L

if rb
2L R N Y t0u ;

thus

P(b) =

$

’

’

’

&

’

’

’

%

1

22L

r´1
ÿ

s=0

(ms + 1)2 if rb
2L P N Y t0u ,

1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e2πi (ms+1)r b
2L

1 ´ e2πi r b
2L

ˇ

ˇ

ˇ

2
if rb

2L R N Y t0u .

˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Define
E =

!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇ

b
2L ´

c
r
ˇ

ˇă
1

2r 2 for some (unique) c P Z˚
r

)

,

B =
!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇrb ´ c2Lˇ
ˇď

r
2

for some (unique) c P Z˚
r

)

,

here we recall that Z˚
r is the collection of numbers in t1, ¨ ¨ ¨ , r ´ 1u

that are coprime to r.

The fact that r ă 2L/2 implies that if b P B,
ˇ

ˇ

ˇ

b
2L ´

c
r

ˇ

ˇ

ˇ
=

1

r 2L

ˇ

ˇrb ´ c2Lˇ
ˇ ď

r
2

¨
1

r 2L =
1

2 ¨ 2L ă
1

2r 2 .

In other words, B Ď E. Our goal is to show that the probability of
measuring a b P E is not “too small” by finding a lower bound for
the probability of measuring a b P B. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Define
E =

!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇ

b
2L ´

c
r
ˇ

ˇă
1

2r 2 for some (unique) c P Z˚
r

)

,

B =
!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇrb ´ c2Lˇ
ˇď

r
2

for some (unique) c P Z˚
r

)

,

here we recall that Z˚
r is the collection of numbers in t1, ¨ ¨ ¨ , r ´ 1u

that are coprime to r.

The fact that r ă 2L/2 implies that if b P B,
ˇ

ˇ

ˇ

b
2L ´

c
r

ˇ

ˇ

ˇ
=

1

r 2L

ˇ

ˇrb ´ c2Lˇ
ˇ ď

r
2

¨
1

r 2L =
1

2 ¨ 2L ă
1

2r 2 .

In other words, B Ď E. Our goal is to show that the probability of
measuring a b P E is not “too small” by finding a lower bound for
the probability of measuring a b P B. ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Define
E =

!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇ

b
2L ´

c
r
ˇ

ˇă
1

2r 2 for some (unique) c P Z˚
r

)

,

B =
!

b Pt0, ¨ ¨ ¨, 2L´1u

ˇ

ˇ

ˇ

ˇ

ˇrb ´ c2Lˇ
ˇď

r
2

for some (unique) c P Z˚
r

)

,

here we recall that Z˚
r is the collection of numbers in t1, ¨ ¨ ¨ , r ´ 1u

that are coprime to r.

The fact that r ă 2L/2 implies that if b P B,
ˇ

ˇ

ˇ

b
2L ´

c
r

ˇ

ˇ

ˇ
=

1

r 2L

ˇ

ˇrb ´ c2Lˇ
ˇ ď

r
2

¨
1

r 2L =
1

2 ¨ 2L ă
1

2r 2 .

In other words, B Ď E. Our goal is to show that the probability of
measuring a b P E is not “too small” by finding a lower bound for
the probability of measuring a b P B. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let b P B.

1 The case rb
2L P N Y t0u: In this case

P(b) = 1

22L

r´1
ÿ

s=0

(ms + 1)2 =
1

22L

[ R
ÿ

s=0

(m + 1)2 +
r´1
ÿ

s=R+1

m2
]

ě
1

22L

[
(R + 1)m2 + (r ´ 1 ´ R)m2

]
=

1

r

( rm
2L

)2
.

Since m =
[
2L ´ 1

r

]
, r ´ 1 ě (2L ´ 1) mod r ě 2L ´ 1 ´ mr ;

thus the fact that r ă 2
L
2 implies that mr

2L ě 1´
r
2L ą 1´

1
?
2L

.
Therefore,

P(b) ě
1

r

(
1 ´

1
?
2L

)2
ą

1

r

(
1 ´

1

2L/2´1

)
. ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let b P B.

1 The case rb
2L P N Y t0u: In this case

P(b) = 1

22L

r´1
ÿ

s=0

(ms + 1)2 =
1

22L

[ R
ÿ

s=0

(m + 1)2 +
r´1
ÿ

s=R+1

m2
]

ě
1

22L

[
(R + 1)m2 + (r ´ 1 ´ R)m2

]
=

1

r

( rm
2L

)2
.

Since m =
[
2L ´ 1

r

]
, r ´ 1 ě (2L ´ 1) mod r ě 2L ´ 1 ´ mr ;

thus the fact that r ă 2
L
2 implies that mr

2L ě 1´
r
2L ą 1´

1
?
2L

.
Therefore,

P(b) ě
1

r

(
1 ´

1
?
2L

)2
ą

1

r

(
1 ´

1

2L/2´1

)
. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let b P B.

1 The case rb
2L P N Y t0u: In this case

P(b) = 1

22L

r´1
ÿ

s=0

(ms + 1)2 =
1

22L

[ R
ÿ

s=0

(m + 1)2 +
r´1
ÿ

s=R+1

m2
]

ě
1

22L

[
(R + 1)m2 + (r ´ 1 ´ R)m2

]
=

1

r

( rm
2L

)2
.

Since m =
[
2L ´ 1

r

]
, r ´ 1 ě (2L ´ 1) mod r ě 2L ´ 1 ´ mr ;

thus the fact that r ă 2
L
2 implies that mr

2L ě 1´
r
2L ą 1´

1
?
2L

.
Therefore,

P(b) ě
1

r

(
1 ´

1
?
2L

)2
ą

1

r

(
1 ´

1

2L/2´1

)
. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

2 The case rb
2L R N Y t0u: Suppose that c P Z˚

r satisfies
ˇ

ˇrb ´ c2Lˇ
ˇ ď

r
2
. (3)

Then

P(b) = 1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e2πi (ms+1)r b
2L

1 ´ e2πi r b
2L

ˇ

ˇ

ˇ

2
=

1

22L

r´1
ÿ

s=0

ˇ

ˇ

ˇ

1 ´ e2πi (ms+1)(r b´c2L)
2L

1 ´ e2πi r b´c2L
2L

ˇ

ˇ

ˇ

2

=
1

22L

r´1
ÿ

s=0

sin2 π r b´c2L

2L (ms + 1)

sin2 π r b´c2L

2L

,

where we have used the identity |1´e iθ| = 2
ˇ

ˇ sin θ

2

ˇ

ˇ to conclude
the last equality. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Let α = π
rb ´ c2L

2L . Then

|α| ď
π

2L ¨
r
2

ă
π

2
L
2+1

!
π

2
.

Within this range, the function β ÞÑ
sin2 β(ms + 1)

sin2 β
cannot at-

tain its minimum in the interior of the interval and we have
sin2 π r b´c2L

2L (ms + 1)

sin2 π r b´c2L

2L

=
sin2 α(ms + 1)

sin2 α
ě

sin2 πr
2L+1 (ms + 1)

sin2 πr
2L+1

for all |α| ď
π

2L ¨
r
2

. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Since m ď ms + 1 ď m + 1 and R = (2L ´ 1) mod r,
r (ms + 1)

2L ě
mr
2L =

mr + R + 1

2L ´
R + 1

2L = 1 ´
R + 1

2L ě 1 ´
r
2L

and
r (ms + 1)

2L ď
r (m + 1)

2L =
mr + R + 1

2L +
r ´ R ´ 1

2L ď 1 +
r
2L .

Therefore, using sin2 x ď x 2 and cos x ě 1 ´
x 2

2
@ x P R,

sin2 π r b´c2L

2L (ms+1)

sin2 π r b´c2L

2L

ě
sin2 πr (ms+1)

2L+1

sin2 πr
2L+1

ě

(
2L+1

πr

)2
sin2 πr (ms + 1)

2L+1

ě

(
2L+1

πr

)2
sin2

[
π

2

(
1´

r
2L

)]
ě

(
2L+1

πr

)2[
1´

1

2

(
π

2

r
2L

)2]2
ě

22L+2

π2r 2
[
1 ´

(
π

2

1
?
2L

)2]
=

22L+2

π2r 2
(
1 ´

π2

2L+2

)
. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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r
2L

and
r (ms + 1)

2L ď
r (m + 1)

2L =
mr + R + 1

2L +
r ´ R ´ 1
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r
2L .
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2L+1

πr

)2
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ě
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2L+1

πr

)2
sin2
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π

2
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2L
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ě
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Therefore,

P(b) ě
1

22L

r´1
ÿ

s=0

22L+2

π2r 2
(
1 ´

π2

2L+2

)
=

r
22L

22L+2

π2r 2
(
1 ´

π2

2L+2

)
=

4

π2r

(
1 ´

π2

2L+2

)
.

For L ě 4, we have
4

π2r

(
1 ´

π2

2L+2

)
ď

1

r

(
1 ´

1

2L/2´1

)
;

thus
Pmin ”

4

π2r

(
1 ´

π2

2L+2

)
ď P(b) if b P B and L ě 4 . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Now we find a lower bound for P(E), the probability of measuring
an element of E. By the definition of B for any b P B there exists
c P Z˚

r satisfying
ˇ

ˇrb ´ c2Lˇ
ˇ ď

r
2
. (3)

Moreover, if c1, c2 P Z˚
r satisfy

ˇ

ˇrb´c12Lˇ
ˇ ď

r
2

and
ˇ

ˇrb´c22Lˇ
ˇ ď

r
2

,
then
ˇ

ˇc1 ´ c2
ˇ

ˇ ď

ˇ

ˇ

ˇ
c1 ´

rb
2L

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ
c2 ´

rb
2L

ˇ

ˇ

ˇ
ď

1

2L

(
ˇ

ˇrb ´ c12Lˇ
ˇ+

ˇ

ˇrb ´ c22Lˇ
ˇ

)
ď

r
2L ă 1 .

Therefore, for any b P B there exists a unique c = cb P Z˚
r satisfying

(3). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
On the other hand, every c P Z˚

r corresponds to a unique b = bc P

t0, 1, ¨ ¨ ¨ , 2L ´ 1u such that (3) holds: if b1 and b2 both satisfy (3),
then |b1 ´ b2| = 1 and

(b1 + b2)r = c2L+1

which, by the fact that b1 + b2 is odd, implies that 2L+1|r, a con-
tradiction to that r ă 2L/2. Therefore, there is a one-to-one corre-
spondence between Z˚

r and B.

Figure 3: The distribution of br (Ò) and c2L (Ó) for various b and c. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
As a consequence, if L ě 4,

P(E) =
ÿ

b P E
P(b) ě

ÿ

b P B
P(b) ě

ÿ

b P B

4

π2r

(
1 ´

π2

2L+2

)
=

4#B
π2r

(
1 ´

π2

2L+2

)
=

4φ(r)
π2r

(
1 ´

π2

2L+2

)
.

A famous result in number theory implies that
r

φ(r) ă 4 ln ln r @ r ě 19 ;

thus if r ě 19 (so that L ě 9),

P(E) ě
4

π2

(
1 ´

π2

211

)
1

4 ln ln r ą
1

10 ln L . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
§6.5.2 The period of f (a) = x a mod N is most likely even
In this sub-section we focus on proving the following
Theorem

Let N P N be odd with prime factorization N =
J
ś

j=1
p νj

j , where p1,

¨ ¨ ¨ , pJ are distinct prime numbers. For a randomly chosen b P Z˚
N,

the probability of that r ” min
␣

r P N
ˇ

ˇ br = 1 mod N
(

is even and
br/2 + 1 mod N ‰ 0 is at least 1 ´

1

2J´1
.

In the application of the factoring algorithm proposed in the previous
sections, J = 2 so that the probability of that for a randomly chosen
b P Z˚

N the number gcd(br/2+1,N) is a prime factor of N is at least
1/2.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Let N P N. Recall that Z˚

N consists of numbers from t1, 2, ¨ ¨ ¨ ,N´1u

that is coprime to N; that is,

Z˚
N =

␣

n P N
ˇ

ˇ 1 ď n ď N ´ 1 and gcd(n,N) = 1
(

.

The number of elements in Z˚
N = φ(N), where φ is the Euler func-

tion. Before proceeding, we introduce some terminologies.
Definition
Let b,N P N with gcd(b,N) = 1. The order of b in Z˚

N, denoted by
ordN(b), is the period of the function f (x) = bx ´1 mod N. In other
words,

ordN(b) = min
␣

r P N
ˇ

ˇ br = 1 mod N
(

.

If ordN(b) = φ(N), then b is called a primitive root modulo N.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Theorem
Let a, b,N P N with gcd(a,N) = 1 = gcd(b,N). Then the following
statements hold.

1 For all k P N, ak = 1 mod N if and only if ordN(a)|k.
2 ordN(a)|φ(N); that is, ordN(a) is a factor of φ(N).
3 If gcd(ordN(a), ordN(b))=1, then ordN(ab)=ordN(a)ordN(b).
4 If a is a primitive root modulo N; that is, ordN(a) = φ(N), then

we also have
a⃝ Z˚

N =
␣

a j mod N
ˇ

ˇ 1 ď j ď φ(N)
(

.
b⃝ If b = a j mod N for some j P N, then

ordN(b) = ordN(a j) =
φ(N)

gcd( j, φ(N))
. (4)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof.
Let a, b,N P N with gcd(a,N) = 1 = gcd(b,N).

1 (“ñ”) Let k P N satisfying ak = 1 mod N. Then k ě ordN(a).
Let c = k mod ordN(a); that is, there exists q P N such that
k = q ¨ ordN(a) + c for some c P t0, 1, ¨ ¨ ¨ , ordN(a) ´ 1u. Then

1 = ak mod N = aq¨ordN(a)+c mod N = ac mod N;

thus by the definition of the order we must have c = 0. There-
fore, ordN(a)|k.
(“ð”) Suppose that ordN(a)|k. Then k = q ¨ ordN(a) for some
q P N. Therefore,

ak mod N = aq¨ordN(a) mod N = 1.

2 By one of previous theorems, we know that aφ(N) = 1 mod N ;
thus 2⃝ follows from 1⃝. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

3 By the rule of multiplication in Z˚
N, we find that

(ab)ordN(a)ordN(b) mod N = aordN(a)bordN(b) mod N = 1;

thus 1⃝ implies that
ordN(ab)|ordN(a)ordN(b). (5)

On the other hand, since bordN(b)ordN(ab) = 1 mod N,

aordN(b)ordN(ab) mod N = aordN(b)ordN(ab)bordN(b)ordN(ab) mod N
= (ab)ordN(b)ordN(ab) mod N = 1.

Therefore, 1⃝ shows that ordN(a)|ordN(b)ordN(ab). By the as-
sumption that ordN(a) and ordN(b) are coprime, we must have
ordN(a)|ordN(ab). Similarly, we also have ordN(b)|ordN(ab). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Therefore,
ordN(a)ordN(b)|ordN(ab)

which, together with (5), shows that ordN(a)ordN(b)=ordN(ab).
4 Suppose that ordN(a) = φ(N).

a⃝ First we note that the fact that (Z˚
N,d) is a group implies

that
␣

a j mod N
ˇ

ˇ 1 ď j ď φ(N)
(

Ď Z˚
N. It then suffices to

show that
#
␣

a j mod N
ˇ

ˇ 1 ď j ď φ(N)
(

= φ(N) . (6)
Let i, j P N with 1 ď i ď j ď φ(N), and suppose that
ai = a j mod N. Then a j´i = 1 mod N. Therefore, 1⃝
shows that ordN(a) | ( j ´ i). Since ordN(a) = φ(N) and
1 ď i ď j ď φ(N), we must have i = j; thus (6) holds. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

b⃝ Goal: ordN(b)=ordN(a j)= φ(N)

gcd( j, φ(N))
if
"

ordN(a)=φ(N)

b = a j mod N (4)

We first establish the first “=” of (4); that is, if b = a j mod N,
then ordN(b) = ordN(a j). To see that, we note that the identity

1 = bordN(b) mod N = (a j mod N)ordN(b) mod N
= (a j)ordN(b) mod N

shows that ordN(a j) ď ordN(b), while the identity

1 = (a j)ordN(a j) mod N = (a j mod N)ordN(a j) mod N
= bordN(a j) mod N

shows that ordN(b) ď ordN(a j). ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

b⃝ Goal: ordN(b)=ordN(a j)= φ(N)

gcd( j, φ(N))
if
"

ordN(a)=φ(N)

b = a j mod N (4)

We first establish the first “=” of (4); that is, if b = a j mod N,
then ordN(b) = ordN(a j). To see that, we note that the identity

1 = bordN(b) mod N = (a j mod N)ordN(b) mod N
= (a j)ordN(b) mod N

shows that ordN(a j) ď ordN(b), while the identity

1 = (a j)ordN(a j) mod N = (a j mod N)ordN(a j) mod N
= bordN(a j) mod N

shows that ordN(b) ď ordN(a j). ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

b⃝ Goal: ordN(b)=ordN(a j)= φ(N)

gcd( j, φ(N))
if
"

ordN(a)=φ(N)

b = a j mod N (4)

We first establish the first “=” of (4); that is, if b = a j mod N,
then ordN(b) = ordN(a j). To see that, we note that the identity

1 = bordN(b) mod N = (a j mod N)ordN(b) mod N
= (a j)ordN(b) mod N

shows that ordN(a j) ď ordN(b), while the identity

1 = (a j)ordN(a j) mod N = (a j mod N)ordN(a j) mod N
= bordN(a j) mod N

shows that ordN(b) ď ordN(a j). ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

b⃝ Goal: ordN(b)=ordN(a j)= φ(N)

gcd( j, φ(N))
if
"

ordN(a)=φ(N)

b = a j mod N (4)

We first establish the first “=” of (4); that is, if b = a j mod N,
then ordN(b) = ordN(a j). To see that, we note that the identity

1 = bordN(b) mod N = (a j mod N)ordN(b) mod N
= (a j)ordN(b) mod N

shows that ordN(a j) ď ordN(b), while the identity

1 = (a j)ordN(a j) mod N = (a j mod N)ordN(a j) mod N
= bordN(a j) mod N

shows that ordN(b) ď ordN(a j). ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*
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if
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We next establish the second “=” of (4). We note that 2⃝
implies that there exists m1 P N such that m1 ¨ordN(a j) = φ(N);
thus it suffices to show that m1 = gcd( j, φ(N)).

We remark that m1 must satisfy m1|φ(N). Moreover, since

1 = (a j)ordN(a j) mod N = a j¨ordN(a j) mod N ,

we have ordN(a)| j ¨ ordN(a j). By the assumption that ordN(a) =
φ(N), there is m2 P N such that m2 ¨φ(N) = j ¨ordN(a j). There-
fore, j = m1m2. In particular, m1| j ; thus m1|gcd( j, φ(N)). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

b⃝ Goal: ordN(b)=ordN(a j)= φ(N)

gcd( j, φ(N))
if
"

ordN(a)=φ(N)

b = a j mod N (4)

Suppose the contrary that m1 ă pm ” gcd( j, φ(N)). Then

pr ”
φ(N)

pm ă
φ(N)

m1
= ordN(a j) . (7)

On the other hand, the fact that pm | j shows that

(a j)pr mod N = (a j)φ(N )/xm mod N =
(
aφ(N )

)j/xm mod N

=
(
aφ(N ) mod N

)j/xm mod N = 1 .

Thus, we conclude from 1⃝ that ordN(a j)|pr , a contradiction to
(7). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Lemma
Let p be a prime, k P N Y t0u, and f0, f1, ¨ ¨ ¨ , fk be integers such

that p ∤ fk. If f is a polynomial given by f (x) =
k
ÿ

j=0

fj x j, then either

1 #
␣

x P Z˚
p
ˇ

ˇ f (x) = 0 mod p
(

ď k
or

2 f (x) = 0 mod p for all x P Z (or Z˚
p).

Proof.
We show this by induction in the degree of the polynomial, which
we start at k = 0: if f (x) = f0 ‰ 0 such that p ∤ f0, then it follows
that f0 ‰ 0 mod p, and there is no x P Z with f (x) = 0 mod p. If
f0 = 0, then f is the zero-polynomial. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Suppose then the claim holds for all polynomials of degree up to
k−1 and f is a polynomial of degree k. If f has fewer than k zeros
modulo p in Z˚

p , the claim holds already. Suppose that f has at least
k zeros modulo p, and n1, n2, ¨ ¨ ¨ , nk P Z˚

p are distinct zeros of f
modulo p (there may be more zeros of f modulo p, but we randomly
pick k distinct zeros). Then

g(x) ” f (x) ´ fk
k
ź

j=1

(x ´ nj) =
k´1
ÿ

ℓ=0

gℓx ℓ

is a polynomial of degree not exceeding k ´ 1. Set
m = max

␣

ℓ P t0, 1, ¨ ¨ ¨ , k ´ 1u
ˇ

ˇ p ∤ gℓ
(

,

and define rg (x) =
m
ř

ℓ=0

gℓx ℓ. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Then for x P Z,

rg (x) mod p = g(x) mod p .
Moreover, for 1 ď j ď k we have g(nj) = f (nj) = 0 mod p. There-
fore, rg has at least k zeros modulo p; thus by the induction assump-
tion rg must be the zero polynomial. This shows that g is also the
zero polynomial. By the definition of g,

f (x) = fk
k
ź

j=1

(x ´ nj) mod p @ x P Z.

Suppose that z is a zero of f modulo p. Then by the fact that p ∤ fk,
the cancellation law for Zp implies that z ´ nj = 0 mod p for some
1 ď j ď k. This implies that f has k distinct zeros in Z˚

p . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Lemma
Let p be prime, d a natural number satisfying d |(p−1) and let h be
the polynomial h(x) = x d ´ 1. Then there exist exactly d distinct
numbers n1, n2, ¨ ¨ ¨ , nd in Z˚

p satisfying h(nj) = 0 mod p.

Proof.

Let k P N be such that p−1 = dk. Define f (x) =
k´1
ř

ℓ=0

x dℓ and g = hf.
Then

g(x) = (x d ´ 1)
k´1
ÿ

ℓ=0

x dℓ = x kd ´ 1 = x p´1 ´ 1 .

Therefore, g(x) = 0 mod p for all x P Z˚
p . The cancellation law in

Zp further implies that

for all x P Z˚
p , either h(x) = 0 mod p or f (x) = 0 mod p. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since h(p ´ 1) = p ´ 2 mod p and f (1) = k, h and f are not zero
polynomials. By the fact that the leading coefficient of f and h are
both 1 (and p ∤ 1), the previous lemma implies that the polynomial h
has at most d and the polynomial f has at most d(k−1) zeros modulo
p in Z˚

p . Denoting the number of zeros modulo p in t1, ¨ ¨ ¨ p−1u of
the polynomials g, h and f by Ng, Nh and Nf, we have

dk = Ng ď Nh + Nf ď d + d(k−1) = dk.

Therefore, exactly d(k−1) elements in Z˚
p are zeros of f modulo p,

and exactly d elements in Z˚
p are zeros of h modulo p. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Theorem
For every odd prime p there exists at least one primitive root modulo
p; that is, there exists a P N such that ordp(a) = φ(p) = p ´ 1.

Proof.
For a prime factor q of p ´1, let kq be the unique number satisfying

qkq |(p−1) , qkq+1 ∤ (p ´ 1) .

We first prove that for each prime factor q of p ´ 1 there exists
a = aq P Z˚

p such that ordp(aq) = qkq .

Let q be a prime factor of p−1. By the previous lemma the poly-
nomial h(x) ” x q kq −1 has exactly qkq zeros modulo p in Z˚

p . Let
aq be one of these zeros, then aqkq

q = 1 mod p so it follows that
ordp(aq)|qkq . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
If this zero aq of h has the additional property ordp(aq)|q j for some
j P N with j ă kq, then ordp(aq)|qkq−1 holds. Then

aqkq´1

q = 1 mod p .
Hence, aq P Z˚

p is a zero modulo p of the polynomial f (x) ”

x q kq−1−1. By the previous lemma, there are exactly qkq−1 of these.
This means that of the qkq zeros aq of h at most qkq−1 such aq
satisfy in addition ordp(aq)|q j with j ă kq. Therefore, there remain
qkq−qkq−1 zeros aq P t1, ¨ ¨ ¨ , p−1u that satisfy

ordp(aq)|qkq and ordp(aq) ∤ q j @ j ă kq . (8)

Since q is assumed prime, we conclude that there are qkq−qkq−1

numbers aq P t1, 2, ¨ ¨ ¨ , p ´ 1u satisfying qkq = ordp(aq). This
establishes the first statement. ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
If this zero aq of h has the additional property ordp(aq)|q j for some
j P N with j ă kq, then ordp(aq)|qkq−1 holds. Then

aqkq´1

q = 1 mod p .
Hence, aq P Z˚

p is a zero modulo p of the polynomial f (x) ”

x q kq−1−1. By the previous lemma, there are exactly qkq−1 of these.
This means that of the qkq zeros aq of h at most qkq−1 such aq
satisfy in addition ordp(aq)|q j with j ă kq. Therefore, there remain
qkq−qkq−1 zeros aq P t1, ¨ ¨ ¨ , p−1u that satisfy

ordp(aq)|qkq and ordp(aq) ∤ q j @ j ă kq . (8)

Since q is assumed prime, we conclude that there are qkq−qkq−1

numbers aq P t1, 2, ¨ ¨ ¨ , p ´ 1u satisfying qkq = ordp(aq). This
establishes the first statement. ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
If this zero aq of h has the additional property ordp(aq)|q j for some
j P N with j ă kq, then ordp(aq)|qkq−1 holds. Then

aqkq´1

q = 1 mod p .
Hence, aq P Z˚

p is a zero modulo p of the polynomial f (x) ”

x q kq−1−1. By the previous lemma, there are exactly qkq−1 of these.
This means that of the qkq zeros aq of h at most qkq−1 such aq
satisfy in addition ordp(aq)|q j with j ă kq. Therefore, there remain
qkq−qkq−1 zeros aq P t1, ¨ ¨ ¨ , p−1u that satisfy

ordp(aq)|qkq and ordp(aq) ∤ q j @ j ă kq . (8)

Since q is assumed prime, we conclude that there are qkq−qkq−1

numbers aq P t1, 2, ¨ ¨ ¨ , p ´ 1u satisfying qkq = ordp(aq). This
establishes the first statement. ˝

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
For each prime factor q of p ´ 1, let aq be one particular number
in t1, 2, ¨ ¨ ¨ , p ´ 1u satisfying ordp(aq) = qkq . Define

a =
ź

q: prime factor of p ´ 1

aq .

Then a is a primitive root modulo p since

ordp(a) =
ź

q: prime factor of p ´ 1

ordp(aq) .

which can be shown inductively using 3⃝ of the first theorem in this
sub-section. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Lemma
Let p be an odd prime and a be a primitive root modulo p satisfying

aφ(p)mod p2 ‰ 1 .

Then for all k P N, aφ(pk) mod pk+1 ‰ 1.

Proof.
We first note that if k P N, by the fact that gcd(a, pk) = 1 the Euler
Theorem implies that

aφ(pk) mod pk = 1 ;

thus there exists nk P N such that

aφ(pk) = 1 + nkpk .

Let D =
␣

k P N
ˇ

ˇ aφ(pk) modpk+1 ‰ 1
(

. By assumption, 1 P D. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

Suppose that k P D. Then aφ(pk) ‰ 1 + mpk+1 for all m P N.
Therefore, p ∤ nk. Using the formula for the Euler function,

φ(pk+1) = pk(p ´ 1) = pφ(pk) ;

thus
aφ(pk+1) = apφ(pk) = (aφ(pk))p = (1 + nkpk)p

= 1 + nkpk+1 +
p
ÿ

ℓ=2

Cp
ℓ nℓ

kpkℓ .

Therefore, by the fact that p ∤ nk and pk+2|pkℓ for all ℓ ě 2 and
k P N, we find that

aφ(pk+1) mod pk+2 = (1 + nkpk+1) mod pk+2 ‰ 1 .

This shows that k+1 P D. By induction we conclude the lemma. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Theorem
Let p be an odd prime and let a be a primitive root modulo p. Then
for all k P N either ordpk(a) = φ(pk) or ordpk(a + p) = φ(pk); that
is, either a or a + p is a primitive root modulo pk.

Proof.
Let a be a primitive root modulo p.
Case 1 - aφ(p) mod p2 ‰ 1: Let D =

␣

k P N
ˇ

ˇ ordpk(a) = φ(pk)
(

.
Since a is a primitive root modulo p, 1 P D. Suppose that
k P D. By the definition of the order, there exists n P N such
that

aordpk+1 (a) = 1 + npk+1 = 1 + nppk .

Therefore, aordpk+1 (a) ” 1 mod pk and the first theorem in this
sub-section implies that ordpk(a)|ordpk+1(a). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

By the assumption that k P D, ordpk(a) = φ(pk) = pk´1(p´1);
thus pk´1(p ´ 1)|ordpk+1(a). This implies that there exists n1 P

N such that
ordpk+1(a) = n1pk´1(p ´ 1) .

On the other hand, the first theorem in this sub-section implies
that

ordpk+1(a)|φ(pk+1) ;

thus there exists n2 P N such that

n2 ¨ ordpk+1(a) = φ(pk+1) = pk(p ´ 1) .

Therefore, n1n2 = p which, by the fact that p is prime, shows
that (n1, n2) = (1, p) or (n1, n2) = (p, 1). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

If (n1, n2) = (1, p), then ordpk+1(a) = pk´1(p ´ 1) = φ(pk)

which further shows that

aφ(pk) mod pk+1 = 1 ,

a contradiction to the previous lemma. Therefore, (n1, n2) =

(p, 1) and we then have

ordpk+1(a) = pk(p ´ 1) = φ(pk+1) .

This concludes that k + 1 P D. By induction, D = N.

Case 2 - aφ(p) mod p2 = 1: First we note that in this case there
exists n3 P N such that ap´1 = 1 + n3p2. Let r = ordp(a + p).
Then r |φ(p) and

(a + p)r mod p = 1 . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

By binomial expansion, a r mod p = 1 which further implies
that φ(p)|r. Therefore, r = φ(p); thus a + p is also a primitive
root modulo p. Next we show that (a + p)φ(p) mod p2 ‰ 1.
To see this, by binomial expansion we have

(a + p)p´1 = ap´1 + (p ´ 1)ap´2p +
p´1
ÿ

ℓ=2

Cp´1
ℓ ap´ℓ´1pℓ

= 1 + n3p2 ´ pap´2 + p2ap´2 + p2
p´1
ÿ

ℓ=2

Cp´1
ℓ ap´ℓ´1pℓ´2

= 1 + n4p2 ´ pap´2 .

Since (by Fermat little theorem) ap´1 mod p = 1, p ∤ ap´2;
thus (a + p)φ(p) mod p2 ‰ 1. Therefore, Case 1 shows that
ordpk+1(a + p) = φ(pk+1). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Theorem

Let N =
J
ś

j=1
nj with nj P N and gcd(ni, nj) = 1 if i ‰ j. Then

g : Z˚
N Ñ Z˚

n1
ˆ Z˚

n2
ˆ ¨ ¨ ¨ ˆ Z˚

nJ defined by

g(a) =
(
a mod n1, a mod n2, ¨ ¨ ¨ , a mod nJ

)
is a bijection.

Proof.
We first show that g(Z˚

N) Ď Z˚
n1

ˆ Z˚
n2

ˆ ¨ ¨ ¨ ˆ Z˚
nJ . For each

1 ď j ď J, let gj(a) = a mod nj. Then g = (g1, ¨ ¨ ¨ , gJ), and
gj(a) P Z˚

nj for all a P Z˚
N. Let a P Z˚

N and j P t1, 2, ¨ ¨ ¨ , Ju be
given, and γ = gcd(gj(a), nj). Then there exist ℓ, k P N such that
gj(a) = γℓ and nj = γk. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Therefore,

γℓ = gj(a) = a ´

[ a
nj

]
nj = a ´

[ a
nj

]
γk ,

we find that
a
γ
= ℓ+

[ a
nj

]
k .

The identity above shows that γ |a. Moreover, nj |N, we must have
γ |N as well; thus the fact that gcd(a,N) = 1 implies that γ = 1. In
other words, gcd(gj(a), nj) = 1 for all 1 ď j ď J, and this shows that
gj(a) P Z˚

nj for all 1 ď j ď J; thus g(Z˚
N) Ď Z˚

n1
ˆZ˚

n2
ˆ ¨ ¨ ¨ ˆZ˚

nJ . ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Next we show that g is injective. Suppose the contrary that there
exist a1, a2 P Z˚

N, a1 ‰ a2, such that g(a1) = g(a2). W.L.O.G. we
assume that a1 ą a2. Then for all 1 ď j ď J, gj(a1) = gj(a2); thus

a1 ´ a2 =
([a1

nj

]
´

[a2
nj

])
nj @ 1 ď j ď J .

Therefore, nj |(a1 ´ a2) for all 1 ď j ď J. Since gcd(ni, nj) = 1 if

i ‰ j and N =
J
ś

j=1
nj, we find that N |(a1 ´a2), a contradiction. This

establishes that g is injective. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Finally, we prove that g is surjective. Let mj = N/nj. Then
gcd(mj, nj) = 1; thus there exist xj, yj P Z such that mj xj+nj yj = 1.
For b = (b1, ¨ ¨ ¨ , bJ) P Z˚

n1
ˆ Z˚

n2
ˆ ¨ ¨ ¨ ˆ Z˚

nJ , define

h(b) =
( J
ÿ

j=1

mj xj bj
)

mod N . (9)

Such h is well-defined: if rxj and ryj also validate mj rxj + nj ryj = 1,
then for all 1 ď k ď J, by the fact that mj/nk P N if j ‰ k ,

1

nk

J
ÿ

j=1

mj(xj ´ rxj)bj =
ÿ

j‰k

mj
nk

(xj ´ rxj)bj +
mk
nk

(xk ´ rxk)bk

=
ÿ

j‰k

mj
nk

(xj ´ rxj)bj +
mkxk ´ mkrxk

nk
bk ˝
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§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).

This shows that nk is a factor of
J
ř

j=1
mj(xj ´ rxj)bj for all 1 ď k ď

J. Since gcd(ni, nj) = 1 if i ‰ j, we also have N is a factor of
J
ř

j=1
mj(xj ´ rxj)bj. Therefore,( J

ÿ

j=1

mj xj bj
)

mod N =
( J
ÿ

j=1

mj rxj bj
)

mod N ;

thus h given by (9) is well-defined.

Now we show that g is surjective by showing that h(b) P Z˚
N and

g(h(b)) = b for all b P Z˚
n1

ˆ Z˚
n2

ˆ ¨ ¨ ¨ ˆ Z˚
nJ . Let b P Z˚

n1
ˆ Z˚

n2
ˆ

¨ ¨ ¨ ˆ Z˚
nJ be given. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
For a fixed k P t1, 2, ¨ ¨ ¨ , Ju,
1

nk
(h(b) ´ bk) =

1

nk

[( J
ÿ

j=1

mj xj bj
)

mod N ´ bk
]

=
1

nk

! J
ÿ

j=1

mj xj bj ´

[řJ
j=1 mj xj bj

N

]
N ´ bk

)

=
ÿ

j‰k

mj
nk

xjbj +
mkxk ´ 1

nk
bk ´

[řJ
j=1 mj xj bj

N

] N
nk

P Z .

Therefore, for each 1 ď k ď J there exists zk P Z such that

h(b) = bk + zknk . (10)

To show that g is surjective it then suffices to show that h(b) P Z˚
N

since then gk(h(b)) = bk which establishes that g(h(b)) = b. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Nevertheless, that for each 1 ď k ď J there exists zk P Z such that

h(b) = bk + zknk (10)
implies that

gcd(h(b), nk) = gcd(bk, nk) = 1 @ 1 ď k ď J .

The fact that gcd(ni, nj) = 1 if i ‰ j further shows that
gcd(h(b),N) = 1; thus h(b) P Z˚

N and we conclude that g is surjec-
tive. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Lemma
Let p be an odd prime, k P N, and s P N Y t0u. For a randomly
chosen b from Z˚

pk with equally distributed probability 1/φ(pk), the
probability of that ordpk(b)/2s is an odd number is not greater than
1/2. In other words,

(@ p, k, s)
(

#
␣

b P Z˚
pk
ˇ

ˇ ordpk(b) = 2st with an odd t
(

ď
1

2
φ(pk)

)
.

Proof.
Let p, k and s be given. Then #Z˚

pk = φ(pk) and there exist uniquely
determined µ, ν P N with ν odd such that φ(pk) = pk(p´1) = 2µν.
It follows from previous theorems that there exists a primitive root
a P N for pk and

Z˚
pk =

␣

a j mod pk ˇ
ˇ j P t1, 2, ¨ ¨ ¨ , φ(pk)

(

. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Hence, via the identification b = a j mod pk, the random selection
of one of the equally distributed b in Z˚

pk is the same as the random
selection of an equally distributed j P

␣

1, ¨ ¨ ¨ , φ(pk)
(

. Moreover,

ordpk(b) = φ(pk)

gcd( j, φ(pk))

which shows that ordpk(b) = 2st if and only if

2st = 2µν

gcd( j, 2µν) . (11)

By (11) we can deduce that the case s ą µ cannot occur because in
that case we would have 2|ν, a contradiction to the assumption of
ν is odd. Therefore, for the event “ordpk(b)/2s is odd” to happen,
we must have s ď µ. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Now consider the case s ď µ (so that the event “ordpk(b)/2s is
odd” could happen). Suppose that j = 2ωx for some odd x (in the
identification b = a j mod pk). Then

gcd( j, 2µν) = 2mintω,µu
ź

p: odd primes
pκp (12)

with some κp P NY t0u. In order to have ordpk(b) = 2st, using (11)
we obtain that

gcd( j, 2µν) = 2µ´sν/t . (13)
Since ν and t are assumed odd, it follows that then ν/t has to be odd
as well. It then follows from (12) and (13) that mintω, µu = µ−s
which shows ω = µ−s ; thus j takes the form j = 2µ−sx with an odd
x and belong to

␣

1, ¨ ¨ ¨ , φ(pk)
(

. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since φ(pk) = 2µν, in the set

␣

1, ¨ ¨ ¨ , φ(pk)
(

there exist 2sν mul-
tiples of 2µ−s, namely

␣

2µ´s ˆ 1, 2µ´s ˆ 2, ¨ ¨ ¨ , 2µ´s ˆ 2sν
(

.

Of these 2sν multiples of 2µ−s only half are of the form j = 2µ−sx
with an odd x. Therefore, when s ď u the fact that all j are cho-
sen with the same probability implies that the probability of that
ordpk(b)/2s is an odd number is given by

Number of possible j of the form j = 2µ−sx with x odd
Number of possible j

which, using that s ď µ, is not greater than 1/2. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Finally, we restate and prove the main theorem in this sub-section.
Theorem

Let N P N be odd with prime factorization N =
J
ś

j=1
p νj

j , where p1,

¨ ¨ ¨ , pJ are distinct prime numbers. For a randomly chosen b P Z˚
N,

the probability of that r ” ordN(b) is even and br/2 + 1 mod N ‰ 0

is at least 1 ´ 1/2J´1.

Proof.
Since by assumption N is odd, all its prime factors p1, ¨ ¨ ¨ , pJ have to
be odd as well, and we can apply the previous lemma for their powers
p νj

j . We establish the theorem by showing that the probability of
that “r is odd” or “r is even but br/2+1 = 0 mod N” is not greater
than 1/2J´1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
By one of the previous theorem, every b P Z˚

N corresponds uniquely
to a set of bj P Z˚

nj with 1 ď j ď J and vice versa, where nj = p νj
j

and bj ” b mod nj. An arbitrary selection of b is thus equivalent to
an arbitrary selection of the tuple (b1, ¨ ¨ ¨ , bJ) P Z˚

n1
ˆ ¨ ¨ ¨ ˆ Z˚

nJ
.

Suppose that r = ordN(b), rj = ordnj(bj) and write r = 2st, rj = 2sjtj

for some odd numbers t and tj. We first show that

r = lcm(r1, r2, ¨ ¨ ¨ , rJ) , (14)

where lcm(r1, r2, ¨ ¨ ¨ , rJ) denotes the least common multiple of r1,
r2, ¨ ¨ ¨ , rJ. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
To see this, note that for any k P N,

bk
j mod p νj

j =
(
b mod p νj

j
)k mod p νj

j = bk mod p νj
j ;

thus rj is also the smallest natural number satisfying

brj ” 1 mod p νj
j . (15)

In other words, rj = ordnj(b). By the definition of r there exists
z P N such that

br = 1 + zN = 1 + z
J
ź

j=1

p νj
j ,

thus br ” 1 mod p νj
j for all 1 ď j ď J. The first theorem in this

sub-section then shows that rj |r for all 1 ď j ď J so that we have

lcm(r1, r2, ¨ ¨ ¨ , rJ)|r . (16)̋
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let L ” lcm(r1, r2, ¨ ¨ ¨ , rJ) and 1 ď j ď J. By the first Theorem
in this sub-section again L satisfies bL ” 1 mod p νj

j ; thus p νj
j is a

factor of bL´1. Since p1, ¨ ¨ ¨ , pJ are distinct primes, we find that the
product of all p νj

j is also a factor of bL ´ 1. Therefore, bL ” 1 mod
N which further implies that r |L. Together with (16), we conclude

r = lcm(r1, r2, ¨ ¨ ¨ , rJ) . (14)
Next we show that

the event “r is odd” _ “2 |r but br/2 + 1 ” 0 mod N”
corresponds to a subset of the set
␣

(s1, ¨ ¨ ¨ , sJ)
ˇ

ˇ (Ds P N Y t0u)(@ 1 ď j ď J)(sj = s)
(

.

˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Using (14), we find that r is odd if and only if 2 ∤ rj for all 1 ď j ď J.
Therefore,

r is odd if and only if sj = 0 for all 1 ď j ď J. (17)
Now we consider the case that r is even but br/2 + 1 ” 0 mod
N. Then there exists ℓ P N such that br/2 + 1 = ℓN. Letting
ℓj = ℓN/p νj

j , we have br/2 + 1 = ℓjp νj
j for all 1 ď j ď J; thus

br/2 + 1 ” 0 mod p νj
j . (18)

On the other hand, note that (14) implies that sj ď s for all 1 ď j ď

J. Suppose that sj ă s for some 1 ď j ď J. Then the fact that

2st = r = kjrj = kj2
sjtj

shows that kj = 2s´sjt/tj is even. ˝
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§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Using (14), we find that r is odd if and only if 2 ∤ rj for all 1 ď j ď J.
Therefore,

r is odd if and only if sj = 0 for all 1 ď j ď J. (17)
Now we consider the case that r is even but br/2 + 1 ” 0 mod
N. Then there exists ℓ P N such that br/2 + 1 = ℓN. Letting
ℓj = ℓN/p νj

j , we have br/2 + 1 = ℓjp νj
j for all 1 ď j ď J; thus

br/2 + 1 ” 0 mod p νj
j . (18)

On the other hand, note that (14) implies that sj ď s for all 1 ď j ď

J. Suppose that sj ă s for some 1 ď j ď J. Then the fact that

2st = r = kjrj = kj2
sjtj

shows that kj = 2s´sjt/tj is even. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let zj = kj/2. Then r/2 = zjrj with zj P N; thus using (15) we find
that

br/2 mod p νj
j = bzjrj mod p νj

j =
(
brj mod p νj

j
)zj mod p νj

j
= 1 mod p νj

j = 1 ,

a contradiction to (18). Therefore, we must have sj = s for all
1 ď j ď J if r is even but br + 1 ” 0 mod N. Together with (17),
we conclude that

the event “r is odd” _ “2 |r but br/2 + 1 ” 0 mod N”
corresponds to a subset of the set
␣

(s1, ¨ ¨ ¨ , sJ)
ˇ

ˇ (Ds P N Y t0u)(@ 1 ď j ď J)(sj = s)
(

.

˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Let zj = kj/2. Then r/2 = zjrj with zj P N; thus using (15) we find
that

br/2 mod p νj
j = bzjrj mod p νj

j =
(
brj mod p νj

j
)zj mod p νj

j
= 1 mod p νj

j = 1 ,

a contradiction to (18). Therefore, we must have sj = s for all
1 ď j ď J if r is even but br + 1 ” 0 mod N. Together with (17),
we conclude that

the event “r is odd” _ “2 |r but br/2 + 1 ” 0 mod N”
corresponds to a subset of the set
␣

(s1, ¨ ¨ ¨ , sJ)
ˇ

ˇ (Ds P N Y t0u)(@ 1 ď j ď J)(sj = s)
(

.

˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor’s Algorithm
Proof (cont’d).
Since all sj’s are chosen independently, the previous lemma that

P({r is odd} _ {br/2 + 1 ” 0 mod N})

ď
8
ÿ

s=0

P({sj = s for all 1 ď j ď J})

=
8
ÿ

s=0

J
ź

j=1

P({sj = s})=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P({sj = s})

=
8
ÿ

s=0

P({s1 = s})
J
ź

j=2

P
(
{rj = 2st with an odd t}

)
ď

8
ÿ

s=0

P({s1 = s}) 1

2J´1
=

1

2J´1
.

Therefore, the probability of that r ” ordN(b) is even and br/2 + 1

mod N ‰ 0 is at least 1 ´ 1/2J´1. ˝
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