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Chapter 6. Shor's Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to

find the correct factors.
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Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of

two prime numbers".
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Chapter 6. Shor’s Factoring Algorithm

Chapter 6. Shor's Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of
two prime numbers”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the
most famous quantum algorithm to factor large numbers, the Shor

algorithm.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

RSA is an asymmetric encryption (2-4+4L35% 4c %) technique that
uses two different keys as public and private keys to perform the

encryption and decryption.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

RSA is an asymmetric encryption (2-4+4L35% 4c %) technique that
uses two different keys as public and private keys to perform the
encryption and decryption. The public key is represented by the
integers n and e, and the private key by the integer d. A basic
principle behind RSA is to find three very large positive integers e,
d, and n, such that with modular exponentiation all messages m e N
with 0 < m < n satisfies

(m®)¥ = m (mod n)

and that knowing e and n, or even m, it can be extremely difficult
to find d.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.1 Mathematical foundation

Definition (Greatest common divisor)

Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = ged(a, b), if
@ dis a common divisor of a and b.

@ every common divisor ¢ of a and b is not greater than d.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjqj + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjqj + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k

Q gcd(a, b) = ry, the last non-zero remainder in the list.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjqj + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k

Q gcd(a, b) = ry, the last non-zero remainder in the list.

Q If{s}k | and {tj}j-‘:_1 are defined by

=1
1 ifj=—1,

S = 0 ifj:(),

Si—2 — qj—15j—1 ifj=>1,
0 ifj=—1,

t= 1 ifji=0),

tio—qi1ti1 ifj>=1,
then

atj+ bs; = r; V1<j<k.

T = = =
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. By the Division Al-

gorithm, there exists positive integer g; and non-negative integer r
such that b= aqy+n and 0 < n < a. If n = 0, the lists terminate;
otherwise, for 0 < r; < a, there exists positive integer g; and non-
negative integer rp suchthat a= rigi+mnand 0 < rn < ry. If b =0,
the lists terminate; otherwise, for 0 < rn < ri, there exists positive
integer g and non-negative integer r3 such that r; = gy + r3 and
0 < r3 < rp. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers ry, ra, r3,---. This lists must
end, so there is an integer k such that rq = 0.

Ching-hsiao Cheng £330 ¥ L # MA5501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. By the Division Al-

gorithm, there exists positive integer g; and non-negative integer r
such that b= aqy+n and 0 < n < a. If n = 0, the lists terminate;
otherwise, for 0 < r; < a, there exists positive integer g; and non-
negative integer rp suchthat a= rigi+mnand 0 < rn < ry. If b =0,
the lists terminate; otherwise, for 0 < rn < ri, there exists positive
integer g and non-negative integer r3 such that r; = gy + r3 and
0 < r3 < rp. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers ry, ra, r3,---. This lists must
end, so there is an integer k such that rq = 0.

Therefore, with r_1 and ry denoting b and a respectively, we have

ri=rn>n>n>-->rn>rre =0,

ri-1 = riqj+riy1 forall 0 <j<k. o

= = =
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Proof (cont'd).
© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.

(® On the other hand, d divides r_; and ry. Therefore, by the
fact that rip1 = ri_1 — rjg; for all 0 < j < k, we find that
d divides rj;q for all 0 < j < k.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.
(® On the other hand, d divides r_; and ry. Therefore, by the
fact that rip1 = ri_1 — rjg; for all 0 < j < k, we find that
d divides rj;q for all 0 < j < k.
By (@), rx is a common divisor of a and b. By (b), the greatest
common divisor of a and b must divide ry; thus we conclude
that rx = ged(a, b). o
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that

@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .

® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bs; = a(1+qoq1) —bq1 = a—qi(b—aqo) = nn—qir =r2.
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bsy = a(14+qoq1) —bgr = a—qi1(b—aqp) = nn—qir = ra.
(© Suppose that (%) holds for k=¢,£ —1, £ = 2. Then
atey1 + bser1 = a(t—1 — qete) + b(se—1 — qese)
= aty_1 + bs;_1 — qe(at; + bsy)
=lr—1—dqere = 41 -
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Proof (cont'd).

@ To see that for all 1 < j < k,
atj+ bs; = r;, (%)

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bsy = a(1+qoq1)—bg1 = a—q1(b—aqo) = o—quir = ra.
(© Suppose that (%) holds for k=¢,£ —1, £ = 2. Then
atey1 + bser1 = a(t—1 — qete) + b(se—1 — qese)
= aty_1 + bs;_1 — qe(at; + bsy)
=Tr—1— qere = 41 -

By induction, we conclude that (*) holds for 1 < j < k. o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark: Let a,b € N with a < b. The algorithm to compute
ged(a, b) given in part 1 of the previous theorem is caleed Euclid’s
Algorithm (#% # 4p “ﬁi i), and the algorithm to compute x,y € Z
so that ax + by = gcd(a, b) given in part 2 of the previous theorem
is called Extended Euclid’s Algorithm.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.
Therefore, 4 = ged(12, 32).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.

Therefore, 4 = ged (12, 32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x 1 =12 x 3432 x (—1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.

Therefore, 4 = ged (12, 32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x 1 =12 x 3432 x (—1).

One can also obtain the “coefficients” 3 and —1 using Extended
Euclid’s Algorithm:

Jlhnla| s |y
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be non-zero integers. The gcd of a and b is the smallest

positive linear combination of a and b; that is,
ged(a, b) = min{am+ bn|am+ bn > 0,m,ne Z} .
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be non-zero integers. The gcd of a and b is the smallest

positive linear combination of a and b; that is,
ged(a, b) = min{am+ bn|am+ bn > 0,m,ne Z} .

Let d = am + bn be the smallest positive linear combination of a
and b.
@ By the Division Algorithm, there exist integers g and r such
that a= dq+ r, where 0 < r< d. Then
r=a—dq=a— (am+ bn)g= a(l — m)+ b(—nq);
thus ris a linear combination of a and b. Since 0 < r < d, we
must have r = 0. Therefore, a = dg; thus d|a. Similarly, d|b;

thus d is a common divisor of a and b. o
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Proof (cont'd).
@ Let c be a common divisor of a and b. Then c divides d since
d = am+ bn. Therefore, c < d.
By @ and (@, we find that d = ged(a, b). =

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Let c be a common divisor of a and b. Then c divides d since

d = am + bn. Therefore, ¢ < d.
By @ and (@, we find that d = ged(a, b). =

.

Definition (Euler function)
Let ne N. The function ¢ : N — N defined by

o(n) = #{keN|1 < k< nand ged(k n) =1}

is called the Euler (phi) function.
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Proof (cont'd).

@ Let c be a common divisor of a and b. Then c divides d since

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

d = am + bn. Therefore, ¢ < d.
By @ and (@, we find that d = ged(a, b). =

.

Definition (Euler function)
Let ne N. The function ¢ : N — N defined by

o(n) = #{keN|1 < k< nand ged(k n) =1}

is called the Euler (phi) function. In other words, the Euler function

counts the positive integers up to a given integer n that are coprime

to n.
4
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption

PROPOSITION

For each ne N, 1
= 1--).
o) =n]] (1-7)

p prime
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PROPOSITION
For each ne N,

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

gp(n):nlﬂ (1—;).

p prime

.
. .. ki
In particular, by writing n = ] pjj = pfl péQ ---pk, where
=1
pi,: -+, pr are distinct prime numbers and ky,--- , k. € N, one has

o) = 15" (5~ 1)
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PROPOSITION
For each ne N,

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

gp(n):nlﬂ <1_i17>'

p prime

r
In particular, by writing n = ] pjkj = pfl péQ ---pk, where
=1
pi,: -+, pr are distinct prime numbers and ky,--- , k. € N, one has

o) = 15" (5~ 1)

Let m,n e N be such that gcd(m, n) = 1. Then ¢(mn) = ¢(m)ep(n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a = gn+ r for some ge Z and re {0,1,--- ,n— 1}.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a = gn+ r for some ge Z and re {0,1,--- ,n— 1}.
For a,b € Z, the notation a = b (mod n) denotes the fact that
n|(a — b); that is, there exists m € Z such that a— b = mn.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a = gn+ r for some ge Z and re {0,1,--- ,n— 1}.
For a,b € Z, the notation a = b (mod n) denotes the fact that

n|(a — b); that is, there exists m € Z such that a— b = mn.
v

Definition
The addition @ on Z, is defined by

c=a®b if and only if (a+ b) mod n outputs c,
and the multiplication ® on Z,, is defined by

c=a®b if and only if (a- b) mod n outputs c,

where + and - are the usual addition and multiplication on Z.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).

PROPOSITION

Let a,b,c,de€ Z and n € N be such that a= ¢ (mod n) and b= d
(mod n). Then a-b=c-d (mod n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).

PROPOSITION

Let a,b,c,de€ Z and n € N be such that a= ¢ (mod n) and b= d
(mod n). Then a-b=c-d (mod n).

PROPOSITION (CANCELLATION LAW IN Z,)

Let a,n € N be such that ged(a,n) = 1. Ifa- b= a-c (mod n),
then b= ¢ (mod n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

.,

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that gcd(a,n) = p > 1. Then a = pg; and n = pgy for

some qi,qs € Z.

Ching-hsiao Cheng £ D chlcd A # MAS501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION
Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then

ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgs for
some q1, g2 € Z. Since a = b (mod n), there exists m € Z such that

a— b= mn. Therefore, b=a— mn= pg, — pgam = p(q1 — gam)
which shows that ged(b, n) = p. o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION
Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then

ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgs for
some q1, g2 € Z. Since a = b (mod n), there exists m € Z such that

a— b= mn. Therefore, b=a— mn= pg, — pgam = p(q1 — gam)
which shows that ged(b, n) = p. o

The proposition above shows that if a € Z satisfies ged(a, n) = 1,
then (a mod n) is coprime to n.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption

The integers coprime to n from the set {0,1,---,n—1} of n non-

negative integers form a group under multiplication modulo n.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The integers coprime to n from the set {0,1,---,n—1} of n non-

negative integers form a group under multiplication modulo n. In
other words, let S be a subset of Z, consisting of numbers coprime
to n; that is, S = {ke€ N|1 < k < n and ged(k,n) = 1}. Then
(S,®) is a group; that is,

© S is closed under multiplication (;

Q there exists an multiplicative identity 1 (that is, a® 1 = a for
allae$), and

© every element in S has an multiplicative inverse element (that
is, for each a € S there exists b€ S such that a© b=1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.
@O Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.

@O Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.

Q Let ac S. Then theset a® S = {a®s|se S} is a subset of
S. Moreover, if si, s € S satisfying that a® s; = a® s; that
is, a-s1 = a- sy (mod n), then s; = s5; thus #(a® S) = p(n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.

@O Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.

Q Let ac S. Then theset a® S = {a®s|se S} is a subset of
S. Moreover, if si, s € S satisfying that a® s; = a® s; that
is, a-s1 = a- sy (mod n), then s; = s5; thus #(a® S) = p(n).

This fact shows that there exists s € S such that a®s= 1. o )
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z%,®).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z%,®).

\,

LetneNand aeZ}. Ifa-x+n-y=1 for some x,y € Z, then

a ' =x(mod n),

where a~! denotes the unique number in 7 satisfying

a@a_lza_lG)a:l.

\,
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a,n € N be such that gcd(a,n) = 1. Then a¥™ =1 (mod n).

V
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a,n € N be such that gcd(a,n) = 1. Then a¥™ =1 (mod n).

Let aZ¥ be the set aZ} = {a-s|s e Z}}. Then the set aZ} mod
n={(a-s) mod n ’ se Z}} is identical to Z%. Therefore,

1_[ k= H k (mod n).

keZ¥ keaZ¥
Since [] k= a®® [] kand [] kis coprime to n, by the can-
kealZ¥ keZ¥ keZ¥
cellation law for Z, we find that a#™ =1 (mod n). o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Corollary (Fermat little theorem)

Let p be a prime number, and a € N satisfy ged(a,p) = 1. Then
aP~t =1 (mod p).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers

The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.

Ching-hsiao Cheng = D chlcd A # MAS501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.

e Key generation: The keys for the RSA algorithm are generated
in the following way:
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
e Key generation: The keys for the RSA algorithm are generated
in the following way:
@ Choose two distinct prime numbers p and q.
@ For security purposes, p and g should be chosen at random
and should be similar in magnitude but differ in length by
a few digits to make factoring harder.
® p and g are kept secret.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
e Key generation: The keys for the RSA algorithm are generated
in the following way:
@ Choose two distinct prime numbers p and q.
@ For security purposes, p and g should be chosen at random
and should be similar in magnitude but differ in length by
a few digits to make factoring harder.
® p and g are kept secret.
@ Compute n = pq.
@ n is used as the modulus for both the public and private
keys. Its length, usually expressed in bits, is the key length.
(® nis released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© Compute ¢(n), where ¢ is the Euler function. By previous
proposition, p(n) = (p—1)(g—1). ¢(n) is kept secret.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© Compute ¢(n), where ¢ is the Euler function. By previous
proposition, p(n) = (p—1)(g—1). ¢(n) is kept secret.

© Choose an integer e such that 1 < e < ¢(n) and ged(e, p(n)) =
1; that is, e and ¢(n) are coprime.

@ e having a short bit-length and small Hamming weight
results in more efficient encryption - the most commonly
chosen value for e is 21¢ + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for
e has been shown to be less secure in some settings.

(®) eis released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Determine d as d = e~ ! (mod ¢(n)); that is, d is the modular
multiplicative inverse of e modulo ¢(n).

@ This means: solve for d the equation d-e = 1 (mod
©(n)); d can be computed efficiently by using the extended
Euclidean algorithm.

(® dis kept secret as the private key exponent.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Determine d as d = e~ ! (mod ¢(n)); that is, d is the modular
multiplicative inverse of e modulo ¢(n).
@ This means: solve for d the equation d-e = 1 (mod
©(n)); d can be computed efficiently by using the extended
Euclidean algorithm.

(® dis kept secret as the private key exponent.

The public key consists of the modulus n and the public (or en-
cryption) exponent e. The private key consists of the private (or
decryption) exponent d, which must be kept secret. p, g, and ¢(n)
must also be kept secret because they can be used to calculate d.

In fact, they can all be discarded after d has been computed.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark:
@ In modern RSA implementation the use of Euler function ¢ is

replaced by Carmichael's totient function \ defined by
A(n) = min {ke N|a"=1 (mod n) for all a€ Z}}.
If p and g are prime numbers and n = pq, then
A(n) = lem(p—1,q— 1),
the least common multiple (& | 2 2 %) of p—1 and g — 1.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark:
@ In modern RSA implementation the use of Euler function ¢ is
replaced by Carmichael's totient function \ defined by
A(n) = min {ke N|a"=1 (mod n) for all a€ Z}}.
If p and g are prime numbers and n = pq, then
A(n) = lem(p—1,q— 1),
the least common multiple (& = & #c) of p— 1 and g — 1.
@ If both nand p(n) are known, then two primes p and g satisfying
n=pq, ¢n)=((pP-1)(q-1)
can be solved easily since p and g are zeros of
x? + [o(n) — (n+1)]x+n=0.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, e) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, e) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.

e Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 < m < n. He then
computes the ciphertext c using Alice's public key e by

c=m°® (mod n).

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, e) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.

e Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 < m < n. He then
computes the ciphertext c using Alice's public key e by

c=m°® (mod n).

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice. Note
that some values of m will yield a ciphertext c equal to m, but this
is very unlikely to occur in practice.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Decryption: Alice can recover m from c by using her private key
exponent d by computing

c?=(m®)9 = m (mod n).
Given m, she can recover the original message M by reversing the
padding scheme.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Decryption: Alice can recover m from c by using her private key
exponent d by computing

c?=(m®)9 = m (mod n).
Given m, she can recover the original message M by reversing the
padding scheme.

Here is an toy example of RSA encryption and decryption.

@ Choose two prime numbers p =11 and g = 31.

@ Compute n = pg = 341.

© Compute ¢(n) = (p—1)(g—1) =300 / (\(n) = lem(10,30) =
30).

© Choose the encryption key e = 17 so that 1 < e < ¢(n) and
ged(e,o(n) =1/ (1 < e< A(n) and ged(e, A(n)) = 1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Example (cont'd)

© Compute the decryption key d by Extended Euclid’s algorithm:

ri | g | s; t; -

J fi /j j j iTrnlal s t;
-1 | 300 1 0

-1 |30 1 0
0 17 | 17| O 1

0|17 ] 1 0 1
1 11 1 1 —17

1 13| 1 1 —1
2 6 1 | -1 18

2 4 3 | —1 2
3 5 1 2 | =35 30114/ 4 7
4 1 5 | =3 | 53

which implies that 300x (—=3)+17x53 =1 (30x44+17x(-7) =
1); thus d =53 (d = —7 (mod 30) or d = 23).

v
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Example (cont'd)

Therefore, to encrypt m = 30, we raise to the power of 17 and

obtain the encrypted message:

307 =123 (mod 341).
To decrypt the encrypted message, we raise it to the power of 53
(23) and obtain that
123% = (123%)'7 - 123% = 30'" - 125 = 123 - 125 = 30 (mod 341)
(123% = (123%)7-1232 = 30" - 125 = 123 - 125 = 30 (mod 341))

V.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for

period-finding implies an efficient algorithm for factoring.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x € {2,--- , N — 1}
which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we

are already done.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x € {2,--- , N — 1}
which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we
are already done. From now on consider x and N are coprime, so x

is an element of the multiplicative group Zjy,.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence
1=x"mod N, x! mod N, x?2mod N, ---

This sequence will cycle after a while: there is a least 0 < r < N
such that x" =1 (mod N). The smallest such number r is called
the period of the sequence (a.k.a. the order of the element x in the

group (Zy, ®)).
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence
1=x"mod N, x! mod N, x?2mod N, ---
This sequence will cycle after a while: there is a least 0 < r < N
such that x" =1 (mod N). The smallest such number r is called
the period of the sequence (a.k.a. the order of the element x in the
group (Zpy,®)). If ris even,
x"=1 (mod N) < (x72)2 =1 (mod N)
< (x7? +1)(x7? =1) =0 (mod N)
< (x7? 4 1)(x"7? = 1) = kN for some k € N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence
1=x"mod N, x! mod N, x?2mod N, ---
This sequence will cycle after a while: there is a least 0 < r < N
such that x" =1 (mod N). The smallest such number r is called
the period of the sequence (a.k.a. the order of the element x in the
group (Zpy,®)). If ris even,
x"=1 (mod N) < (x72)2 =1 (mod N)

< (x7? +1)(x7? =1) =0 (mod N)

< (x7? 4 1)(x"7? = 1) = kN for some k € N.
Because both x/2 +1 > 0 and x"/2 — 1 > 0 (due to the fact that

x> 1), we must have k # 0. Hence x72 41 or x/?2 — 1 will share
a factor with V.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that x"/2 # 1 mod N for otherwise r/2 is a period of f. In other
words, ged(x”/? — 1,N) # N. It is still possible that gcd(x"/? —
1,N) = 1 and this is equivalent to that gcd(x”/? + 1,N) = N.
Therefore, we are able to factor N if gcd(x72 4+ 1, N) < N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that x"/2 # 1 mod N for otherwise r/2 is a period of f. In other
words, ged(x”/? — 1,N) # N. It is still possible that gcd(x"/? —
1,N) = 1 and this is equivalent to that gcd(x”/? + 1,N) = N.
Therefore, we are able to factor N if gcd(x72 4+ 1, N) < N.

Assuming that N is odd and not a prime power, it can be shown that
with probability not less than 1/2, the period r is even and x"2 41
r/2

and x7¢ — 1 are not multiples of .
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that x"/2 # 1 mod N for otherwise r/2 is a period of f. In other
words, ged(x”/? — 1,N) # N. It is still possible that gcd(x"/? —
1,N) = 1 and this is equivalent to that gcd(x”/? + 1,N) = N.
Therefore, we are able to factor N if gcd(x72 4+ 1, N) < N.
Assuming that N is odd and not a prime power, it can be shown that
with probability not less than 1/2, the period r is even and x"2 41
and x”2 — 1 are not multiples of N.

Accordingly, with high probability we can obtain an even period r so

that ged(x/? + 1, N) is a non-trivial factor of N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that x"/2 # 1 mod N for otherwise r/2 is a period of f. In other
words, ged(x”/? — 1,N) # N. It is still possible that gcd(x"/? —
1,N) = 1 and this is equivalent to that gcd(x”/? + 1,N) = N.
Therefore, we are able to factor N if gcd(x72 4+ 1, N) < N.

Assuming that N is odd and not a prime power, it can be shown that
with probability not less than 1/2, the period r is even and x"2 41
r/2

and x7¢ — 1 are not multiples of .

Accordingly, with high probability we can obtain an even period r so
that ged(x"72 +1, N) is a non-trivial factor of N. If we are unlucky
we might have chosen an x that does not give a factor (which we
can detect efficiently), but trying a few different random x gives a

high probability of finding a factor.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Factorization Algorithm: Let N be an odd natural number N that
has at least two distinct prime factors.
Step 1: Choose x€ {2,--- ,N— 1} and compute gcd(x, N).
0 If gcd(x, N) > 1, then ged(x, N) is a non-trivial factor of
N and we are done.
@ If gcd(x, N) = 1, then goto Step 2.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Factorization Algorithm: Let N be an odd natural number N that
has at least two distinct prime factors.
Step 1: Choose x€ {2,--- ,N— 1} and compute gcd(x, N).
0 If gcd(x, N) > 1, then ged(x, N) is a non-trivial factor of
N and we are done.
@ If gcd(x, N) = 1, then goto Step 2.
Step 2: Determine the period r of the function f(a) = x? mod N.
@ If ris odd, goto Step 1.
@ If ris even, goto Step 3.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Factorization Algorithm: Let N be an odd natural number N that
has at least two distinct prime factors.
Step 1: Choose x€ {2,--- ,N— 1} and compute gcd(x, N).
0 If gcd(x, N) > 1, then ged(x, N) is a non-trivial factor of
N and we are done.
@ If gcd(x, N) = 1, then goto Step 2.
Step 2: Determine the period r of the function f(a) = x? mod N.
@ If ris odd, goto Step 1.
@ If ris even, goto Step 3.
Step 3: Determine ged(x"/2 + 1, N).
o If gcd(x72 4+ 1, N) = N, then goto Step 1.
@ If gcd(x”? +1,N) < N, then ged(x7? + 1, N) is a non-
trivial factor of N and we are done.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Thus the problem of factoring reduces to finding the period r of
the function given by modular exponentiation f(a) = x? mod N. In
general, the period-finding problem can be stated as follows:

The period-finding problem: We are given some function f: N —
{0,1,--- , N — 1} with the property that there is some unknown
re {0,1,---,N—1} such that f(a) = f(b) if and only if a= b mod
r. The goal is to find r.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-

counter the value f(0) for the second time.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute f(0), (1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r

could be huge, polynomial in N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r
could be huge, polynomial in N. To be efficient, we would like a
runtime that is polynomial in log, IV, since that is the bitsize of the

inputs to .
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute f(0), (1), f(2), --- until we en-
counter the value 7(0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r
could be huge, polynomial in N. To be efficient, we would like a
runtime that is polynomial in log, IV, since that is the bitsize of the
inputs to f. It is generally believed that classical computers cannot

solve period-finding problems efficiently.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value 7(0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r
could be huge, polynomial in N. To be efficient, we would like a
runtime that is polynomial in log, IV, since that is the bitsize of the
inputs to f. It is generally believed that classical computers cannot
solve period-finding problems efficiently. This problem can be solved
efficiently on a quantum computer, using only O(loglog N) evalu-

ations of f (query) and O(loglog N) quantum Fourier transforms.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value 7(0) for the second time. The input at which
this happens is the period r that we are trying to find; however, r
could be huge, polynomial in N. To be efficient, we would like a
runtime that is polynomial in log, IV, since that is the bitsize of the
inputs to f. It is generally believed that classical computers cannot
solve period-finding problems efficiently. This problem can be solved
efficiently on a quantum computer, using only O(loglog N) evalu-
ations of f (query) and O(loglog N) quantum Fourier transforms.
Even a somewhat more general kind of period-finding can be solved
by Shor’s algorithm with very few fevaluations, whereas any clas-
sical bounded-error algorithm would need to evaluate the function
Q(N/3/\/log N) times in order to find the period.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = \/Z pr< 27r7'.SI<>U\X/‘ mod N)

r
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1

Ulys) = %Z eXp(—LriSk) X1 mod N)
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

B =1l . )
Ulibs) = cxp(QTs) %Z exp (—w) X1 mod N)
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = exp(QLri's) in] exp(—ﬂ) Ix*  mod N)
‘

r
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U\Q/}s>:exp(2Lris) \lfrrzzl exp<7%7is£)\xf mod N)

r
£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1

Ulys) = exp(@)%z exp( 27”“) Ix* mod N)

£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—ISk)]xk mod N)

k=0

with 0 < s < rsince

Ulysy = exp (27”5)\/2 pr( 2“’Sé>|x mod N)

£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U|ws> = CXP(@) |ws> :
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U|ws> = CXP(@) |ws> :

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [1s) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Now we will show how Shor's algorithm finds the period r of the func-
tion £, given a “black-box” that maps |a)|0¥) — |a)|f(a)). We can
always efficiently pick some q = 2L such that N? < g < 2N2. Then
we can implement the Fourier transform QFT using O((logy N)?)
gates. Let Oy denote the unitary that maps |a)|0%) — |a)|f(a)),
where the first register consists of L qubits, and the second of
K = [logy N] + 1 qubits.

oty = QFT QFT =

Or

107

Figure 1: Shor's period-finding algorithm
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Register A
<
start with [05)

Register B
<
start with [0X)

10) —

QFT
or
HO®L

QFT

) o)

10)

Figure 2: Shor's period-finding algorithm
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0 = |0EY|0K). Apply the QFT (or just L Hadamard gates)
to the first register to build the uniform superposition

) = (- @1y = 2= 57 9105,

where Ix denotes the identity map on the second register. The
second register still consists of zeroes.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0 = |0EY|0K). Apply the QFT (or just L Hadamard gates)
to the first register to build the uniform superposition

) = (HO: @ T) o) = }72 1305,

where Ix denotes the identity map on the second register. The
second register still consists of zeroes. Now use the “black-box” to
compute f(a) in quantum parallel:

S 3@y

1
|t2) = Of ) = —
\/aa:(J
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0 = |0EY|0K). Apply the QFT (or just L Hadamard gates)
to the first register to build the uniform superposition

1) = (HEL @ L)) = }72 2[0%),

where Ix denotes the identity map on the second register. The
second register still consists of zeroes. Now use the “black-box” to
compute f(a) in quantum parallel:

|2y = Of

*iqil a a
Y1) = ﬁ;\ )If @)

Next we apply the quantum Fourier transform QFT to the first
register to obtain the quantum state |3) = (Fq ® Ix)|1)2).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0 = |0EY|0K). Apply the QFT (or just L Hadamard gates)
to the first register to build the uniform superposition

1) = (HEL @ L)) = }72 2[0%),

where Ix denotes the identity map on the second register. The
second register still consists of zeroes. Now use the “black-box” to
compute f(a) in quantum parallel:

| (=

Y1) = \/aa; |a)[f(a)) -

Next we apply the quantum Fourier transform QFT to the first
register to obtain the quantum state [¢3) = (Fq ® Ix)|12). Finally,
we measure the first register and obtain a number b and wish to

|2y = Of

find the period of f based on this observation.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Some of the measurement b obtained by Shor's algorithm above are

useless. The measurement b becomes useful for us to determine the

period rif b belongs to the set
:{beZ’Osbs —1and‘f—f‘< forsomeceZ*}

where we recall that Z is the collection of numbers from {1,--- , r—
1} that are coprime to r so that #Z} = ¢(r).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Some of the measurement b obtained by Shor's algorithm above are

useless. The measurement b becomes useful for us to determine the

period rif b belongs to the set
:{beZ’Osbs —1and‘f—f‘< forsomeceZ*}

where we recall that Z is the collection of numbers from {1,--- , r—
1} that are coprime to r so that #ZF = ¢(r). We note that E is
indeed unknown to us (since ris unknown to us) but it exists and is

a non-empty set.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Some of the measurement b obtained by Shor's algorithm above are

useless. The measurement b becomes useful for us to determine the

period rif b belongs to the set
:{beZ’Osbs —1and‘f—f‘< forsomeceZ*}

where we recall that Z is the collection of numbers from {1,--- , r—
1} that are coprime to r so that #ZF = ¢(r). We note that E is
indeed unknown to us (since ris unknown to us) but it exists and is
a non-empty set. We will show in Section 6.5 that the probability
This

1
10In L’
implies that if we apply Shor's algorithm k times, the probability of
1

10In L

of obtaining b € E by Shor's algorithm is not less than

k
obtaining no b € E is less than (1 = ) which is quite small

when k is large.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Suppose that we apply Shor's algorithm and obtain one such b e E.

. b 1 .
Then there exists c € ZF such that |Z] — %| <353 We note that in
this inequality we only know b and q (so is the number x = b/q),

and both ¢ and r are unknown to us.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Suppose that we apply Shor's algorithm and obtain one such b e E.

Then there exists c € ZF such that |§ — %| < % We note that in
this inequality we only know b and q (so is the number x = b/q),
and both ¢ and r are unknown to us. Even though c and r are
unknown to us, the fact that c e Z} implies that % is an irreducible

fraction (& f§ » #&) .

Ching-hsiao Cheng = D chlcd A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Suppose that we apply Shor's algorithm and obtain one such b e E.

Then there exists c € ZF such that |§ — %| < % We note that in
this inequality we only know b and q (so is the number x = b/q),
and both ¢ and r are unknown to us. Even though c and r are
unknown to us, the fact that c e Z} implies that % is an irreducible
fraction (3~ f§ 4 #c) . Therefore, if there is a fast algorithm to find

. . . n . 2
all irreducible fractions — satisfying
m

and m<N, (1)

n
X—— | <

2m?
we can check whether the denominators m of all such irreducible

fractions is the period of f.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Suppose that we apply Shor's algorithm and obtain one such b e E.

- b ¢ .
Then there exists c € ZF such that |f — 7| < We note that in
q r

2r2°
this inequality we only know b and q (so is the number x = b/q),
and both ¢ and r are unknown to us. Even though c and r are
unknown to us, the fact that c e Z} implies that % is an irreducible
fraction (3~ f§ 4 #c) . Therefore, if there is a fast algorithm to find
all irreducible fractions % satisfying

n
X—— | <

P and m<N, (1)

we can check whether the denominators m of all such irreducible

fractions is the period of f. In Section 6.4 an efficient algorithm is

proposed to find all irreducible fractions % satisfying (1).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm: Let f: N U {0} — {0,1} be a
periodic function with period r satisfying 19 < r < 25/2 for some

L € N such that fis injective within one period.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm: Let f: N U {0} — {0,1} be a
periodic function with period r satisfying 19 < r < 25/2 for some
L € N such that fis injective within one period.

Step 1: Measure the first register of the quantum state

(Fyr ® 1) Ur (HO @ 1) (|05 ® [05)) .
and obtain b.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-Finding Algorithm

Shor’s period-finding algorithm: Let f: N U {0} — {0,1} be a
periodic function with period r satisfying 19 < r < 25/2 for some

L € N such that fis injective within one period.

Step 1: Measure the first register of the quantum state

(Fyr ® 1) Ur (HO @ 1) (|05 ® [05)) .
and obtain b.

Step 2: Find all irreducible fractions % satisfying

b n 1 L/2

— ——| < — and m < 2L/%.

|2L m| 2m?

@ If one of such denominator m is the period of f, we are
done.

@ If none of these denominators m is the period of f, then
b ¢ E and goto Step 1.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

A continued fraction (& 4 #&c), or simply CF, is a real number of

the form .

ao + 71 c
at——

as + —

The continued fraction above is denote by [ag; a1, a2, - - - | (here the

number of a;'s can be finite or infinite), and the a;'s are called the

partial quotients. We assume these to be positive natural numbers.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

A continued fraction (& 4 #&c), or simply CF, is a real number of

the form .
ao + 71 c
at——
as + —
The continued fraction above is denote by [ag; a1, a2, - - - | (here the

number of a;'s can be finite or infinite), and the a;'s are called the

partial quotients. We assume these to be positive natural numbers.

[a0; -+ -, an] is called the n-th convergent of the continued fraction
[ao; a1, @2, - -], and can be simply computed by the following itera-
tive scheme: [ag;- - , ap], in its lowest terms, is p,/q,, where

po=ao, p1=aao+1, pn=anpn-1+ Pn-2,

(2)
Q=1 q = ai, 4n = anqn-1+ gn-2 -
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Note that g, increases at least exponentially with n since g, >
2qnf2-
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Note that g, increases at least exponentially with n since g, >
2gp—_2. Given a real number x, the following “algorithm” gives a
continued fraction expansion of x:

ao=I[K, x=1/(x-a),
alz[xl], XQEl/(Xl—al),
agE[XQ], XgEl/(XQ—aQ),

Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the
number.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Note that g, increases at least exponentially with n since g, >
2gp—_2. Given a real number x, the following “algorithm” gives a

continued fraction expansion of x:

ao=I[K, x=1/(x-a),
alz[xl], XQEl/(Xl—al),
aQE[XQ], XgEl/(XQ—aQ),

Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the

number.

For an x € R, the sequence {a;} constructed from the algorithm

above terminates if and only if x is rational.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Let x = /2. Then ag = 1 and ax = 2 for all k € N. To see this,
we note that x; = ﬁ = 4/2 4+ 1 so we have a; = 2. This then
1 1
o — _ _Va+1
2 X1 — a1 V2+1-2
and as a consequence as = 2. Repeating this process, we find that
xxk =42+ 1 and a, = 2 for all ke N.

shows that
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Let x = /2. Then ag = 1 and ax = 2 for all k € N. To see this,

we note that x; = ﬁ = 4/2 4+ 1 so we have a; = 2. This then
shows that
1 1
o — _ V3241
2 X1 — a1 V2+1-2

and as a consequence as = 2. Repeating this process, we find that
Xk = /2 +1 and ax = 2 for all ke N. Using (2), we obtain that

n 1 2 3 4 5 6
Pn 3 7 17 41 99 239
Gn 2 5 12 29 70 169

|x—? 0.0858 | 0.0142 | 0.0025 | 4.2e-4 | 7.2e-5 | 1.2e-5
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Let x = /2. Then ag = 1 and ax = 2 for all k € N. To see this,

we note that x; = ﬁ = 4/2 4+ 1 so we have a; = 2. This then
shows that
1 1
o — _ V3241
2 X1 — a1 V2+1-2

and as a consequence as = 2. Repeating this process, we find that
Xk =+/2+1 and ax = 2 for all ke N. Using (2), we obtain that

n 7 8 9 10 11 12
Pn 577 | 1393 | 3363 | 8119 | 19601 | 47321
G 408 | 985 | 2378 | 5741 | 13860 | 33461

= 2| | 216 | 3.6e7 | 6.3¢:8 | 11e8 | 1.8¢9 | 3.2e-10
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

The convergence of the CF approximate x follows from the fact that

1
<

_ P
92

if x=[ao; a1, -], then ’x
dn

Recall that g, increases exponentially with n, so this convergence is

quite fast.

Ching-hsiao Cheng >3 8 A # MA5501*



Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

The convergence of the CF approximate x follows from the fact that

1
CIn

Pn

if x=[ao; a1, -], then ’ .

Recall that g, increases exponentially with n, so this convergence is
quite fast. Moreover, p,/q, provides the best approximation of x

among all fractions with denominator not greater than gp:

ifn>1 g<qn = 7&— then’
q

n
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Let b, q € N be given and let [ag; a1, - - - , an] be the continued frac-
tion of their quotient; that is

b
- =lap; a1, - ,an-
q
If ¢,re N are such that

1

"3_5‘<7
qg r 2r2’

c . . . b .
then - is a convergent of the continued fraction of —; that is, there
r q

exists a j€ {0,1,--- , n} such that

P

C
;z[ao;ah---,aj]qu

where p; and q; are as constructed by (2).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm
§6.5.1 Shor’s period-finding algorithm

Shor’s algorithm can be applied to find the period of a more general
class of periodic functions.

A
Let f: Nu {0} — N u {0} be a periodic function with period r
satisfying 19 < r < 22 for some L € N such that f is injective
within one period and is bounded by 2K — 1, and Ur be an (L + K)-
qubit quantum gate satisfying

Urla)|b) = |ay|b® f(a)), Vae {0,1}t, be {0,1}K.

Then each application of Shor's algorithm provides the period r with

a probability of at least oWl
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let M = max{f(a)|0 < a < 2t — 1} and K € N with M < 2K,
and H be the usual qubit Hilbert space with basis {|0), |1)}. Set
[v0y = |05 ® [0K). With Ik denoting the identity map on H®K,

=il

Y0 = E @Il = == 3 1@ 0%).

Applying Ur to |1)1), we find that

=il

[¥2) = Urln) = = 3 9@ |f(a). :
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

. o= =1 . S|
Define m = [ . ] the largest integer smaller than , and
R= (2L —1) mod r. Then
ol 1

iny = 75 3 [9®Ila) = @0<§K2L|Jr+s>®\for+s>>
m—1r—1
Z dlir+9®|f(s) + Zlmf+5>®!f( Dz
j 0 s=0
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

. o= =1 . S|
Define m = [ . ] the largest integer smaller than , and
R= (2L —1) mod r. Then
ol 1

iny = 75 3 [9®Ila) = @0<§K2L|Jr+s>®\for+s>>
m—1r—1
Z dlir+9®|f(s) + Zlmf+5>®!f( Dz
j 0 s=0

Define ms = m—1(g ) (s); thatis, ms = mif s< Rand ms = m—1
if s> R. Then

r—1 mg

[2) = ZZIJr+5>®|f S))- o

5—01 0
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Next we apply the quantum Fourier transform to the first L qubits
of 12 and obtain that
r—1 ms
|3) = (For ®I)l|¢h2) = ZZ Forljr+ ) ®|f(s))
s 0 =0
r—1 ms =il jrjl’
=2 00D 3 e (20190 15y 0 17(s) :
s=0j=0 b=0
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Now we measure the input register, and let P(b) denote the proba-
bility of observing |b) upon measurement. For be {0,--- ,2L — 1},
2
P(b) = exp <2W17(ths)b>’
s=0 j=0 2
— = Z [ Z exp (2771 hr + s)b )exp( ZW/M)}
2 s=0 " Jj1,j2=0 2
= 557 Z [ Z exp <27rl b) ( 27 ,Lf)]
2 s=0 " j1,j2=0 2
— : 5
:%ZHZ exp(27r/—Lb)‘ . o
2 L 2
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since d d+1 ifa=1,
ZaJ: 1— g9+
=0 e ifa#1,

we obtain that

. rb
ms ” ms+ 1 |f%eNu{O},
2 exp (27TIJ ) = 2milmstict
. oL 1—¢ . rb
—e
thus
1 = 2 . b
QHZ(m5+1) n‘?eNu{O},
s=0
P(b) = | 1 @il b o
—¢€ 2 o r
s=0
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Define

b ¢
E:{be{o, . -,2L—1}“§—7\

r

1 : X
<33 for some (unique) ce Z,},

B:{be{O, e 2L—1}‘|rb— c2t| é% for some (unique) ce Zf},
here we recall that Z? is the collection of numbers in {1,--- ,r—1}

that are coprime to r.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Define
C‘ 1

E={bef0, - 2t-1}]| 2 -

< ique) ce Z;}
—| < 5,3 for some (unique) ce Z} ¢,

B:{be{O, e 2L—1}‘|rb— c2t| é% for some (unique) ce Zf},
here we recall that Z? is the collection of numbers in {1,--- ,r—1}

that are coprime to r.

The fact that r < 2L/2 implies that if b€ B,
1 1 1

_C r <
2 roL  2.2L T 9r2°

b 1

In other words, B < E.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Define

b ¢
E:{be{o, . -,2L—1}“§—7\

r

1 : X
<33 for some (unique) ce Z,},

B:{be{O, e 2L—1}‘|rb— c2t| é% for some (unique) ce Zf},
here we recall that Z? is the collection of numbers in {1,--- ,r—1}

that are coprime to r.

The fact that r < 2L/2 implies that if b€ B,
1 1 1

_C r <
2 roL  2.2L T 9r2°

b 1

In other words, B < E. Our goal is to show that the probability of

measuring a b € E is not “too small” by finding a lower bound for

the probability of measuring a be B. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let be B.

O The case ;—b e N U {0}: In this case

P(b):22LZ (ms+1)° = s [ 35 (m+ 1)+ D m?|

= s=R+1
> BYIR [(R—I—l)m +(r—1—R)m 2} :%(;7,21)2
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let be B.

© The case — T be N U {0}: In this case

R r—1

P(b) = ;LZ (me+1? = s [ D (m+12+ Y m?]

s=0 s=R+1

> o [(REDm2 4 (11— Rym?] :%(;7'21)2

L_
Sincem:[2 1],r—1>(2L—1)modr>2L—1—mr;
r
L. . mr r 1
thus the fact that r < 22 implies that or > 1—? > 1—\/7.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let be B.

O The case ;—b e N U {0}: In this case

1 R r—1

P(b):22LZ (me+1? = s [ D (m+12+ Y m?]

=0 s=R+1
> o [(REDm2 4 (r— 1 - Rym?] = %(%T)Z

_1],r—1>(2L—1) mod r > 2L — 1 — mr;
r

L. . 1
thus the fact that r < 22 implies that Z—Lr >1-21 >1

oL - VoL

. oL
Since m = [

Therefore,

>3- ) - o)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

@ The case ;—f ¢ N U {0}: Suppose that ce Z? satisfies

‘rb—CQL} < §r (3)
Then
1 (ms+L1)rb (m5+1)(rb—c2 )
— 6 2 2
P(b) - 2m ‘ jrb— caL )
PYA

_ sin 7r’b 2" (ms+1)
- 22L Z

— 2L bl
sin 7T'b2f2

. . ; .0
where we have used the identity |1 —e?| = 2{ sin 5’ to conclude

the last equality. o

v
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

b— c2t
Let a = 72 %" Then
oL
| |< ™ r < ™ « ™
<oz <oy
.2
Al . . sin ms+ 1
Within this range, the function § — M cannot at-
S1n

tain its minimum in the interior of the interval and we have

rb . 2 2 Tr
sin? 7 (ms—i—l) _ sin®a(ms+ 1) _ sin e e )
rb—c2t _ i 02 = i2 T
gt sin” sin®

Sln ™

for all |a| < % . é
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Sincem<ms+1<m+1and R= (2L —1) mod r,

r(ms+1) - mr _ mr+R+1 R—|—1_1 R+1
B T e T
and
r(m5—|—1)gr(m+1):mr+R+1+r—R—l<
oL oL oL oL

=>1-—

oL

r

<14 .

2L
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Sincem<ms+1<m+1and R= (2L —1) mod r,
r(ms+1) mr _ mr+R+1 R+1 R+1 r
T Pt @ T Tl 2loa

and

r(ms+1) r(m+1)  mr+R+1 , r—R-1 r
oL T oL T 2L o slt g
2
Therefore, using sin?x< x2and cosx>1— % V xe R,
sin? b2 “(me+1) sinz% 2LHINZ 5 mr(mg+ 1)
2 b—c2L 2 Tr 2 Sl L+1
sin® 7 25~ sin” 5 Tr 2
gL+1 gL+1 T r

=g

> (5ot [5(1-)] > (

™r ™r

) -3Ga)T

2 2L
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Sincem<ms+1<m+1and R= (2L —1) mod r,

r(ms+1) > mr _ mr+R+1  R+1 —1_ R+ 1 >1-— r
2L 2L oL 2L 2L 2L
and
r(ms+1) r(m+1)  mr+R+1 , r—R-1 r
o ST oL tar— s I P

2
Q o X
Therefore, using sin?x< x2and cosx>1— 5 V xe R,

2 __rb—
sin” oL

. omr(ms+1)
L 2L+1

2 (me+1) _ sin? ZimtD) gL+1\2
> >< )

oLF1
L = o B
sin? W“’TCQ sin —J{l Tr

ol+1N\2 OLHIN2T 1/ r 212
> () [50-5)] = (5) [1-3G%) |
Tr oL mr 2\22L

- 22L+2 1 T 1 2 B 22L+2 1 7'('2
= n2r2 [ N (5\/2L> } T omw2r2 ( - 2L+2)' .
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Therefore,

r 22L+2
2L 22 (

1 r—1 92L+2 2
P(b) = 92L ;O P (1 - 2L+2>

4 1 72
_wTr( _2L+2)'

3

B e @ MABS01*
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Therefore,
1 r—1 92L+2 2 r 92L+2 2
7 2z (1 amw3) = e
s=0

4 1 2
_wTr( _2L+2)'
For L > 4, we have

4 (4 w2 <11 I
wTr( _2L+2)\7< _2L/2—1>’

2
Pmin5i<1 7T ><P<b) if be Band L >4.

w2r 9L+2

thus

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Now we find a lower bound for P(E), the probability of measuring

an element of E. By the definition of B for any b € B there exists
c € Z} satisfying
‘I’b—C2L‘ gé. (3)

Moreover, if ¢, ¢y € ZF satisfy |rb— c12L| <

and |rb—c22L| < %
then

7
2

‘cl — cz‘ < ‘cl — ;—[z‘ + ‘CQ — ;—tz < %(‘rb— C12L‘ + }rb— C22L’)

r

<2L

<1.

Therefore, for any b € B there exists a unique ¢ = ¢ € Z} satisfying

3). :
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
On the other hand, every c € Z} corresponds to a unique b = b, €
{0,1,---,2L — 1} such that (3) holds: if by and by both satisfy (3),
then |by — by| = 1 and

(bl aF bg)r: 62L+1
which, by the fact that b; + by is odd, implies that 2L+1|r, a con-
tradiction to that r < 2L/2.




Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
On the other hand, every c € Z} corresponds to a unique b = b, €
{0,1,---,2L — 1} such that (3) holds: if by and by both satisfy (3),
then |by — by| = 1 and

(bl aF bg)r: 62L+1
which, by the fact that b; + by is odd, implies that 2L+1|r, a con-
tradiction to that r < 2L/2. Therefore, there is a one-to-one corre-

spondence between Z} and B.

1 x 2L 2 x 2L (r—1)x 2L

Figure 3: The distribution of br (1) and c2t (|) for various b and c. o)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

As a consequence, if L > 4,

2
PE)= Y PB)> Y PB)> Y 2 (1-
be E beB be B
__4#B w2\ _ 4e(n) w2
w2 (1 - 2L+2) - w2r (1 - 2L+2) i
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

As a consequence, if L > 4,

4 w2
PE)= Y PB)> Y PB) > Y, (1 515
be E beB beB
__4#B 1 w2\ _ 4e(n) 1 w2
w2 ( _2L+2) w2 ( _2L+2)'
A famous result in number theory implies that
L < 4lnlnr  Vr>19;
o(r)
thus if r> 19 (so that L > 9),
4 w2 1 1
> _
P(E) > 2 (1 211>41nlnr> 10InL "
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm
§6.5.2 The period of f(a) = x? mod N is most likely even

In this sub-section we focus on proving the following

J .
Let N € N be odd with prime factorization N = || pJ-V’ , where pq,
=
.-+, p, are distinct prime numbers. For a randomly chosen b € 7y,

the probability of that r = min {r € N} b" =1 mod N} is even and

1
b2 +1 mod N # 0 is at least 1 — CT=g
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm
§6.5.2 The period of f(a) = x? mod N is most likely even

In this sub-section we focus on proving the following

J .
Let N € N be odd with prime factorization N = || pjyj , where pq,
=
.-+, p, are distinct prime numbers. For a randomly chosen b € 7y,

the probability of that r = min {r € N} b" =1 mod N} is even and

1
b2 +1 mod N # 0 is at least 1 — CT=g
v

In the application of the factoring algorithm proposed in the previous
sections, J = 2 so that the probability of that for a randomly chosen
b e Z% the number gcd(b72+1, N) is a prime factor of N is at least
1/2.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let N e N. Recall that Z}, consists of numbers from {1,2,--- , N—1}
that is coprime to N that is,

n={neN|1<n<N-1andgcd(nN)=1}.

The number of elements in Zy = ¢(N), where ¢ is the Euler func-

tion.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let N e N. Recall that Z}, consists of numbers from {1,2,--- , N—1}
that is coprime to N that is,

n={neN|1<n<N-1andgcd(nN)=1}.

The number of elements in Z}, = ¢(N), where ¢ is the Euler func-
tion. Before proceeding, we introduce some terminologies.
Definition

Let b, Ne N with ged(b, N) = 1. The order of b in Z}, denoted by
ordy(b), is the period of the function f(x) = b*—1 mod N. In other

words,

ordy(b) = min {re N|b" =1 mod N}.

If ordy(b) = ¢(N), then b is called a primitive root modulo N.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let a, b, N € N with ged(a, N) = 1 = ged(b, N). Then the following
statements hold.

Q@ For all ke N, a¥ =1 mod N if and only if ordy(a)|k.

Q ordy(a)|p(N); that is, ordy(a) is a factor of p(N).

© /fged(ordy(a), ordp(b)) =1, then ordy(ab) =ordy(a)ordy(b).

Q If ais a primitive root modulo N; that is, ordy(a) = ¢(N), then
we also have

@ Zy={a’ mod N|1<j<(N)}.
® If b= a’ mod N for some j€ N, then

ordn(b) = ordy(a’) = mﬁ% : (4)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let a, b, N € N with gecd(a, N) = 1 = ged(b, N).
@ ("=") Let ke N satisfying a¥ = 1 mod N. Then k = ordy(a).
Let ¢ = k mod ordy(a); that is, there exists g € N such that
k = q-ordy(a) + c for some ce {0,1,--- ,ordy(a) — 1}.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let a, b, N € N with gecd(a, N) = 1 = ged(b, N).
@ ("=") Let ke N satisfying a¥ = 1 mod N. Then k = ordy(a).
Let ¢ = k mod ordy(a); that is, there exists g € N such that
k = q-ordy(a) + c for some ce {0,1,--- ,ordy(a) — 1}. Then
1 = a¥ mod N = a%°"Iv@+¢ mod N = 2¢ mod N;
thus by the definition of the order we must have ¢ = 0. There-
fore, ordy(a)| k.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let a, b, N € N with gecd(a, N) = 1 = ged(b, N).

@ ("=") Let ke N satisfying a¥ = 1 mod N. Then k = ordy(a).
Let ¢ = k mod ordy(a); that is, there exists g € N such that
k = q-ordy(a) + c for some ce {0,1,--- ,ordy(a) — 1}. Then

1 = a¥ mod N = a%°"Iv@+¢ mod N = 2¢ mod N;

thus by the definition of the order we must have ¢ = 0. There-
fore, ordy(a)| k.
(*<") Suppose that ordy(a)|k. Then k = q - ordy(a) for some
g € N. Therefore,

2% mod N = 299 @ mod N = 1.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let a, b, N € N with gecd(a, N) = 1 = ged(b, N).

@ ("=") Let ke N satisfying a¥ = 1 mod N. Then k = ordy(a).
Let ¢ = k mod ordy(a); that is, there exists g € N such that
k = q-ordy(a) + c for some ce {0,1,--- ,ordy(a) — 1}. Then

1 = a¥ mod N = a%°"Iv@+¢ mod N = 2¢ mod N;
thus by the definition of the order we must have ¢ = 0. There-
fore, ordy(a)| k.
(*<") Suppose that ordy(a)|k. Then k = q - ordy(a) for some
g € N. Therefore,
a¥ mod N = a%°"@ mod N = 1.

@ By one of previous theorems, we know that 2*N) = 1 mod N;

thus @) follows from @. =
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

© By the rule of multiplication in Zj, we find that
(ab)ordN(a)ordN(b) mod N = aordN(a)bordN(b) mod N = 1;
thus @ implies that
ordy(ab)|ordy(a)ordy(b). (5)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
© By the rule of multiplication in Zj, we find that

(ab)ordN(a)ordN(b) mod N = aordN(a)bordN(b) mod N = 1;
thus (@) implies that
ordy(ab)|ordy(a)ordy(b). (5)
On the other hand, since bordn(blordn(@b) — 1 mad N,
aordN(b)ordN(ab) mod N = aordN(b)ordN(ab) pordn(b)ordn(@b) mod N
— (ab)ordN(b)ordN(ab) mod N = 1.
Therefore, @) shows that ord,(a)|ordy(b)ordy(ab).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
© By the rule of multiplication in Zj, we find that

(ab)ordN(a)ordN(b) mod N = aordN(a)bordN(b) mod N = 1;
thus (@) implies that
ordy(ab)|ordy(a)ordy(b). (5)
On the other hand, since bordn(blordn(@b) — 1 mad N,
aordN(b)ordN(ab) mod N = aordN(b)ordN(ab) pordn(b)ordn(@b) mod N
— (ab)ordN(b)ordN(ab) mod N = 1.
Therefore, @) shows that ordy(a)|ordy(b)ordy(ab). By the as-

sumption that ordy(a) and ordy(b) are coprime, we must have

ordy(a)|ordy(ab). Similarly, we also have ordy(b)|ordy(ab). o

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Therefore,
ordy(a)ordy(b)|ordy(ab)

which, together with (5), shows that ordy(a)ordy(b) =ordy(ab).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Therefore,

ordy(a)ordy(b)|ordy(ab)
which, together with (5), shows that ordy(a)ordy(b) =ordy(ab).

© Suppose that ordy(a) = p(N).

@ First we note that the fact that (Z},®) is a group implies
that {a/ mod N|1 << ¢(N)} < Zj}. It then suffices to
show that

#{a’ mod N|1 <j< o(N)} =¢(N). (6)

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Therefore,

ordy(a)ordy(b)|ordy(ab)
which, together with (5), shows that ordy(a)ordy(b) =ordy(ab).
© Suppose that ordy(a) = p(N).

@ First we note that the fact that (Z},®) is a group implies
that {a/ mod N|1 << ¢(N)} < Zj}. It then suffices to
show that

#{a’ mod N|1 <j< o(N)} =¢(N). (6)
Let i,j € N with 1 < i < j < ¢(N), and suppose that
a' = a/ mod N. Then a/=' = 1 mod N. Therefore, @
shows that ordy(a)|(j— 7). Since ordy(a) = ¢(N) and
1 <i<j< (N), we must have i = j; thus (6) holds. o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

® Goal: ord,\,(b)zord/v(aj):& if {Zrdzm‘(:j)mii(/\llv) (4)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

® Goal: ordN(b)ZOFdN(aj):gcﬂ It {Zrd:Ngaf)mcii(/\/(l) )

We first establish the first “=" of (4); that is, if b= a/ mod N,
then ordy(b) = ordy(a’).
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

i . dy(@)=p(N
© Goak: oy (b) —ord(al) = 60 e { ) 20D (g

We first establish the first “=" of (4); that is, if b= a/ mod N,
then ordy(b) = ordy(a’). To see that, we note that the identity

1 = b°dv®) mod N = (a/ mod N)°dn®) mod N

= (af)°rd"’(b) mod N

shows that ordy(a/) < ord,(b),
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

i . dy(@)=p(N
© Goak: oy (b) —ord(al) = 60 e { ) 20D (g

We first establish the first “=" of (4); that is, if b= a/ mod N,
then ordy(b) = ordy(a’). To see that, we note that the identity

1 = b°dv®) mod N = (a/ mod N)°dn®) mod N
= (a/)°rdn®) mod N
shows that ord,(a/) < ordy(b), while the identity
1 = (a4)2 @) mod N = (a/ mod N)E) mod N
= podnE) mod N

shows that ordy(b) < ordy(a’). o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

® Goal: ordN(b)ZOFdN(aj):gLN)N)) if {Zrdzm‘(:j)mii(/\llv) (4)

We next establish the second “=" of (4). We note that
implies that there exists m; € N such that my -ordy(a/) = p(N);

thus it suffices to show that m; = ged(j, p(N)).
We remark that m; must satisfy my|p(N). Moreover, since
1= (aj)°rd"’(aj) mod N = a7 @) mod N,

we have ordy(a)|j- ordy(a’).
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

® Goal: ordN(b)ZOFdN(aj):gLN)N)) if {Zrdzm‘(:j)mii(/\llv) (4)

We next establish the second “=" of (4). We note that
implies that there exists m; € N such that my -ordy(a/) = p(N);

thus it suffices to show that m; = ged(j, p(N)).
We remark that m; must satisfy my|p(N). Moreover, since
1= (aj)°rd"’(aj) mod N = a7 @) mod N,

we have ord,(a)| j-ordy(a’). By the assumption that ord(a) =
@(N), there is my € N such that my-(N) = j-ordy(a’). There-

fore, j = myms. o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

® Goal: ordN(b)ZOFdN(aj):gLN)N)) if {Zrdzm‘(:j)mii(/\llv) (4)

We next establish the second “=" of (4). We note that
implies that there exists m; € N such that my -ordy(a/) = p(N);

thus it suffices to show that m; = ged(j, p(N)).
We remark that m; must satisfy my|p(N). Moreover, since
1= (aj)°rd"’(aj) mod N = a7 @) mod N,

we have ord,(a)| j-ordy(a’). By the assumption that ord(a) =
@(N), there is my € N such that my-(N) = j-ordy(a’). There-

fore, j = myma. In particular, my|j; thus my|gcd(j, o(N)). o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

ordy(a) =p(N)

: _ h— PN
(® Goal: ordy(b)=ordy(a’) a0, o) if {b: o

 ged(fp(N
Suppose the contrary that m; < m = ged(j, (N)). Then

=20 2N o (ady.

(4)

(7)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

. B N o) . fordu(@)=p(N)
® Goal: ordN(b)—ordN(aJ)—m if {b: al mod N (4)

Suppose the contrary that m; < m = ged(j, (N)). Then

p= 0 ) _ (e (7)

On the other hand, the fact that m | shows that
(a)” mod N = (a/)?™)/™ mod N = (aﬁa(N))j/Fn\ mod N
= (a*™) mod N)/™ mod N=1.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

. B N o) . fordu(@)=p(N)
® Goal: ordN(b)—ordN(aJ)—m if {b: al mod N (4)

Suppose the contrary that m; < m = ged(j, (N)). Then

p= 0 ) _ (e (7)

On the other hand, the fact that m | shows that
(a)” mod N = (a/)?™)/™ mod N = (aﬁa(N))j/Fn\ mod N
= (a*™) mod N)/™ mod N=1.

Thus, we conclude from (D) that ordy(a’)|7, a contradiction to

(7). o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be a prime, ke N u {0}, and fy, f, ---, fx be integers such

K
that pt f. If fis a polynomial given by f(x) = Z fix/, then either
=0
Q #{xeZ}|f(x) =0 mod p} < k
or
Q f(x) =0 mod p for all xe Z (or Zy).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be a prime, ke N u {0}, and fy, f, ---, fx be integers such

K
that pt f. If fis a polynomial given by f(x) = Z fix/, then either
=0
Q #{xeZ}|f(x) =0 mod p} < k

or

Q f(x) =0 mod p for all xe Z (or Zy).

We show this by induction in the degree of the polynomial, which
we start at k = 0: if f(x) = fy # 0 such that p{ fy, then it follows
that fy # 0 mod p, and there is no x € Z with f(x) = 0 mod p. If
fo = 0, then fis the zero-polynomial. o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose then the claim holds for all polynomials of degree up to

k—1 and fis a polynomial of degree k. If f has fewer than k zeros
modulo pin Zg, the claim holds already.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose then the claim holds for all polynomials of degree up to
k—1 and fis a polynomial of degree k. If f has fewer than k zeros
modulo p in Zg, the claim holds already. Suppose that f has at least
k zeros modulo p, and ny, no, ---, ng € Z[”; are distinct zeros of f
modulo p (there may be more zeros of f modulo p, but we randomly
pick k distinct zeros).

Ching-hsiao Cheng B335 i A # MAS501*
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose then the claim holds for all polynomials of degree up to

k—1 and fis a polynomial of degree k. If f has fewer than k zeros
modulo p in Zg, the claim holds already. Suppose that f has at least
k zeros modulo p, and ny, no, ---, ng € Z;’; are distinct zeros of f
modulo p (there may be more zeros of f modulo p, but we randomly

pick k distinct zeros). Then
k
g) =) — i [ (x—ny) Z gex’
j=1
is a polynomial of degree not exceeding k — 1.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose then the claim holds for all polynomials of degree up to

k—1 and fis a polynomial of degree k. If f has fewer than k zeros
modulo p in Zg, the claim holds already. Suppose that f has at least
k zeros modulo p, and ny, no, ---, ng € Z;’; are distinct zeros of f
modulo p (there may be more zeros of f modulo p, but we randomly
pick k distinct zeros). Then

g(x)zf(x)—fkn X— nj) Eg;x

is a polynomial of degree not exceeding k — 1. Set

m:max{ﬁe{o./l,--- ,k—l}‘pfgg},

m
and defineg(x) = >} gpx’. o
=0
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Then for xe Z,

g(x) mod p = g(x) mod p.
Moreover, for 1 < j < k we have g(n;) = f(nj) = 0 mod p. There-
fore, g has at least k zeros modulo p; thus by the induction assump-

tion g must be the zero polynomial.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Then for xe Z,

g(x) mod p = g(x) mod p.
Moreover, for 1 < j < k we have g(n;) = f(nj) = 0 mod p. There-
fore, g has at least k zeros modulo p; thus by the induction assump-
tion g must be the zero polynomial. This shows that g is also the

zero polynomial. By the definition of g,
K

f(x) = ka(X— nj) mod p VxeZ.

Jj=1
Suppose that z is a zero of f modulo p. Then by the fact that p{ f,

the cancellation law for Z, implies that z— n; = 0 mod p for some

1 <j< k. This implies that f has k distinct zeros in Z7. o
”
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§6.5 Efficiency of Shor's Algorithm

Let p be prime, d a natural number satisfying d|(p—1) and let h be
the polynomial h(x) = x? — 1. Then there exist exactly d distinct
numbers ny, n, - -+, ng in Z satisfying h(n;) = 0 mod p.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be prime, d a natural number satisfying d|(p—1) and let h be
the polynomial h(x) = x? — 1. Then there exist exactly d distinct

numbers ny, n, - -+, ng in Z satisfying h(n;) = 0 mod p.
v

k—1
Let k € N be such that p—1 = dk. Define f(x) = Y. x% and g = hf.
£=0

Then )
-1
gx) = (x9—1) Z x¥ =xkd _ 1 =xP~1
=0
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§6.5 Efficiency of Shor's Algorithm

Let p be prime, d a natural number satisfying d|(p—1) and let h be
the polynomial h(x) = x? — 1. Then there exist exactly d distinct

numbers ny, n, - -+, ng in Z satisfying h(n;) = 0 mod p.
v

k—1

Let k € N be such that p—1 = dk. Define f(x) = Y. x% and g = hf.
£=0

Then

k=1
gx) = (del)Zxdgzxkdfl =xP71 1.
=0

Therefore, g(x) = 0 mod p for all x € Z5. The cancellation law in

Z further implies that

for all x e Z7, either h(x) = 0 mod p or f(x) =0 mod p. o

Ching-hsiao Cheng



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since h(p—1) = p—2 mod p and f(1) = k, h and f are not zero

polynomials.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since h(p—1) = p—2 mod p and f(1) = k, h and f are not zero
polynomials. By the fact that the leading coefficient of fand h are

both 1 (and pt 1), the previous lemma implies that the polynomial h
has at most d and the polynomial fhas at most d(k—1) zeros modulo

pin Zy.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since h(p—1) = p—2 mod p and f(1) = k, h and f are not zero
polynomials. By the fact that the leading coefficient of fand h are

both 1 (and pt 1), the previous lemma implies that the polynomial h
has at most d and the polynomial fhas at most d(k—1) zeros modulo
p in Zj. Denoting the number of zeros modulo p in {1,--- p—1} of
the polynomials g, h and fby N, Nj, and Ny, we have

dk = Ng < Nj + N < d+ d(k—1) = dk.

Therefore, exactly d(k—1) elements in Z are zeros of f modulo p,

and exactly d elements in Zj are zeros of h modulo p. o
v
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§6.5 Efficiency of Shor's Algorithm

For every odd prime p there exists at least one primitive root modulo
p; that is, there exists a € N such that ordy(a) = ¢(p) = p— 1.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

For every odd prime p there exists at least one primitive root modulo
p; that is, there exists a € N such that ordy(a) = ¢(p) = p— 1.

For a prime factor g of p—1, let kg be the unique number satisfying
g“|(p—1), gt (p—1).

We first prove that for each prime factor g of p — 1 there exists

a = aq € Z}, such that ord,(a,) = gka.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

For every odd prime p there exists at least one primitive root modulo
p; that is, there exists a € N such that ordy(a) = ¢(p) = p— 1.

For a prime factor g of p—1, let kg be the unique number satisfying

a“l(p-1), gt t(p—1).

We first prove that for each prime factor g of p — 1 there exists
a = aq € Z}, such that ord,(a,) = qka.

Let g be a prime factor of p—1. By the previous lemma the poly-

nomial h(x) = x9—1 has exactly gks zeros modulo p in Zy. Let
k

aq be one of these zeros, then aJ = 1 mod p so it follows that

ord,(ag)|q". o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If this zero a, of h has the additional property ord,(aq)|g’ for some
j€ N with j < kg, then ord,(ag)|g“—! holds. Then

kg—1
a9

g =1 mod p.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If this zero a, of h has the additional property ord,(aq)|g’ for some
j€ N with j < kg, then ord,(ag)|g“—! holds. Then

agkq_l =1 mod p.
Hence, a; € Zj is a zero modulo p of the polynomial f(x) =
x9“7" 1. By the previous lemma, there are exactly gko—! of these.
This means that of the g% zeros aq of h at most g%—1 such ag

satisfy in addition ord,(a,)|q’ with j < kq.

Ching-hsiao Cheng B335 i A # MAS501*
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If this zero a, of h has the additional property ord,(aq)|g’ for some
j€ N with j < kg, then ord,(ag)|g“—! holds. Then

kg—1

ag =1 mod p.
Hence, a; € Zj is a zero modulo p of the polynomial f(x) =
x9“7" 1. By the previous lemma, there are exactly gko—! of these.
This means that of the qkq zeros ag of h at most qk"’*1 such aq

satisfy in addition ord,(ag)|q’ with j < kq. Therefore, there remain
gka—q*a—1 zeros ag € {1,--- , p—1} that satisfy

ord,(aq)|q* and ordp(ag) t ¢/ Vj< kg (8)

Since g is assumed prime, we conclude that there are gki—gka—!

numbers ag € {1,2,---,p — 1} satisfying g% = ordp(az). This
establishes the first statement. o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
For each prime factor g of p — 1, let a5 be one particular number
in {1,2,---, p— 1} satisfying ordpy(ag) = gks. Define
a= H ag -
q: prime factor of p — 1
Then a is a primitive root modulo p since

ordp(a) = H ordp(aq) -

q: prime factor of p — 1

which can be shown inductively using (3) of the first theorem in this

sub-section. o
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and a be a primitive root modulo p satisfying

a?Pmod p? # 1.
Then for all ke N, a#(P“) mod pkt1 # 1.
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and a be a primitive root modulo p satisfying
a?Pmod p? # 1.

Then for all ke N, a#(P“) mod pkt1 # 1.

We first note that if k € N, by the fact that gcd(a, p¥) = 1 the Euler

Theorem implies that

29" mod pk=1;
thus there exists n, € N such that

aW(Pk) =1 4L nkpk~
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and a be a primitive root modulo p satisfying
a?Pmod p? # 1.

Then for all ke N, a#(P“) mod pkt1 # 1.

We first note that if k € N, by the fact that gcd(a, p¥) = 1 the Euler

Theorem implies that

29" mod pk=1;

thus there exists n, € N such that

aW(Pk) =1 4L nkpk~

Let D= {ke N‘a‘P(Pk) modpkT! s 1}. By assumption, 1€ D. o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose that kK € D. Then a#(P) 2 1 4 mp*t! for all m e N.
Therefore, p 1 ny.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose that kK € D. Then a#(P) 2 1 4 mp*t! for all m e N.
Therefore, p{ ng. Using the formula for the Euler function,

e(p*™) = p*(p— 1) = pp(p");
thus
k+1)

a@(p = QPW(pk) = (a*o(pk>)p — (1 + nkpk)p

p
=14 nep*t! + Z CPnfp*t.
=2
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Suppose that k € D. Then a¥(P P £ 1+ mp*t! for all m e N.
Therefore, p{ ng. Using the formula for the Euler function,

p(Pth) = pX(p—1) = pp(p");
thus
20PN — gpe(pf) — (aw(pk))p = (1 + nkp*)P
p
=14 nep*t! + Z CPnfp*t.
=2
Therefore, by the fact that p { ny and p*t2|pk’ for all £ > 2 and
ke N, we find that

a#P“") mod P2 = (1 + np*t) mod p"*2 £ 1.

This shows that k+ 1 € D. By induction we conclude the lemma. o

T = = =
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and let a be a primitive root modulo p. Then
for all k € N either ord (a) = ¢(p*¥) or ordk(a + p) = ¢(p¥); that

is, either a or a+ p is a primitive root modulo p.
o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and let a be a primitive root modulo p. Then
for all k € N either ord (a) = ¢(p*¥) or ordk(a + p) = ¢(p¥); that

is, either a or a+ p is a primitive root modulo p.
v

Let a be a primitive root modulo p.
Case 1 - a¥(P) mod p? # 1: Let D = {k e N|ord(a) = ¢(p")}.
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and let a be a primitive root modulo p. Then
for all k € N either ord (a) = ¢(p*¥) or ordk(a + p) = ¢(p¥); that

is, either a or a+ p is a primitive root modulo p.
v

Let a be a primitive root modulo p.

Case 1 - a¥(P) mod p? # 1: Let D = {k e N|ord(a) = ¢(p")}.
Since a is a primitive root modulo p, 1 € D. Suppose that
k € D. By the definition of the order, there exists n € N such

that
aordpk+l (a) = 1 + npk+1 = ]_ + nppk
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§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime and let a be a primitive root modulo p. Then
for all k € N either ord (a) = ¢(p*¥) or ordk(a + p) = ¢(p¥); that

is, either a or a+ p is a primitive root modulo p.
v

Let a be a primitive root modulo p.
Case 1 - a¥(P) mod p? # 1: Let D = {k e N|ord(a) = ¢(p")}.
Since a is a primitive root modulo p, 1 € D. Suppose that
k € D. By the definition of the order, there exists n € N such
that
aOTdeH(&) =14+ npk+1 =1+ nppk.

Therefore, a%*+1@ = 1 mod p* and the first theorem in this

sub-section implies that ord ,«(a)|ord +1(a). o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
By the assumption that k € D, ord «(a) = o(pX) = pF1(p—1);

thus p*=1(p — 1)|ord je+1(a). This implies that there exists n; €
N such that
ord yt1(a) = mpt(p—1).
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
By the assumption that k € D, ord «(a) = o(pX) = pF1(p—1);

thus p*=1(p — 1)|ord je+1(a). This implies that there exists n; €

N such that

ordpk+1(a) = nlpkfl(p —1).
On the other hand, the first theorem in this sub-section implies
that

ord et (a) (P ) 5

thus there exists ny € N such that

ny - ord e (a) = o(p"h) = p(p—1).
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

By the assumption that k € D, ord «(a) = o(pX) = pF1(p—1);

thus p“—!(

N such that

p — 1)|ord k1 (a). This implies that there exists n; €

ord yt1(a) = mpt(p—1).
On the other hand, the first theorem in this sub-section implies

that
ord 1 (a)|[o(p*) ;

thus there exists ny € N such that

) =pkp—1).

Therefore, niny = p which, by the fact that p is prime, shows
that (ny, n2) = (1, p) or (n1, n2) = (p,1). =

ny - Ordplq 1(3) = \,/(p

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If (n1,n2) = (1,p), then ordyeei(a) = p*'(p— 1) = p(p¥)
which further shows that
a?(P") mod ptl=1,
a contradiction to the previous lemma.
a
o
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If (n1,n2) = (1,p), then ordi1(a) = p
which further shows that

2#(P) mod pitl =1

)
a contradiction to the previous lemma. Therefore, (ny, n2) =
(p,1) and we then have

ord i1 (a) = p¥(p— 1) = p(p**1).

This concludes that K+ 1 € D. By induction, D = N.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

If (n1,n2) = (1,p), then ordi1(a) = p
which further shows that

2#(P) mod pitl =1

)
a contradiction to the previous lemma. Therefore, (ny, n2) =
(p,1) and we then have

ord i1 (a) = p¥(p— 1) = p(p**1).

This concludes that K+ 1 € D. By induction, D = N.
Case 2 - a?(P mod p? = 1: First we note that in this case there

exists n3 € N such that aP~! = 1 + n3p?. Let r=ord,(a+ p).
Then r|¢(p) and

(a+p)mod p=1. o
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Proof (cont'd).
By binomial expansion, a” mod p = 1 which further implies
that ¢(p)|r. Therefore, r= p(p); thus a+ pis also a primitive

root modulo p.
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Proof (cont'd).
By binomial expansion, a” mod p = 1 which further implies
that ¢(p)|r. Therefore, r= p(p); thus a+ pis also a primitive
root modulo p. Next we show that (a + p)#P) mod p? # 1.

To see this, by binomial expansion we have

p—1
(a+pPt=aPt4(p-1)a"2p+ Z Cfflap_z_lpe

=2
p—1
=1+ n3p® — paP~? 4+ p?aP~2 + p? > CQ;’_lap’Z’lpZ’2
=2
=1+ ngp* — paP2.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

By binomial expansion, a” mod p = 1 which further implies

that ¢(p)|r. Therefore, r= p(p); thus a+ pis also a primitive
root modulo p. Next we show that (a + p)#P) mod p? # 1.
To see this, by binomial expansion we have

p—1
(a+pPt=aPt4(p-1)a"2p+ Z Cfflap_z_lpe
=2

p—1
=1+ n3p® — paP~? 4+ p?aP~2 + p? > CQ;’_lap’Z’lpZ’2
(=2
=1+ ngp* — paP2.
Since (by Fermat little theorem) aP~! mod p = 1, p | a” %
thus (a+ p)#® mod p? # 1.
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Proof (cont'd).

By binomial expansion, a” mod p = 1 which further implies

that ¢(p)|r. Therefore, r= p(p); thus a+ pis also a primitive
root modulo p. Next we show that (a + p)#P) mod p? # 1.
To see this, by binomial expansion we have

p—1
(a+pPt=aPt4(p-1)a"2p+ Z Cfflap_z_lpe
=2

p—1
=1+ n3p® — paP~? 4+ p?aP~2 + p? > CQ;’_lap’Z’lpZ’2
(=2
=1+ ngp* — paP2.
Since (by Fermat little theorem) aP~! mod p = 1, p | a” %
thus (a+ p)?®) mod p?> # 1. Therefore, Case 1 shows that

ord i1 (a+ p) = p(p ). o

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

J
Let N = [] n; with nj € N and ged(nj,nj)) = 1 if i # j. Then
=1

g: Ly — Ly, x Ly, x -+ x Ly, defined by

gla) = (a mod ny,a mod ny, - - ,a mod nJ)

is a bijection.
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§6.5 Efficiency of Shor's Algorithm

J
Let N = [] n; with nj € N and ged(nj,nj)) = 1 if i # j. Then
=1

g: Ly — Ly, X Ly, x -+ x Ly, defined by

gla) = (a mod ny,a mod ny, - - ,a mod nJ)

is a bijection.
o

We first show that g(Zy) = Z; x Zp, % --- x Zy . For each
1 <j<J let gi(a) = amod nj. Then g = (g1,---,8y), and

gj(a) € Zy, for all a € Zj,.
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§6.5 Efficiency of Shor's Algorithm

J
Let N = [] n; with nj € N and ged(nj,nj)) = 1 if i # j. Then
=1

g: Ly — Ly, X Ly, x -+ x Ly, defined by

gla) = (a mod ny,a mod ny, - - ,a mod nJ)

is a bijection.
o

We first show that g(Zy) = Z; x Zp, % --- x Zy . For each
1 <j<J let gi(a) = amod nj. Then g = (g1,---,8y), and
gj(a) € Zy, for all a € Z. Let a€ Zy and j€ {1,2,---,J} be
given, and v = gecd(gj(a), nj). Then there exist ¢, k € N such that

g‘J(a) — ’\//é and nj — A/k. )
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Proof (cont'd).

Therefore,
a a
W =gja) =a- [;J nj=a-— [;j}“/k,
we find that
24+ [3} k
Y nj
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Therefore,
a a
W =gja) =a- [;J nj=a-— [;j}“/k,
we find that
e [3} k
n;

The identity above shows that ~
~| N as well; thus the fact that gcd(a, N) = 1 implies that v = 1.

a. Moreover, nJ-| N, we must have
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Therefore,
a a
W =gja) =a- [;J nj=a-— [;j}“/k,
we find that
e [3} k
Y nj

The identity above shows that ~
~| N as well; thus the fact that gcd(a, N) = 1 implies that v = 1. In

a. Moreover, nJ-| N, we must have

other words, gcd(gj(a), nj) = 1 for all 1 < j < J, and this shows that
gj(a) € Zy, forall 1 < j < J; thus g(Zyy) = Zy x Zy, X -+ X Ly . ©
<
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Next we show that g is injective. Suppose the contrary that there
exist ay, ap € Zy, a1 # ag, such that g(a1) = g(a2). W.L.O.G. we

assume that a; > as.
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Proof (cont'd).

Next we show that g is injective. Suppose the contrary that there

exist ay, ap € Zy, a1 # ag, such that g(a1) = g(a2). W.L.O.G. we
assume that a; > ap. Then for all 1 << J, gj(a1) = gj(az); thus

won=([2)-[2)n reiea

Therefore, nj|(a; — a2) for all 1 < j < J.
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Next we show that g is injective. Suppose the contrary that there

exist ay, ap € Zy, a1 # ag, such that g(a1) = g(a2). W.L.O.G. we
assume that a; > ap. Then for all 1 << J, gj(a1) = gj(az); thus

a-am=(2]-[2])y viei<o

nj nj

Therefore, nj|(a; — az) for all 1 < j < J. Since ged(nj, nj) = 1 if

J
i#jand N= [] nj, we find that N|(a; — a2), a contradiction. This
j=1
establishes that g is injective. o

V.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then

gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Z} x 7}, x --- x Zj,,, define

njy

h(b) = (ZJ] myx;b;) mod N. (9)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then
gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Zp x Zp, x -+ x 7, , define
J
- (X mjijj) mod N (9)
j=1

Such h is well-defined: if X; and y; also validate m;X; + n;y; = 1,
then forall 1 < k< J,

m; A my e
,ijmJ X)bj = 3, 20 = X)bj + = O — ) b

J#k
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then

gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Z} x 7}, x --- x Zj,,, define

h(b) = (ZJ] myx;b;) mod N. (9)

Such h is well-defined: if X; and y; also validate m;X; + n;y; = 1,
then forall 1 < k< J,

J
1 ~ m;j ~ m ~
— E mj(x; — Xj)bj = E —(x; — X)) bj + = (xk — X) bk
N 1 — Nk Nk
Jj=1 J#k
= ﬂ(xj—)?j)bj“‘ i S S =
ik Nk Nk
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then

gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Z} x 7}, x --- x Zj,,, define

h(b) = (ZJ] myx;b;) mod N. (9)

Such h is well-defined: if X; and y; also validate m;X; + n;y; = 1,
then forall 1 < k< J,

1 ¢ N m ~ L ) — (1 — m¥
,Tkij(w—m)bj:Zf’(xj—mbﬁ( i) = (1= nd) p,
j=1

ok T s
mj ~ mygXyx — mk>~<k
= 3 g — Kby T e, .
Nk Nk
Jj#k
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then
gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Zp x Zp, x -+ x 7, , define
J
- (X mjijj) mod N (9)
j=1

Such h is well-defined: if X; and y; also validate m;X; + n;y; = 1,
then forall 1 < k< J,

m; ~ (1 — neyic) — (1 — i)
;kZmJ X)) bj —Z,Tk’(xj—ﬁ)bﬁr o by
J#k
= 22 0g = %)b; — (v — T b o
jk Tk
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Finally, we prove that g is surjective. Let m; = N/n;. Then
gcd(mj, nj) = 1; thus there exist x;, y; € Z such that m;x;+n;y; = 1.
For b= (by,--- ,by) € Zp x Zp, x -+ x 7, , define
J
- (X mjijj) mod N (9)
j=1

Such h is well-defined: if X; and )7J also validate m;x; + njf/j =1,
then for all 1 < k < J, by the fact that m;/n, e N if j # k,

m; S (1 — niyw) — (1 — nuy)
;kZmJ X)) bj —Z,Tk’(xj—ﬁ)bﬁr o by
J#k
= 21 0g— )b — (v = Fi)bke L. o
J#k ks
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

J
This shows that ny is a factor of >} mj(x; — Xj)b; for all 1 < k <
j=1

J.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

J
This shows that ny is a factor of >} mj(x; — Xj)b; for all 1 < k <
j=1
J. Since gcd(nj, nj) = 1 if i # j, we also have N is a factor of
J
Y. mj(xj — Xj)bj. Therefore,
j=1

J J
(Z mjijj> mod N = (Z mj?gbj) mod N;
j=1 =

thus h given by (9) is well-defined.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

J
This shows that ny is a factor of >} mj(x; — Xj)b; for all 1 < k <

j=1
J. Since gcd(nj, nj) = 1 if i # j, we also have N is a factor of
J
Y. mj(xj — Xj)bj. Therefore,
j=1

J J
(Z mjijj> mod N = (Z mj?gbj) mod N;
j=1 =

thus h given by (9) is well-defined.

Now we show that g is surjective by showing that h(b) € Z}, and
g(h(b)) = bforall be Zj xZj, x --- x Zy,. Let be Zj x Z}, %

- X Zy,, be given. =

v
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
For a fixed ke {1,2,---,J},

Lhie) by = L[(3

Ny =
J
1 _ . mix;b;
= o ot [F )
k j=1
J
Nk k N Nk

el.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
For a fixed ke {1,2,---,J},

L (hb) = by) = M(i mjxjbj) mod N — by

Nk

N
J#k

Therefore, for each 1 < k < J there exists zx € Z such that

h(b) = by + zkng .

J
. 1 . mixibi1 N
= %t Mt [ e
k

(10)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
For a fixed ke {1,2,---,J},

L (hb) = by) = M(i mjxjbj) mod N — by

Nk

J
. 1 . mixibi1 N
= 3 Dy + Ty [Zf—l - J}—GZ.
2k n Ny N Ny

Therefore, for each 1 < k < J there exists zx € Z such that
h(b) = by + zkng . (10)

To show that g is surjective it then suffices to show that h(b) € Zj,
since then gx(h(b)) = by which establishes that g(h(b)) = b. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Nevertheless, that for each 1 < k < J there exists zx € Z such that
h(b) = by + zknk (10)
implies that
ged(h(b), nk) = ged(by, nk) =1 Vi< k<J.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Nevertheless, that for each 1 < k < J there exists zx € Z such that
h(b) = by + ziny (10)
implies that
ged(h(b), nk) = ged(by, nk) =1 Vi<k<J.
The fact that gecd(nj,n;)) = 1 if i # j further shows that
ged(h(b), N) = 1; thus h(b) € Z}, and we conclude that g is surjec-

tive. =y
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime, k € N, and s € N u {0}. For a randomly
chosen b from 7, with equally distributed probability 1/ ©(p"), the
probability of that ord «(b)/2° is an odd number is not greater than
1/2.

Ching-hsiao Cheng



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime, k € N, and s € N u {0}. For a randomly
chosen b from 7, with equally distributed probability 1/ ©(p"), the
probability of that ord «(b)/2° is an odd number is not greater than
1/2. In other words,

(¥ p, k, s) (#{b € L, | ord (b) = 2°t with an odd t} < @(pk)).

N | —
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime, k € N, and s € N u {0}. For a randomly
chosen b from 7, with equally distributed probability 1/ ©(p"), the
probability of that ord «(b)/2° is an odd number is not greater than
1/2. In other words,

(¥ p, k, 5) (#{b € 7% | ord (b) = 2°t with an odd t} < <p(pk)).

Let p, kand s be given. Then #Z:k = (p¥) and there exist uniquely

N | —

determined p, v € N with v odd such that ¢(p¥) = p*(p—1) = 2#v.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Let p be an odd prime, k € N, and s € N u {0}. For a randomly
chosen b from 7, with equally distributed probability 1/ ©(p"), the
probability of that ord «(b)/2° is an odd number is not greater than
1/2. In other words,

90(p"))~

Let p, kand s be given. Then #Z:k = (p¥) and there exist uniquely

N | —

(¥ p, k, 5) (#{b € 7% | ord (b) = 2°t with an odd t} <

determined p, v € N with v odd such that ¢(p¥) = p*(p—1) = 2#v.
It follows from previous theorems that there exists a primitive root
ae N for p¥ and

Z:k:{aj mod pk|j€{1a2a"' 790(:0[()} e

=== =
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Hence, via the identification b = a/ mod pk, the random selection
of one of the equally distributed b in Z:k is the same as the random

selection of an equally distributed j € {1, e ,cp(pk)}.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Hence, via the identification b = a/ mod pk, the random selection
of one of the equally distributed b in Z:k is the same as the random
selection of an equally distributed j € {1, e ,cp(pk)}. Moreover,
Al pk

o4 (6) =
which shows that ord«(b) = 2°t if and only if

.. 2w
Sre ged(j,20v) (1)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Hence, via the identification b = a/ mod pk, the random selection

of one of the equally distributed b in Z:k is the same as the random

selection of an equally distributed j € {1, e ,cp(pk)}. Moreover,
o ok
ord (b)) = —PP)
p(0) ged(J, ¢ (p%))
which shows that ord«(b) = 2°t if and only if
20y
t= —————.
"7 ecd(2) (1)
By (11) we can deduce that the case s > u cannot occur because in
that case we would have 2|v, a contradiction to the assumption of

v is odd.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Hence, via the identification b = a/ mod pk, the random selection
of one of the equally distributed b in Z:k is the same as the random

selection of an equally distributed j € {1, e ,cp(pk)}. Moreover,
o ok
ord u(b) = —PP)__
p(0) ged(J, 0(p¥))
which shows that ord«(b) = 2°t if and only if
s 2y
Sre ged(j,20v) (1)
By (11) we can deduce that the case s > u cannot occur because in
that case we would have 2|v, a contradiction to the assumption of
v is odd. Therefore, for the event “ord,(b)/2° is odd" to happen,

we must have s < p. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Now consider the case s < p (so that the event “ord(b)/2° is

odd” could happen). Suppose that j = 2¥x for some odd x (in the
identification b = a/ mod p).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Now consider the case s < p (so that the event “ord(b)/2° is

odd” could happen). Suppose that j = 2¥x for some odd x (in the
identification b = a/ mod pX). Then
ged(j, 24v) = 2mtent  TT - pre (12)
p: odd primes
with some x, € NU {0}. In order to have ord «(b) = 2°t, using (11)

we obtain that
ged(J, 2Hv) = 2 /t. (13)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Now consider the case s < p (so that the event “ord(b)/2° is
odd” could happen). Suppose that j = 2¥x for some odd x (in the
identification b = a/ mod pX). Then
ged(j, 24v) = gmintend T pre (12)
p: odd primes
with some x, € NU {0}. In order to have ord «(b) = 2°t, using (11)
we obtain that
ged(j,2Hv) = 2" /t. (13)
Since v and t are assumed odd, it follows that then v/t has to be odd
as well. It then follows from (12) and (13) that min{w, i} = p—s
which shows w = p—s; thus j takes the form j = 2#~°x with an odd

x and belong to {1,--- ,gp(pk)}. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely
{2H7 x 1,2M7° x 2, 2H7° x 2%},
Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x

with an odd x.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely

{2H7 x 1,2M7° x 2, 2H7° x 2%},
Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-

sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by

Number of possible j of the form j = 2¥~°x with x odd

Number of possible j
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely

{2H7 x 1,2M7° x 2, 2H7° x 2%},
Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-

sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by

Number of possible j of the form j = 2¥~°x with x odd
#{17 27 U 780(pk)}
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely
{2H7 x 1,2M7° x 2, 2H7° x 2%},
Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-
sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by
Number of possible j of the form j = 2¥~°x with x odd
v (p¥)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely

{2H7 x 1,2M7° x 2, 2H7° x 2%},
Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-
sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by

Number of possible j of the form j = 2¥~°x with x odd
20y
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely
{2H7 x 1,2M7° x 2, 2H7° x 2%},

Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-
sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by

251y

20y
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Since ¢(p*) = 24, in the set {1, -+ ,p(p*)} there exist 2°v mul-

tiples of 2#7°, namely
{2H7 x 1,2M7° x 2, 2H7° x 2%},

Of these 2°v multiples of 2#7* only half are of the form j = 2#7°x
with an odd x. Therefore, when s < u the fact that all j are cho-
sen with the same probability implies that the probability of that
ord «(b)/2° is an odd number is given by

251y

20y

which, using that s < p, is not greater than 1/2. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Finally, we restate and prove the main theorem in this sub-section.

J
Let N € N be odd with prime factorization N = || pj”f , where pq,
j=1
-+, p, are distinct prime numbers. For a randomly chosen b € Zy,,
the probability of that r = ord,(b) is even and b"/?> +1 mod N # 0

is at least 1 —1/2771,

Ching-hsiao Cheng = D chlcd A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Finally, we restate and prove the main theorem in this sub-section.

J
Let N € N be odd with prime factorization N = || pjyj , where pq,
j=1
-+, p, are distinct prime numbers. For a randomly chosen b € Zy,,

the probability of that r = ord,(b) is even and b"/?> +1 mod N # 0
is at least 1 —1/2771,
v

Since by assumption Nis odd, all its prime factors py, - - -, p, have to

be odd as well, and we can apply the previous lemma for their powers
vj

p;.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Finally, we restate and prove the main theorem in this sub-section.

J
Let N € N be odd with prime factorization N = || pjyj , where pq,
j=1
-+, p, are distinct prime numbers. For a randomly chosen b € Zy,,
the probability of that r = ord,(b) is even and b"/?> +1 mod N # 0

is at least 1 —1/2771, )
Poof
Since by assumption Nis odd, all its prime factors py, - - -, p, have to
be odd as well, and we can apply the previous lemma for their powers
pjyj. We establish the theorem by showing that the probability of
that “ris odd” or “ris even but b2+ 1 = 0 mod N" is not greater
than 1/2771. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

By one of the previous theorem, every b € Z}, corresponds uniquely

to a set of bj € Zj with 1 < j < Jand vice versa, where n; = pjyj
and b; = b mod nj. An arbitrary selection of b is thus equivalent to
an arbitrary selection of the tuple (by,--- ,by) € Zj x --- X Zf,J.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

By one of the previous theorem, every b € Z}, corresponds uniquely

to a set of bj € Zj with 1 < j < Jand vice versa, where n; = pjyj
and b; = b mod nj. An arbitrary selection of b is thus equivalent to
an arbitrary selection of the tuple (by,--- ,by) € Zj x --- X Zf,J.

Suppose that r = ordy(b), rj = ordy,(bj) and write r = 2°t, r; = 2%t;

for some odd numbers t and t;. We first show that

r=lem(r, ra, -+, 0), (14)
where lem(ry, ro, -+ -, 1) denotes the least common multiple of ry,
£, 0 :

v
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
To see this, note that for any ke N,

bf mod pjyj = (b mod pJ-Vj)k mod pjyj = b* mod p;/j;
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
To see this, note that for any ke N,

bj‘ mod ij’ = (b mod pJ-V’) mod pj/’ = b mod p;/J;
thus r; is also the smallest natural number satisfying
i vj
b =1 mod p;”. (15)

In other words, r; = ord,(b).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
To see this, note that for any ke N,

bj‘ mod ij’ = (b mod pJ-V’) mod pj/’ = b mod p;/J;
thus r; is also the smallest natural number satisfying
i vj
b =1 mod p;”. (15)

In other words, r; = ord,(b). By the definition of r there exists
ze€ N such that E
b= 1+zN:1+zl_[ijj,

=1

thus b” = 1 mod pj’/j forall 1 <j< J
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
To see this, note that for any ke N,

bj‘ mod ij’ = (b mod pJ-V’) mod pj/’ = b mod p;/J;
thus r; is also the smallest natural number satisfying
i vj
b =1 mod p;”. (15)

In other words, r; = ord,(b). By the definition of r there exists
ze€ N such that E
b= 1+zN:1+zl_[ijj,

j=1
thus b" = 1 mod pj’/j for all 1 < j < J. The first theorem in this
sub-section then shows that r;|r for all 1 < j < Jso that we have

lem(ry, ray -+, m)lr. (16)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let L = lem(ri,re, -+ ,n) and 1 < j < J. By the first Theorem
in this sub-section again L satisfies b~ = 1 mod pjuj; thus pjyj is a
factor of b-—1.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let L = lem(ri,re, -+ ,n) and 1 < j < J. By the first Theorem

in this sub-section again L satisfies b~ = 1 mod pjuj; thus pjyj is a
factor of bt —1. Since py, - - - , p, are distinct primes, we find that the
product of all pjyj is also a factor of b- — 1. Therefore, bt = 1 mod

N which further implies that r|L. Together with (16), we conclude

r=lem(r, r, - ,n). (14)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Let L = lem(ri,re, -+ ,n) and 1 < j < J. By the first Theorem
in this sub-section again L satisfies b~ = 1 mod pjuj; thus pjyj is a
factor of bt —1. Since py, - - - , p, are distinct primes, we find that the
product of all pjyj is also a factor of bt — 1. Therefore, bt = 1 mod

N which further implies that r|L. Together with (16), we conclude
r=lem(r, r, - ,n). (14)

Next we show that

the event “ris odd” v “2|rbut 72 +1 =0 mod N”

corresponds to a subset of the set
{(s1,--,9)|@seNU{OH(VI< < J)(si=5)}.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Using (14), we find that ris odd if and only if 2 { rj forall 1 < j < J.

Therefore,
ris odd if and only if s; =0 for all 1 <j< J. (17)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Using (14), we find that ris odd if and only if 2 { rj forall 1 < j < J.
Therefore,

ris odd if and only if s; =0 for all 1 <j< J. (17)
Now we consider the case that ris even but b7 + 1 = 0 mod
N. Then there exists £ € N such that b2 +1 = ¢N. Letting
l; = EN/pjyj, we have b2 +1 = Ejpjyj for all 1 < j < J; thus

b7? +1=0mod p;’. (18)
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Using (14), we find that ris odd if and only if 2 { rj forall 1 < j < J.

Therefore,
ris odd if and only if s; =0 for all 1 <j< J. (17)

Now we consider the case that ris even but b2 +1 = 0 mod
N. Then there exists £ € N such that b2 +1 = ¢N. Letting
l; = EN/pJ we have b2 +1 = Ejpjj for all 1 < j < J; thus

b7? +1=0mod p;’. (18)
On the other hand, note that (14) implies that 5; < sfor all 1 < j <
J. Suppose that s; < s for some 1 < j < J. Then the fact that

2°t=r= kjrj = kaSjtj

shows that k; = 2°7%t/t; is even. o
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let zj = kj/2. Then r/2 = zjr; with z; € N; thus using (15) we find
that

b"? mod pj’j = b%" mod pjyj = (b% mod pjyj)zj mod pjyj

=1 mod pjyjzl,

a contradiction to (18).
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).
Let zj = kj/2. Then r/2 = zjr; with z; € N; thus using (15) we find
that

b"? mod pj’j = b%" mod pjyj = (b% mod pjyj)zj mod pjyj

=1 mod pjyjzl,

a contradiction to (18). Therefore, we must have s; = s for all

1<j< Jifriseven but b"+ 1 =0 mod N. Together with (17),
we conclude that

the event “ris odd” v “2|rbut 72 +1 =0 mod N"

corresponds to a subset of the set

{(s1,-+,9)|@seNU{OH(VI << J)(si=5)}.
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

P({ris odd} v {b”7?+1 =0 mod N})
< ZP({sj:sfor all 1 <j < J})

s=0
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since all s;'s are chosen independently,
P({ris odd} v {b”7?+1 =0 mod N})
< ZP({sj:sfor all 1 <j < J})

s=0
w J

=Y T]P{s =5}

s=0 j=1
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§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since all s;'s are chosen independently,

({ris odd} v {72 41 =0 mod N})

Z P{sj=sforall 1 <j<J})

= i UP({SJZS}): ip({ﬂ = s}) HP {si=s})
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since all s;'s are chosen independently,

({ris odd} v {72 41 =0 mod N})

Z P{sj=sforall 1 <j<J})

= i UP({SJ = S}): iP({sl = 5} HP {sj = 5}
= i P({s1 = s}) .J P ({rj = 2°t with an odd t})
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since all s;'s are chosen independently, the previous lemma that

P({ris odd} v {b”7?+1 =0 mod N})

< ZP({sj:sforallléjﬁJ})

= 2 [[PUsi=h= 2 P({s1 = sH[ [Pt =5
= i P({s1 =s}) ﬁ P ({rj = 2°t with an odd t})
< S PUsi=sH 5 = -
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Chapter 6. Shor’s Factoring Algorithm

§6.5 Efficiency of Shor's Algorithm

Proof (cont'd).

Since all s;'s are chosen independently, the previous lemma that

({ris odd} v {b7?+1 =0 mod N})

Z P{sj=sforall 1 <j<J})

= i UP({SJ = S}): iP({sl = 5} HP {sj = 5}
= i P({s1 = s}) | P ({rj = 2°t with an odd t})

1

a0
< ZP({Sl :S})2J7] = F
s=0

Therefore, the probability of that r = ord,(b) is even and b"/% + 1
mod N # 0 is at least 1 — 1/2771. o
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