¥ 338 g E A # MAS5501
Homework Assignment 2
Due Apr. 12. 2023

Problem 1. Grover’s algorithm can be tweaked to work with probability 1 if we know the number
of solutions exactly. Let n € N, N = 2" and f : {0,1}" — {0,1} be a Boolean function. Suppose
that there is exactly one x € {0, 1}" satisfying f(x) = 1 (thus the Hamming weight ¢ = 1).

1. Define a new function g : {0,1}"*' — {0,1} by

L if f(jij2- - jn) = 1 and g1 = 0;

9ULJnini1) = { 0 otherwise.

Show how you can implement the following (n + 1)-qubit unitary
S+ lay = (=1)*@]a)
based on the implementation of Uy satisfying

U : o) — )b @® fla))  Vae{0,1}"be{0,1}.

siny cosvy
Let A = H®" ® U, be an (n + 1)-qubit unitary. What is the probability (as a function of )
that measuring the state A|0"*) in the computational basis gives a solution j € {0, 1}"*! for
g (that is, such that g(j) =1)?

2. Let v € [0, 27) and let U, be a 1-qubit rotation gate with matrix representation [COS 7o 71 )

3. Give a quantum algorithm that finds the unique solution with probability 1 using O(+v/N)

queries to f.

Problem 2. Let ne N, N =2" f:{0,1}" — {0, 1} be a Boolean function, and ¢ is the Hamming
weight of f; that is, t = #{x € {0,1}”|f(x) = 1}. Suppose that we know that ¢ € {1,2,--- s}
for some known s « N. Give a quantum algorithm that finds a solution with probability 1, using

O(+v/sN) queries to f.

Problem 3. Suppose a € RY is a vector (indexed by ¢ =0,1,--- , N — 1) which is r-periodic in the
following sense: there exists an integer r such that a; = 1 whenever ¢ is an integer multiple of r, and
ay = 0 otherwise. Compute the Fourier transform Fiy|a) of this vector; that is, write down a formula
for the entries of the vector Fy|a). Assuming r divides N, write down a simple closed form for the
formula for the entries. Assuming also r « N, what are the entries with largest magnitude in the

vector Fyla)?
Problem 4. The process of RSA encryption and decryption consists of the following 4 steps:

Step 1: Key generation: Choose prime numbers p and ¢, compute n = pg and ¢(n) = (p—1)(¢—1).

1

Step 2: Key distribution: Choose 1 < e < ¢(n) so that ged(e, ¢(n)) = 1. Compute d = e~ mod

©(n) (using extended Euclid’s algorithm). Provide (n,e) to public, and keep d privately.



Step 3: Encryption: To encode an message m < n, we compute ¢ = m® mod n.

Step 4: Decryption: To decode the encrypted message ¢, we raise ¢ to power d and recover m since

m = ¢ mod n.

In class I only prove that ¢? = m mod n as long as ged(m,n) = 1. Complete the following in order
to show that ¢? = m mod n for m e {1,--- ,n — 1} and ged(m,n) = p.
1. Show that ¢ = m mod p.

2. Show that ¢? = m mod q.

3. Show that ¢ = m mod n.

Hint of 2: Since ged(m,n) =p and 1 < m < n, m = pk; for some ky € {1,2,--- ,q — 1}. Moreover,
ed =1+ kyp(n) =1+ ke(p—1)(¢—1) =1+ k3(q¢ — 1). Making use of these two facts to conclude

that ¢ = m mod q.



