Problem 1．Grover＇s algorithm can be tweaked to work with probability 1 if we know the number of solutions exactly．Let $n \in \mathbb{N}, N=2^{n}$ ，and $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function．Suppose that there is exactly one $x \in\{0,1\}^{n}$ satisfying $f(x)=1$（thus the Hamming weight $t=1$ ）．

1．Define a new function $g:\{0,1\}^{n+1} \rightarrow\{0,1\}$ by

$$
g\left(j_{1} \cdots j_{n} j_{n+1}\right)= \begin{cases}1 & \text { if } f\left(j_{1} j_{2} \cdots j_{n}\right)=1 \text { and } j_{n+1}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Show how you can implement the following $(n+1)$－qubit unitary

$$
S_{g}:|a\rangle \mapsto(-1)^{g(a)}|a\rangle
$$

based on the implementation of U_{f} satisfying

$$
U_{f}:|a\rangle|b\rangle \mapsto|a\rangle|b \oplus f(a)\rangle \quad \forall a \in\{0,1\}^{n}, b \in\{0,1\}
$$

2．Let $\gamma \in[0,2 \pi)$ and let U_{γ} be a 1－qubit rotation gate with matrix representation $\left[\begin{array}{cc}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right]$ ． Let $\mathcal{A}=\mathrm{H}^{\otimes n} \otimes U_{\gamma}$ be an $(n+1)$－qubit unitary．What is the probability（as a function of γ ） that measuring the state $\mathcal{A}\left|0^{n+1}\right\rangle$ in the computational basis gives a solution $j \in\{0,1\}^{n+1}$ for g（that is，such that $g(j)=1)$ ？

3．Give a quantum algorithm that finds the unique solution with probability 1 using $\mathcal{O}(\sqrt{N})$ queries to f ．

Problem 2．Let $n \in \mathbb{N}, N=2^{n}, f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function，and t is the Hamming weight of f ；that is，$t=\#\left\{x \in\{0,1\}^{n} \mid f(x)=1\right\}$ ．Suppose that we know that $t \in\{1,2, \cdots, s\}$ for some known $s \ll N$ ．Give a quantum algorithm that finds a solution with probability 1 ，using $\mathcal{O}(\sqrt{s N})$ queries to f ．

Problem 3．Suppose $a \in \mathbb{R}^{N}$ is a vector（indexed by $\ell=0,1, \cdots, N-1$ ）which is r－periodic in the following sense：there exists an integer r such that $a_{\ell}=1$ whenever ℓ is an integer multiple of r ，and $a_{\ell}=0$ otherwise．Compute the Fourier transform $F_{N}|a\rangle$ of this vector；that is，write down a formula for the entries of the vector $F_{N}|a\rangle$ ．Assuming r divides N ，write down a simple closed form for the formula for the entries．Assuming also $r \ll N$ ，what are the entries with largest magnitude in the vector $F_{N}|a\rangle$ ？

Problem 4．The process of RSA encryption and decryption consists of the following 4 steps：
Step 1：Key generation：Choose prime numbers p and q ，compute $n=p q$ and $\varphi(n)=(p-1)(q-1)$ ．
Step 2：Key distribution：Choose $1<e<\varphi(n)$ so that $\operatorname{gcd}(e, \varphi(n))=1$ ．Compute $d \equiv e^{-1} \bmod$ $\varphi(n)$（using extended Euclid＇s algorithm）．Provide（ n, e ）to public，and keep d privately．

Step 3: Encryption: To encode an message $m<n$, we compute $c \equiv m^{e} \bmod n$.
Step 4: Decryption: To decode the encrypted message c, we raise c to power d and recover m since $m=c^{d} \bmod n$.

In class I only prove that $c^{d} \equiv m \bmod n$ as long as $\operatorname{gcd}(m, n)=1$. Complete the following in order to show that $c^{d}=m \bmod n$ for $m \in\{1, \cdots, n-1\}$ and $\operatorname{gcd}(m, n)=p$.

1. Show that $c^{d} \equiv m \bmod p$.
2. Show that $c^{d} \equiv m \bmod q$.
3. Show that $c^{d} \equiv m \bmod n$.

Hint of 2: Since $\operatorname{gcd}(m, n)=p$ and $1<m<n, m=p k_{1}$ for some $k_{1} \in\{1,2, \cdots, q-1\}$. Moreover, $e d=1+k_{2} \varphi(n)=1+k_{2}(p-1)(q-1)=1+k_{3}(q-1)$. Making use of these two facts to conclude that $c^{d} \equiv m \bmod q$.

