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Chapter 7. Grover’s Search Algorithm

§7.1 The Search Problem
The search problem: For N = 2n, we are given an arbitrary x P

t0, 1uN. The goal is to find an i such that xi = 1 (and to output ‘no
solutions’ if there are no such i). We denote the number of solutions
in x by t (that is, t is the Hamming weight of x). This problem may
be viewed as a simplification of the problem of searching an N-slot
unordered database. Classically, a randomized algorithm would need
O(N) queries to solve the search problem. Grover’s algorithm solves
it in O(

?
N) queries, and O(

?
N log2 N) other gates.
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§7.2 Grover’s Algorithm
Let Ox,˘|i y = (´1)xi |i y denote the ˘-type oracle for the input x,
and R be the unitary transformation that puts a ´1 in front of all
basis states |i y whenever i ‰ 0, and that does nothing to the basis
state |0ny. The Grover iterate is G = HbnRHbnOx,˘. Note that
1 Grover iterate makes 1 query, and uses O(log2 N) other gates.
Grover’s algorithm starts in the n-bit state |0ny, applies a Hadamard
transformation to each qubit to get the uniform superposition, ap-
plies G to this state k times (for some k to be chosen later), and then
measures the final state. Intuitively, what happens is that in each
iteration some amplitude is moved from the indices of the 0-bits to
the indices of the 1-bits. The algorithm stops when almost all of
the amplitude is on the 1-bits, in which case a measurement of the
final state will probably give the index of a 1-bit.
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Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
The following figure illustrates the Grover algorithm.

. . .

. . .

|0n´3y . . .

. . .

|0ny ” |0y
bn

|0y

Hbn G G G
|0y

|0y

l jh n

k copies of G

Figure 1: Grover’s algorithm, with k Grover iterates
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§7.2 Grover’s Algorithm
To analyze this, define the following “good” and “bad” states:

|Gy =
1

?
t

ÿ

ti | xi=1u

|i y and |By =
1

?
N ´ t

ÿ

ti | xi=0u

|i y .

where t = #ti | xi = 1u. Then the uniform state over all indices
edges can be written as

|U y =
1

?
N

N´1
ÿ

i=0

|i y =
1

?
N

(
ÿ

ti | xi=1u

+
ÿ

ti | xi=0u

)
|i y

=
1

?
N

(?
t |Gy +

?
N ´ t |By

)
= sin θ|Gy + cos θ|By ,

where θ = arcsin
c

t
N .

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
To analyze this, define the following “good” and “bad” states:

|Gy =
1

?
t

ÿ

ti | xi=1u

|i y and |By =
1

?
N ´ t

ÿ

ti | xi=0u

|i y .

where t = #ti | xi = 1u. Then the uniform state over all indices
edges can be written as

|U y =
1

?
N

N´1
ÿ

i=0

|i y =
1

?
N

(
ÿ

ti | xi=1u

+
ÿ

ti | xi=0u

)
|i y

=
1

?
N

(?
t |Gy +

?
N ´ t |By

)
= sin θ|Gy + cos θ|By ,

where θ = arcsin
c

t
N .

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |Gy and |By):

1 Ox,˘ is a reflection through |By: since xG |By = 0 and

Ox,˘
(
a|Gy + b|By

)
= ´a|Gy + b|By .

2 HbnRHbn is a reflection through |U y: first the reflection through
a unit vector |ψy can be expressed as 2|ψyxψ| ´ I since

(2|ψyxψ| ´ I)|ϕy = xψ|ϕy|ψy ´
(
|ϕy ´ xψ|ϕy|ψy

)
and note that xψ|ϕy|ψy is the orthogonal projection of |ϕy

onto span(|ψy) and |ϕy ´ xψ|ϕy|ψy is the orthogonal projec-
tion of |ϕy onto the space perpendicular to |ψy. Therefore,
R = 2|0nyx0n| ´ I so that

HbnRHbn = Hbn(2|0nyx0n| ´ I)Hbn = 2|U yxU | ´ I .
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§7.2 Grover’s Algorithm
Here is Grover’s algorithm restated, assuming we know the fraction
of solutions is ε = t/N :

1 Set up the starting state |U y = Hbn|0ny.
2 Repeat the following k = O(1/

?
ε) times:

a⃝ Reflect through |By (that is, apply Ox,˘).
b⃝ Reflect through |U y (that is, apply HbnRHbn).

3 Measure the first register and check that the resulting i is a
solution.
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Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
Geometric argument: There is a fairly simple geometric argument
why the algorithm works. The analysis is in the 2-dimensional real
plane spanned by |By and |Gy. We start with |U y = sin θ|Gy +

cos θ|By: The two reflections a⃝ and b⃝ increase the angle from θ

to 3θ, moving us towards the good state, as illustrated in Figure 2.
|Gy

|By

|Uy

Ox,˘|Uy

θ
θ

|Gy

|By

|Uy

G|Uy

θ2θ

|Gy

|By

|Uy
θ

Figure 2: The first iteration of Grover: (left) start with |Uy, (middle) reflect
through |By to get Ox,˘|Uy, (right) reflect through |Uy to get G|Uy
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cos θ|By: The two reflections a⃝ and b⃝ increase the angle from θ

to 3θ, moving us towards the good state, as illustrated in Figure 2.
|Gy

|By

|Uy

Ox,˘|Uy

θ
θ

|Gy

|By

|Uy

G|Uy

θ2θ

|Gy

|By

|Uy
θ

Figure 2: The first iteration of Grover: (left) start with |Uy, (middle) reflect
through |By to get Ox,˘|Uy, (right) reflect through |Uy to get G|Uy
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§7.2 Grover’s Algorithm
The next two reflections a⃝ and b⃝ increase the angle with another
2θ, etc. More generally, after k applications of a⃝ and b⃝ our state
has become

sin((2k + 1)θ)|Gy + cos((2k + 1)θ)|By .

If we now measure, the probability of seeing a solution is Pk =

sin2((2k + 1)θ). We want Pk to be as close to 1 as possible. Note
that if we can choose rk =

π

4θ
´

1

2
, then (2rk + 1)θ =

π

2
and hence

P
rk = sin2 π

2
= 1. An example where this works is if t = N/4, for

then θ = π/6 and rk = 1. Unfortunately rk =
π

4θ
´

1

2
will usually

not be an integer, and we can only do an integer number of Grover
iterations.
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If we now measure, the probability of seeing a solution is Pk =

sin2((2k + 1)θ). We want Pk to be as close to 1 as possible. Note
that if we can choose rk =

π

4θ
´

1

2
, then (2rk + 1)θ =

π

2
and hence

P
rk = sin2 π

2
= 1. An example where this works is if t = N/4, for

then θ = π/6 and rk = 1. Unfortunately rk =
π

4θ
´

1

2
will usually

not be an integer, and we can only do an integer number of Grover
iterations.
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§7.2 Grover’s Algorithm
However, if we choose k to be the integer closest to rk, then our final
state will still be close to |Gy and the failure probability will still be
small (assuming t ! N):

1 ´ Pk = cos2((2k + 1)θ) = cos2((2rk + 1)θ + 2(k ´ rk)θ)

= cos2
(π
2
+ 2(k ´ rk)θ

)
= sin2(2(k ´ rk)θ) ď sin2(θ) =

t
N ,

where we used |k ´ rk| ď 1/2. Since arcsin(θ) ě θ, the number of
queries is k ď

π

4θ
ď
π

4

b

N
t .
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Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
Algebraic argument: Let ak denote the amplitude of the indices
of the t 1-bits after k Grover iterates, and bk the amplitude of the
indices of the 0-bits so that t |ak|2 + (N ´ t)|bk|2 = 1 for all k P N.
Initially, for the uniform superposition |U y we have a0 = b0 =

1
?

N
.

Since
Hbn = Hn and R = diag(1,´1,´1, ¨ ¨ ¨ ,´1) ,

HbnRHbn =
[ 2

N
]

´ I, where
[ 2

N
]

is the N ˆ N matrix in which all
entries are 2

N ; thus we find the following recursion:

ak+1 =
2

N
[
´tak + (N ´ t)bk

]
+ ak =

N ´ 2t
N ak +

2(N ´ t)
N bk ,

bk+1 =
2

N
[
´tak + (N ´ t)bk

]
´ bk =

´2t
N ak +

N ´ 2t
N bk .
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§7.2 Grover’s Algorithm
With θ = arcsin

a

t/N as before, we have[
ak+1

bk+1

]
=

[
cos(2θ) 2 cos2 θ

´2 sin2 θ cos(2θ)

] [
ak
bk

]
.

By matrix diagonalization, we find that[
cos(2θ) 2 cos2 θ
´2 sin2θ cos(2θ)

]
=

[
cos θ cos θ
i sin θ ´i sin θ

][
e2iθ 0
0 e´2iθ

][
cos θ cos θ
i sin θ ´i sin θ

]´1

,

thus[
ak
bk

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

]k [ cos θ cos θ
i sin θ ´i sin θ

]´1[a0
b0

]
=

1
?

N

[
sin(2k + 1)θ/ sin θ
cos(2k + 1)θ/ cos θ

]
.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
With θ = arcsin

a

t/N as before, we have[
ak+1

bk+1

]
=

[
cos(2θ) 2 cos2 θ

´2 sin2 θ cos(2θ)

] [
ak
bk

]
.

By matrix diagonalization, we find that[
ak+1

bk+1

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

][
cos θ cos θ
i sin θ ´i sin θ

]´1[ak
bk

]
;

thus[
ak
bk

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

]k [ cos θ cos θ
i sin θ ´i sin θ

]´1[a0
b0

]
=

1
?

N

[
sin(2k + 1)θ/ sin θ
cos(2k + 1)θ/ cos θ

]
.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
With θ = arcsin

a

t/N as before, we have[
ak+1

bk+1

]
=

[
cos(2θ) 2 cos2 θ

´2 sin2 θ cos(2θ)

] [
ak
bk

]
.

By matrix diagonalization, we find that[
ak+1

bk+1

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

][
cos θ cos θ
i sin θ ´i sin θ

]´1[ak
bk

]
;

thus[
ak
bk

]
=

[
cos θ cos θ
i sin θ ´i sin θ

] [
e2iθ 0
0 e´2iθ

]k [ cos θ cos θ
i sin θ ´i sin θ

]´1[a0
b0

]
=

1
?

N

[
sin(2k + 1)θ/ sin θ
cos(2k + 1)θ/ cos θ

]
.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
Therefore, we obtain the following formulas for ak and bk:

ak =
1

?
t

sin((2k + 1)θ) and bk =
1

?
N ´ t

cos((2k + 1)θ) .

Accordingly, after k iterations the success probability (the sum of
squares of the amplitudes of the locations of the t 1-bits) is the
same as in the geometric analysis

Pk = t ¨ a2k = sin2((2k + 1)θ).

Thus assuming t is known we have a bounded-error quantum
search algorithm with O(

a

N/t) queries.
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Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
We now list (without proofs) a number of useful variants of Grover:

1 If we know t exactly, the algorithm can be tweaked to end up
in exactly the good state. Roughly speaking, you can make
the angle θ slightly smaller, such that rk =

π

4θ
´

1

2
becomes an

integer.
2 If we do not know t, then there is a problem: we do not know

which k to use so we do not know when to stop doing the Grover
iterates. Note that if k gets too big, the success probability
Pk = sin2((2k + 1)θ)) goes down again! However, a slightly
more complicated algorithm (basically running the above algo-
rithm with systematic different guesses for k) shows that an
expected number of O(

a

N/t) queries still suffices to find a
solution if there are t solutions.
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Chapter 7. Grover’s Search Algorithm

§7.2 Grover’s Algorithm
3 If we know a lower bound τ on the actual (possibly unknown)

number of solutions t, then the algorithm in 2⃝ uses an ex-
pected number of O(

a

N/τ) queries. If we run this algorithm
for up to three times its expected number of queries, then (by
Markov’s inequality) with probability at least 2/3 it will produce
a solution. This way we can turn an expected runtime into a
worst-case runtime.

4 If we do not know t but would like to reduce the probability of
not finding a solution to some small ε ą 0, then we can do this
using O(

a

N log(1/ε)) queries. The important part here is that
the log(1/ε) is inside the square-root; usual error reduction by
O(log(1/ε)) repetitions of basic Grover would give the worse
upper bound of O(

?
N log(1/ε)) queries.
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Chapter 7. Grover’s Search Algorithm

§7.3 Amplitude Amplification
The analysis that worked for Grover’s algorithm is actually much
more generally applicable. Let χ : Z Ñ t0, 1u be any Boolean
function; inputs z P Z satisfying χ(z) = 1 are called solutions.
Suppose we have an algorithm to check whether z is a solution.
This can be written as a unitary Oχ that maps |zy to (´1)χ(z)|zy.
Suppose also we have some (quantum or classical) algorithm A that
uses no intermediate measurements and has probability p of finding
a solution when applied to starting state |0y. Classically, we would
have to repeat A roughly 1/p times before we find a solution.
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Chapter 7. Grover’s Search Algorithm

§7.3 Amplitude Amplification
The amplitude amplification algorithm below only needs to run A
and A´1 O(1/

?p) times:
1 Setup the starting state |U y = A|0y.
2 Repeat the following O(1/

?p) times:
a⃝ Reflect through |By (that is, apply Oχ).
b⃝ Reflect through |U y (that is, apply ARA´1).

3 Measure the first register and check that the resulting element
x is marked.
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Chapter 7. Grover’s Search Algorithm

§7.3 Amplitude Amplification
Defining θ = arcsin ?p and good and bad states |Gy and |By in
analogy with the earlier geometric argument for Grover’s algorithm,
the same reasoning shows that amplitude amplification indeed finds
a solution with high probability. This way, we can speed up a very
large class of classical heuristic algorithms: any algorithm that has
some non-trivial probability of finding a solution can be amplified to
success probability nearly 1 (provided we can efficiently check solu-
tions; that is, implement Oχ). Note that the Hadamard transform
Hbn can be viewed as an algorithm with success probability p = t/N
for a search problem of size N with t solutions, because Hbn|0ny is
the uniform superposition over all N locations. Hence Grover’s algo-
rithm is a special case of amplitude amplification, where Oχ = Ox,˘

and A = Hbn.
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