N S X4
' MAS501*

£ 538 enicd A # MA5501*

Chapter 7. Grover’'s Search Algorithm

Chapter 7. Grover’s Search Algorithm
§7.1 The Search Problem
§7.2 Grover's Algorithm
§7.3 Amplitude Amplification

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.1 The Search Problem

The search problem: For N = 2", we are given an arbitrary x €
{0,1}N. The goal is to find an i such that x; = 1 (and to output ‘no

solutions’ if there are no such /).

Ching-hsiao Cheng >3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.1 The Search Problem

The search problem: For N = 2", we are given an arbitrary x €
{0,1}N. The goal is to find an i such that x; = 1 (and to output ‘no
solutions’ if there are no such 7). We denote the number of solutions
in x by t (that is, t is the Hamming weight of x). This problem may
be viewed as a simplification of the problem of searching an N-slot
unordered database. Classically, a randomized algorithm would need
O(N) queries to solve the search problem. Grover's algorithm solves
it in O(v/'N) queries, and O(v/Nlog, N) other gates.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all

basis states |i) whenever i # 0, and that does nothing to the basis

state |[0").

Ching-hsiao Cheng >3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all
basis states |i) whenever i # 0, and that does nothing to the basis
state [0"). The Grover iterate is G = H®"RH®"O, .

Ching-hsiao Cheng > 3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all
basis states |i) whenever i # 0, and that does nothing to the basis
state [0"). The Grover iterate is G = H®"RH®"O, +. Note that

1 Grover iterate makes 1 query, and uses O(log, N) other gates.

Ching-hsiao Cheng > 3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all
basis states |i) whenever i # 0, and that does nothing to the basis
state [0"). The Grover iterate is G = H®"RH®"O, +. Note that
1 Grover iterate makes 1 query, and uses O(log, N) other gates.
Grover's algorithm starts in the n-bit state |0”), applies a Hadamard
transformation to each qubit to get the uniform superposition, ap-
plies G to this state k times (for some k to be chosen later), and then

measures the final state.

Ching-hsiao Cheng > 3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all
basis states |i) whenever i # 0, and that does nothing to the basis
state [0"). The Grover iterate is G = H®"RH®"O, +. Note that
1 Grover iterate makes 1 query, and uses O(log, N) other gates.
Grover's algorithm starts in the n-bit state |0”), applies a Hadamard
transformation to each qubit to get the uniform superposition, ap-
plies G to this state k times (for some k to be chosen later), and then
measures the final state. Intuitively, what happens is that in each
iteration some amplitude is moved from the indices of the 0-bits to
the indices of the 1-bits.

Ching-hsiao Cheng > 3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Let Ox+|iy = (—1)%|i) denote the +-type oracle for the input x,
and R be the unitary transformation that puts a —1 in front of all
basis states |i) whenever i # 0, and that does nothing to the basis
state [0"). The Grover iterate is G = H®"RH®"O, +. Note that
1 Grover iterate makes 1 query, and uses O(log, N) other gates.
Grover's algorithm starts in the n-bit state |0”), applies a Hadamard
transformation to each qubit to get the uniform superposition, ap-
plies G to this state k times (for some k to be chosen later), and then
measures the final state. Intuitively, what happens is that in each
iteration some amplitude is moved from the indices of the 0-bits to
the indices of the 1-bits. The algorithm stops when almost all of
the amplitude is on the 1-bits, in which case a measurement of the

final state will probably give the index of a 1-bit.

Ching-hsiao Cheng > 3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The following figure illustrates the Grover algorithm.

10y — N I N S

10) — A I O
07 = [0)®" mer| gl |g g
0% —

0> — I R [

WA

~-
k copies of G

Figure 1: Grover's algorithm, with k Grover iterates

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

To analyze this, define the following “good” and “bad" states:

=2 D ad [B=—e ¥ .

{i =1} {i] =0}

where t = #{i|x; = 1}.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

To analyze this, define the following “good” and “bad" states:
1 . 1 .
‘G>:\7ﬁ‘ Z i) and \B>:ﬁ Z i)

{i] x=1} {i] x=0}

where t = #{i|x; = 1}. Then the uniform state over all indices

edges can be written as

=N =2e(T+ %)iy

{ilx=1} {i|x=0}

_ \%/(\/?|G>+\/W|B>> = sin 0|G) + cos 0| BY,

t
here 6 = i —.
where arcsin \/;

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |G) and |B)):

Q@ O, : is a reflection through |B): since (G|B) = 0 and
Oy 1+ (a|G) + b|B)) = —a|G)y + b|B).

Ching-hsiao Cheng £ D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |G) and |B)):

Q@ O, : is a reflection through |B): since (G|B) = 0 and
Oy 1+ (a|G) + b|B)) = —a|G)y + b|B).
@ H®"RH®" is a reflection through |U):

Ching-hsiao Cheng £ D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |G) and |B)):

Q@ O, : is a reflection through |B): since (G|B) = 0 and
Oy 1+ (a|G) + b|B)) = —a|G)y + b|B).
@ H®"RH®" is a reflection through |U): first the reflection through

a unit vector [¢)) can be expressed as 2|¢))(1)| — I since

@lX| = D) = Ll — (16) — BldHlv))

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |G) and |B)):

Q@ O, : is a reflection through |B): since (G|B) = 0 and
Oy 1+ (a|G) + b|B)) = —a|G)y + b|B).
@ H®"RH®" is a reflection through |U): first the reflection through
a unit vector |¢) can be expressed as 2|1){1)| — I since

@)X] ~DI) = GO — (19— o)
and note that (v

onto span(|¢)) and |¢) — (¥|p)|1p) is the orthogonal projec-
tion of |¢) onto the space perpendicular to [¢).

¢y|) is the orthogonal projection of |¢)

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The Grover iterate G is actually the product of two reflections (in
the 2-dimensional space spanned by |G) and |B)):

Q@ O, : is a reflection through |B): since (G|B) = 0 and
Oy 1+ (a|G) + b|B)) = —a|G)y + b|B).
@ H®"RH®" is a reflection through |U): first the reflection through
a unit vector |¢) can be expressed as 2|1){1)| — I since

@)X] ~DI) = GO — (19— o)
and note that (v

onto span(|¢)) and |¢) — (¥|p)|1p) is the orthogonal projec-
tion of |¢) onto the space perpendicular to [¢)). Therefore,
R =2]|0")0"| — I so that

HE®"RH®" = H®"(2/0"%0"| —)H®" = 2|UXU| — 1.

¢y|) is the orthogonal projection of |¢)

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Here is Grover's algorithm restated, assuming we know the fraction
of solutions is ¢ = t/N:
@ Set up the starting state |U) = H®"|0").
@ Repeat the following k = O(1/4/¢) times:
@ Reflect through |B) (that is, apply Oy +).
® Reflect through |U) (that is, apply HO"RH®").

© Measure the first register and check that the resulting /i is a
solution.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Geometric argument: There is a fairly simple geometric argument
why the algorithm works. The analysis is in the 2-dimensional real
plane spanned by |B) and |G).

Ching-hsiao Cheng >3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm

§7.2 Grover's Algorithm

Geometric argument: There is a fairly simple geometric argument

why the algorithm works. The analysis is in the 2-dimensional real
plane spanned by |B) and |G). We start with |U) = sinf|G) +
cosf|B): The two reflections @ and () increase the angle from 6

to 360, moving us towards the good state, as illustrated in Figure 2.

G
Q\U>
|U) \U> \U>
—7 |5} 78 % =M
x+\U>

Figure 2: The first iteration of Grover: (left) start with |U), (middle) reflect
through |B) to get Oy +|U), (right) reflect through |U) to get G|U)

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The next two reflections @ and (b) increase the angle with another
20, etc. More generally, after k applications of (@) and (b) our state

has become

sin((2k + 1)0)|G) + cos((2k + 1)6)|B) .

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The next two reflections @ and (b) increase the angle with another
20, etc. More generally, after k applications of (@) and (b) our state
has become

sin((2k + 1)8)|G) + cos((2k + 1)8)|B).

If we now measure, the probability of seeing a solution is P, =
sin?((2k + 1)0).

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The next two reflections @ and (b) increase the angle with another
20, etc. More generally, after k applications of (@) and (b) our state

has become

sin((2k+ 1)0)|G) + cos((2k+ 1)0)|B) .
If we now measure, the probability of seeing a solution is P, =
sin?((2k + 1)6). We want Py to be as close to 1 as possible. Note
that if we can choose k = —— — % then (2k +1)0 = g and hence

- 46
P% = sin2 — = 1.
2

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

The next two reflections @ and (b) increase the angle with another
20, etc. More generally, after k applications of (@) and (b) our state

has become
sin((2k+ 1)0)|G) + cos((2k+ 1)0)|B) .

If we now measure, the probability of seeing a solution is P, =
sin?((2k + 1)6). We want Py to be as close to 1 as possible. Note

that if we can choose k = % - % then (2k +1)0 = g and hence
P, = sin2g = 1. An example where this works is if t = N/4, for

~ ~ 1
then @ = 7/6 and k = 1. Unfortunately k = % == will usually

not be an integer, and we can only do an integer number of Grover

iterations.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

However, if we choose k to be the integer closest to k, then our final
state will still be close to |G) and the failure probability will still be

small (assuming t < N):
1 — Pp = cos®((2k+1)8) = cos?((2k + 1)8 + 2(k — k)f)
= 2(+2(k— k)0)

where we used |k — k| < 1/2.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

However, if we choose k to be the integer closest to k, then our final
state will still be close to |G) and the failure probability will still be

small (assuming t < N):
1 — Pp = cos®((2k+1)8) = cos?((2k + 1)8 + 2(k — k)f)
= 2(+2(k— k)0)

where we used \k k| < 1/2. Since arcsin(f) > 6, the number of

queries is k < — \/7

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Algebraic argument: Let a; denote the amplitude of the indices
of the t 1-bits after k Grover iterates, and by the amplitude of the

indices of the 0-bits so that t|ax|? + (N — t)|bx|> = 1 for all ke N.
1
VN

Initially, for the uniform superposition |U) we have ag = by =

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Algebraic argument: Let a; denote the amplitude of the indices
of the t 1-bits after k Grover iterates, and by the amplitude of the

indices of the 0-bits so that t|ax|? + (N — t)|bx|> = 1 for all ke N.
1

TN

Initially, for the uniform superposition |U) we have ag = by =
Since

H®" =H, and R =diag(l,-1,-1,---,—1),

H®"RH®" = [%} — I, where [%} is the N x N matrix in which all

€

entries are N;

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Algebraic argument: Let a; denote the amplitude of the indices
of the t 1-bits after k Grover iterates, and by the amplitude of the
indices of the 0-bits so that t|ax|? + (N — t)|bx|> = 1 for all ke N.

1
Initially, for the uniform superposition |U) we have ag = by = i
Since
H®" =H, and R =diag(l,-1,-1,---,—1),
H®"RH®" = [%} — I, where [%} is the N x N matrix in which all
. 2 . . .
entries are N thus we find the following recursion:
2 _ N-2t 2(N —t)
ak_,_l—N[tax + (N t)bk]—l—ak— N ak + N by,
2 —2t N — 2t
bk_,_l—N[—tak—i-(N—t)bk] —bk—Wak-i- N by .

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

With 0 = arcsin+/t/N as before, we have
[akH] _ [cos(%) 2 cos? 0] [ak]

bt 1 —2sin?6 cos(20)| | bk
By matrix diagonalization, we find that

[005(29) 200529]_[0089 cos 6 Hez’v 0 MCOSH cos 6 }1

—25sin%6 cos(260)| |isin —isin@|| 0 e 2?||isinf —isin@

Ching-hsiao Cheng £ D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

With 0 = arcsin+/t/N as before, we have
[akH] _ [cos(%) 2 cos? 0] [ak]

bt 1 —2sin?6 cos(20)| | bk

By matrix diagonalization, we find that

akr1] [cos® cos® T [e? 0 |[cos® cosd ! ar|
bisr| ~ |isin@ —isinf| | 0 e ??||isinf —isinf by’

Ching-hsiao Cheng £ D chlcd A # MAS501*

Chapter 7. Grover's Search Algorithm
With 6 = arcsin\/t/iN as before, we have
[akH] _ [cos(%) 2 cos? 0] [ak]
bry1| — |—2sin?0 cos(20)| | bkl "
By matrix diagonalization, we find that

akr1] [cos® cos® T [e? 0 |[cos® cosd ! ak
biy1| |isin@ —isin@| | 0 e 2

isinf® —isin6 by

)

thus

ax| |cos@ cosf e . cos@ cosd ! ao
bx| ~ |isin® —isinf| | 0 e 2?| |isinf —isinf| |bo
_ 1 [sin(2k+1)f/sin®
/N |cos(2k+1)0/ cos | °

Ching-hsiao Cheng

B 528 s A MABS01*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

Therefore, we obtain the following formulas for ax and by:

1 1
ak_7t51n((2k+1)9) and bk_\/ﬁ

Accordingly, after k iterations the success probability (the sum of

cos((2k+1)0) .

squares of the amplitudes of the locations of the t 1-bits) is the

same as in the geometric analysis
Pi=t- a2 = sin?((2k+ 1)8).

Thus assuming t is known we have a bounded-error quantum
search algorithm with O(+/N/t) queries.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

We now list (without proofs) a number of useful variants of Grover:
O If we know t exactly, the algorithm can be tweaked to end up
in exactly the good state. Roughly speaking, you can make

A 1
the angle 6 slightly smaller, such that k= I—o =5 becomes an

integer.

Ching-hsiao Cheng >3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

We now list (without proofs) a number of useful variants of Grover:
O If we know t exactly, the algorithm can be tweaked to end up

in exactly the good state. Roughly speaking, you can make

the angle 6 slightly smaller, such that k= I—o — % becomes an
integer.

@ If we do not know t, then there is a problem: we do not know
which k to use so we do not know when to stop doing the Grover
iterates. Note that if k gets too big, the success probability
P = sin?((2k + 1)0)) goes down again!

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

We now list (without proofs) a number of useful variants of Grover:
O If we know t exactly, the algorithm can be tweaked to end up

in exactly the good state. Roughly speaking, you can make

the angle 6 slightly smaller, such that k= I—o — % becomes an
integer.

@ If we do not know t, then there is a problem: we do not know
which k to use so we do not know when to stop doing the Grover
iterates. Note that if k gets too big, the success probability
Py = sin?((2k + 1)6)) goes down again! However, a slightly
more complicated algorithm (basically running the above algo-
rithm with systematic different guesses for k) shows that an

expected number of O(4/N/t) queries still suffices to find a
solution if there are t solutions.

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

@ If we know a lower bound 7 on the actual (possibly unknown)
number of solutions t, then the algorithm in (2) uses an ex-
pected number of O(y/N/T) queries. If we run this algorithm
for up to three times its expected number of queries, then (by
Markov's inequality) with probability at least 2/3 it will produce
a solution. This way we can turn an expected runtime into a

worst-case runtime.

Ching-hsiao Cheng >3 8 A # MA5501*

Chapter 7. Grover’'s Search Algorithm
§7.2 Grover's Algorithm

@ If we know a lower bound 7 on the actual (possibly unknown)
number of solutions t, then the algorithm in (2) uses an ex-
pected number of O(y/N/T) queries. If we run this algorithm
for up to three times its expected number of queries, then (by
Markov's inequality) with probability at least 2/3 it will produce
a solution. This way we can turn an expected runtime into a
worst-case runtime.

Q If we do not know t but would like to reduce the probability of
not finding a solution to some small € > 0, then we can do this
using O(4/Nlog(1/e)) queries. The important part here is that
the log(1/e) is inside the square-root; usual error reduction by
O(log(1/e)) repetitions of basic Grover would give the worse
upper bound of O(v/Nlog(1/¢)) queries.

Ching-hsiao Cheng B335 i A # MAS501*

Chapter 7. Grover’'s Search Algorithm

§7.3 Amplitude Amplification

The analysis that worked for Grover's algorithm is actually much
more generally applicable. Let y : Z — {0,1} be any Boolean
function; inputs z € Z satisfying x(z) = 1 are called solutions.
Suppose we have an algorithm to check whether z is a solution.
This can be written as a unitary O, that maps |2) to (—1)X(?|2).
Suppose also we have some (quantum or classical) algorithm A that
uses no intermediate measurements and has probability p of finding
a solution when applied to starting state |0). Classically, we would

have to repeat A roughly 1/p times before we find a solution.

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm

§7.3 Amplitude Amplification

The amplitude amplification algorithm below only needs to run A
and A1 O(1/,/p) times:
@ Setup the starting state |U) = A|0).
@ Repeat the following O(1/,/p) times:
@ Reflect through |B) (that is, apply Oy).
® Reflect through |U) (that is, apply ARA™!).

© Measure the first register and check that the resulting element
x is marked.

Ching-hsiao Cheng £ D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm

§7.3 Amplitude Amplification
Defining § = arcsin /p and good and bad states |G) and |B) in

analogy with the earlier geometric argument for Grover's algorithm,

the same reasoning shows that amplitude amplification indeed finds
a solution with high probability. This way, we can speed up a very
large class of classical heuristic algorithms: any algorithm that has
some non-trivial probability of finding a solution can be amplified to
success probability nearly 1 (provided we can efficiently check solu-

tions; that is, implement O,).

Ching-hsiao Cheng = D chlcd A # MAS501*

Chapter 7. Grover’'s Search Algorithm

§7.3 Amplitude Amplification
Defining § = arcsin /p and good and bad states |G) and |B) in

analogy with the earlier geometric argument for Grover's algorithm,

the same reasoning shows that amplitude amplification indeed finds
a solution with high probability. This way, we can speed up a very
large class of classical heuristic algorithms: any algorithm that has
some non-trivial probability of finding a solution can be amplified to
success probability nearly 1 (provided we can efficiently check solu-
tions; that is, implement Ox)- Note that the Hadamard transform
H®" can be viewed as an algorithm with success probability p = t/N
for a search problem of size N with t solutions, because H®"|0") is
the uniform superposition over all N locations. Hence Grover's algo-
rithm is a special case of amplitude amplification, where O, = O +
and A = H®",

Ching-hsiao Cheng > 3 8 A # MA5501*

	Chapter 7. Grover's Search Algorithm

