量子計算的數學基礎 MA5501＊

Chapter 7．Grover＇s Search Algorithm

§7．1 The Search Problem

§7．2 Grover＇s Algorithm
§7．3 Amplitude Amplification

§7．1 The Search Problem

The search problem：For $N=2^{n}$ ，we are given an arbitrary $x \in$ $\{0,1\}^{N}$ ．The goal is to find an i such that $x_{i}=1$（and to output＇no solutions＇if there are no such i ）．
in x by t（that is，t is the Hamming weight of x ）．This problem maybe viewed as a simplification of the problem of searching an N－slotunordered database Classically a randomized aloorithm would need$\mathcal{O}(N)$ queries to solve the search problem．Grover＇s algorithm solvesit in $\mathcal{O}(\sqrt{N})$ queries，and $\mathcal{O}\left(\sqrt{N} \log _{2} N\right)$ other gates．

§7．1 The Search Problem

The search problem：For $N=2^{n}$ ，we are given an arbitrary $x \in$ $\{0,1\}^{N}$ ．The goal is to find an i such that $x_{i}=1$（and to output＇no solutions＇if there are no such i ）．We denote the number of solutions in x by t（that is，t is the Hamming weight of x ）．This problem may be viewed as a simplification of the problem of searching an N －slot unordered database．Classically，a randomized algorithm would need $\mathcal{O}(N)$ queries to solve the search problem．Grover＇s algorithm solves it in $\mathcal{O}(\sqrt{N})$ queries，and $\mathcal{O}\left(\sqrt{N} \log _{2} N\right)$ other gates．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．

Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1－bits．The algorithm stops when almost all of the amplitude is on the 1 －bits，in which case a measurement of the final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．The Grover iterate is $\mathcal{G}=H^{\otimes n} \mathrm{RH}^{\otimes n} \mathrm{O}_{x, \pm}$ ．Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1－bits．The algorithm stops when almost all of the amplitude is on the 1－bits，in which case a measurement of the final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．The Grover iterate is $\mathcal{G}=\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} \mathrm{O}_{x, \pm}$ ．Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1－bits．The algorithm stops when almost all of the amplitude is on the 1 －bits，in which case a measurement of the final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．The Grover iterate is $\mathcal{G}=\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} \mathrm{O}_{x, \pm}$ ．Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each
iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1－bits．The algorithm stops when almost all of the amplitude is on the 1 －bits，in which case a measurement of the final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．The Grover iterate is $\mathcal{G}=\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} \mathrm{O}_{x, \pm}$ ．Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1 －bits．The algorithm stops when almost all of
the amplitude is on the 1－bits，in which case a measurement of the
final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

Let $\mathrm{O}_{x, \pm}|i\rangle=(-1)^{x_{i}}|i\rangle$ denote the \pm－type oracle for the input x ， and R be the unitary transformation that puts a -1 in front of all basis states $|i\rangle$ whenever $i \neq 0$ ，and that does nothing to the basis state $\left|0^{n}\right\rangle$ ．The Grover iterate is $\mathcal{G}=\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n} \mathrm{O}_{x, \pm}$ ．Note that 1 Grover iterate makes 1 query，and uses $\mathcal{O}\left(\log _{2} N\right)$ other gates． Grover＇s algorithm starts in the n－bit state $\left|0^{n}\right\rangle$ ，applies a Hadamard transformation to each qubit to get the uniform superposition，ap－ plies \mathcal{G} to this state k times（for some k to be chosen later），and then measures the final state．Intuitively，what happens is that in each iteration some amplitude is moved from the indices of the 0 －bits to the indices of the 1－bits．The algorithm stops when almost all of the amplitude is on the 1－bits，in which case a measurement of the final state will probably give the index of a 1－bit．

§7．2 Grover＇s Algorithm

The following figure illustrates the Grover algorithm．

Figure 1：Grover＇s algorithm，with k Grover iterates

§7．2 Grover＇s Algorithm

To analyze this，define the following＂good＂and＂bad＂states：

$$
|G\rangle=\frac{1}{\sqrt{t}} \sum_{\left\{i \mid x_{i}=1\right\}}|i\rangle \quad \text { and } \quad|B\rangle=\frac{1}{\sqrt{N-t}} \sum_{\left\{i \mid x_{i}=0\right\}}|i\rangle .
$$

where $t=\#\left\{i \mid x_{i}=1\right\}$ ．Then the uniform state over all indices
edges can be written as

$$
=\frac{1}{\sqrt{N}}(\sqrt{t}|G\rangle+\sqrt{N-t}|B\rangle)=\sin \theta|G\rangle+\cos \theta|B\rangle
$$

§7．2 Grover＇s Algorithm

To analyze this，define the following＂good＂and＂bad＂states：

$$
|G\rangle=\frac{1}{\sqrt{t}} \sum_{\left\{i \mid x_{i}=1\right\}}|i\rangle \quad \text { and } \quad|B\rangle=\frac{1}{\sqrt{N-t}} \sum_{\left\{i \mid x_{i}=0\right\}}|i\rangle .
$$

where $t=\#\left\{i \mid x_{i}=1\right\}$ ．Then the uniform state over all indices edges can be written as

$$
\begin{aligned}
|U\rangle & =\frac{1}{\sqrt{N}} \sum_{i=0}^{N-1}|i\rangle=\frac{1}{\sqrt{N}}\left(\sum_{\left\{i \mid x_{i}=1\right\}}+\sum_{\left\{i \mid x_{i}=0\right\}}\right)|i\rangle \\
& =\frac{1}{\sqrt{N}}(\sqrt{t}|G\rangle+\sqrt{N-t}|B\rangle)=\sin \theta|G\rangle+\cos \theta|B\rangle
\end{aligned}
$$

where $\theta=\arcsin \sqrt{\frac{t}{N}}$ ．

§7．2 Grover＇s Algorithm

The Grover iterate \mathcal{G} is actually the product of two reflections（in the 2－dimensional space spanned by $|G\rangle$ and $|B\rangle$ ）：
（1） $\mathrm{O}_{x, \pm}$ is a reflection through $|B\rangle$ ：since $\langle G \mid B\rangle=0$ and

$$
\mathrm{O}_{x, \pm}(a|G\rangle+b|B\rangle)=-a|G\rangle+b|B\rangle .
$$

§7．2 Grover＇s Algorithm

The Grover iterate \mathcal{G} is actually the product of two reflections（in the 2－dimensional space spanned by $|G\rangle$ and $|B\rangle$ ）：
（1） $\mathrm{O}_{x, \pm}$ is a reflection through $|B\rangle$ ：since $\langle G \mid B\rangle=0$ and

$$
\mathrm{O}_{x, \pm}(a|G\rangle+b|B\rangle)=-a|G\rangle+b|B\rangle .
$$

（2）$H^{\otimes n} \mathrm{RH}^{\otimes n}$ is a reflection through $|U\rangle$ ：

§7．2 Grover＇s Algorithm

The Grover iterate \mathcal{G} is actually the product of two reflections（in the 2－dimensional space spanned by $|G\rangle$ and $|B\rangle$ ）：
（1） $\mathrm{O}_{x, \pm}$ is a reflection through $|B\rangle$ ：since $\langle G \mid B\rangle=0$ and

$$
\mathrm{O}_{x, \pm}(a|G\rangle+b|B\rangle)=-a|G\rangle+b|B\rangle .
$$

（2）$H^{\otimes n} \mathrm{RH}^{\otimes n}$ is a reflection through $|U\rangle$ ：first the reflection through a unit vector $|\psi\rangle$ can be expressed as $2|\psi\rangle\langle\psi|$－I since

$$
(2|\psi\rangle\langle\psi|-\mathrm{I})|\phi\rangle=\langle\psi \mid \phi\rangle|\psi\rangle-(|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle)
$$

and note that
onto span $(|\psi\rangle)$ and $|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle$ is the orthogonal projec－
tion of $|\phi\rangle$ onto the space perpendicular to $|\psi\rangle$ ．Therefore，
$\mathrm{R}=2\left|0^{n}\right\rangle\left\langle 0^{n}\right|-\mathrm{I}$ so that

§7．2 Grover＇s Algorithm

The Grover iterate \mathcal{G} is actually the product of two reflections（in the 2－dimensional space spanned by $|G\rangle$ and $|B\rangle$ ）：
（1） $\mathrm{O}_{x, \pm}$ is a reflection through $|B\rangle$ ：since $\langle G \mid B\rangle=0$ and

$$
\mathrm{O}_{x, \pm}(a|G\rangle+b|B\rangle)=-a|G\rangle+b|B\rangle .
$$

（2）$H^{\otimes n} \mathrm{RH}^{\otimes n}$ is a reflection through $|U\rangle$ ：first the reflection through a unit vector $|\psi\rangle$ can be expressed as $2|\psi\rangle\langle\psi|$－I since

$$
(2|\psi\rangle\langle\psi|-\mathrm{I})|\phi\rangle=\langle\psi \mid \phi\rangle|\psi\rangle-(|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle)
$$

and note that $\langle\psi \mid \phi\rangle|\psi\rangle$ is the orthogonal projection of $|\phi\rangle$ onto span $(|\psi\rangle)$ and $|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle$ is the orthogonal projec－ tion of $|\phi\rangle$ onto the space perpendicular to $|\psi\rangle$ ．Therefore，
$\mathrm{R}=2\left|0^{n}\right\rangle\left\langle 0^{n}\right|-\mathrm{I}$ so that
$\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n}=\mathrm{H}^{\otimes n}\left(2\left|0^{n}\right\rangle\left\langle 0^{n}\right|-\mathrm{I}\right) \mathrm{H}^{\otimes n}=2|U\rangle\langle U|-\mathrm{I}$

§7．2 Grover＇s Algorithm

The Grover iterate \mathcal{G} is actually the product of two reflections（in the 2－dimensional space spanned by $|G\rangle$ and $|B\rangle$ ）：
（1） $\mathrm{O}_{x, \pm}$ is a reflection through $|B\rangle$ ：since $\langle G \mid B\rangle=0$ and

$$
\mathrm{O}_{x, \pm}(a|G\rangle+b|B\rangle)=-a|G\rangle+b|B\rangle .
$$

（2）$H^{\otimes n} \mathrm{RH}^{\otimes n}$ is a reflection through $|U\rangle$ ：first the reflection through a unit vector $|\psi\rangle$ can be expressed as $2|\psi\rangle\langle\psi|$－I since

$$
(2|\psi\rangle\langle\psi|-\mathrm{I})|\phi\rangle=\langle\psi \mid \phi\rangle|\psi\rangle-(|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle)
$$

and note that $\langle\psi \mid \phi\rangle|\psi\rangle$ is the orthogonal projection of $|\phi\rangle$ onto span $(|\psi\rangle)$ and $|\phi\rangle-\langle\psi \mid \phi\rangle|\psi\rangle$ is the orthogonal projec－ tion of $|\phi\rangle$ onto the space perpendicular to $|\psi\rangle$ ．Therefore， $\mathrm{R}=2\left|0^{n}\right\rangle\left\langle 0^{n}\right|-\mathrm{I}$ so that

$$
\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n}=\mathrm{H}^{\otimes n}\left(2\left|0^{n}\right\rangle\left\langle 0^{n}\right|-\mathrm{I}\right) \mathrm{H}^{\otimes n}=2|U\rangle\langle U|-\mathrm{I} .
$$

§7．2 Grover＇s Algorithm

Here is Grover＇s algorithm restated，assuming we know the fraction of solutions is $\varepsilon=t / N$ ：
（1）Set up the starting state $|U\rangle=\mathrm{H}^{\otimes n}\left|0^{n}\right\rangle$ ．
（2）Repeat the following $k=\mathcal{O}(1 / \sqrt{\varepsilon})$ times：
（a）Reflect through $|B\rangle$（that is，apply $\mathrm{O}_{x, \pm}$ ）．
（b）Reflect through $|U\rangle$（that is，apply $\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n}$ ）．
（3）Measure the first register and check that the resulting i is a solution．

§7．2 Grover＇s Algorithm

Geometric argument：There is a fairly simple geometric argument why the algorithm works．The analysis is in the 2－dimensional real plane spanned by $|B\rangle$ and $|G\rangle$ ．
$\cos \theta|B\rangle$ ：The two reflections（a）and（b）increase the angle from θ to 3θ ，moving us towards the good state，as illustrated in Figure 2.

[^0]
§7．2 Grover＇s Algorithm

Geometric argument：There is a fairly simple geometric argument why the algorithm works．The analysis is in the 2－dimensional real plane spanned by $|B\rangle$ and $|G\rangle$ ．We start with $|U\rangle=\sin \theta|G\rangle+$ $\cos \theta|B\rangle$ ：The two reflections（a）and（b）increase the angle from θ to 3θ ，moving us towards the good state，as illustrated in Figure 2.

Figure 2：The first iteration of Grover：（left）start with $|U\rangle$ ，（middle）reflect through $|B\rangle$ to get $\mathrm{O}_{x, \pm}|U\rangle$ ，（right）reflect through $|U\rangle$ to get $\mathcal{G}|U\rangle$

§7．2 Grover＇s Algorithm

The next two reflections（a）and（b）increase the angle with another 2θ ，etc．More generally，after k applications of（a）and（b）our state has become

$$
\sin ((2 k+1) \theta)|G\rangle+\cos ((2 k+1) \theta)|B\rangle .
$$

If we now measure， $\sin ^{2}((2 k+1) \theta)$ ．We want P_{k} to be as close to 1 as possible．Note that if we can choose $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ ，then $(2 \tilde{k}+1) \theta=\frac{\pi}{2}$ and hence $P_{\widetilde{k}}=\sin ^{2} \frac{\pi}{2}=1$ ．An example where this works is if $t=N / 4$ ，for then $A=\pi / 6$ and $\tilde{k}=1$ ．Unfortunately $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ mill usually not be an integer，and we can only do an integer number of Grover iterations

§7．2 Grover＇s Algorithm

The next two reflections（a）and（b）increase the angle with another 2θ ，etc．More generally，after k applications of（a）and（b）our state has become

$$
\sin ((2 k+1) \theta)|G\rangle+\cos ((2 k+1) \theta)|B\rangle .
$$

If we now measure，the probability of seeing a solution is $P_{k}=$ $\sin ^{2}((2 k+1) \theta)$ ．We want P_{k} to be as close to 1 as possible．Note that if we can choose $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ ，then $(2 \tilde{k}+1) \theta=\frac{\pi}{2}$ and hence $P_{\overparen{k}}=\sin ^{2} \frac{\pi}{2}=1$ ．An example where this works is if $t=N / 4$ ，for then $\theta=\pi / 6$ and $\tilde{k}=1$ ．Unfortunately $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ will usually not be an integer，and we can only do an integer number of Grover iterations．

§7．2 Grover＇s Algorithm

The next two reflections（a）and（b）increase the angle with another 2θ ，etc．More generally，after k applications of（a）and（b）our state has become

$$
\sin ((2 k+1) \theta)|G\rangle+\cos ((2 k+1) \theta)|B\rangle .
$$

If we now measure，the probability of seeing a solution is $P_{k}=$ $\sin ^{2}((2 k+1) \theta)$ ．We want P_{k} to be as close to 1 as possible．Note that if we can choose $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ ，then $(2 \tilde{k}+1) \theta=\frac{\pi}{2}$ and hence $P_{\widetilde{k}}=\sin ^{2} \frac{\pi}{2}=1$ ．An example where this works is i then $\theta=\pi / 6$ and $\widetilde{k}=1$ ．Unfortunately $\widetilde{k}=$
not be an integer，and we can only do an integer number of Grover iterations．

§7．2 Grover＇s Algorithm

The next two reflections（a）and（b）increase the angle with another 2θ ，etc．More generally，after k applications of（a）and（b）our state has become

$$
\sin ((2 k+1) \theta)|G\rangle+\cos ((2 k+1) \theta)|B\rangle .
$$

If we now measure，the probability of seeing a solution is $P_{k}=$ $\sin ^{2}((2 k+1) \theta)$ ．We want P_{k} to be as close to 1 as possible．Note that if we can choose $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ ，then $(2 \tilde{k}+1) \theta=\frac{\pi}{2}$ and hence $P_{\widetilde{k}}=\sin ^{2} \frac{\pi}{2}=1$ ．An example where this works is if $t=N / 4$ ，for then $\theta=\pi / 6$ and $\tilde{k}=1$ ．Unfortunately $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ will usually not be an integer，and we can only do an integer number of Grover iterations．

§7．2 Grover＇s Algorithm

However，if we choose k to be the integer closest to \widetilde{k} ，then our final state will still be close to $|G\rangle$ and the failure probability will still be small（assuming $t \ll N$ ）：

$$
\begin{aligned}
1-P_{k} & =\cos ^{2}((2 k+1) \theta)=\cos ^{2}((2 \tilde{k}+1) \theta+2(k-\widetilde{k}) \theta) \\
& =\cos ^{2}\left(\frac{\pi}{2}+2(k-\widetilde{k}) \theta\right) \\
& =\sin ^{2}(2(k-\tilde{k}) \theta) \leqslant \sin ^{2}(\theta)=\frac{t}{N}
\end{aligned}
$$

where we used $|k-\widetilde{k}| \leqslant 1 / 2$ ．
queries is $k \leqslant \frac{\pi}{4 \theta}$

§7．2 Grover＇s Algorithm

However，if we choose k to be the integer closest to \widetilde{k} ，then our final state will still be close to $|G\rangle$ and the failure probability will still be small（assuming $t \ll N$ ）：

$$
\begin{aligned}
1-P_{k} & =\cos ^{2}((2 k+1) \theta)=\cos ^{2}((2 \tilde{k}+1) \theta+2(k-\widetilde{k}) \theta) \\
& =\cos ^{2}\left(\frac{\pi}{2}+2(k-\widetilde{k}) \theta\right) \\
& =\sin ^{2}(2(k-\tilde{k}) \theta) \leqslant \sin ^{2}(\theta)=\frac{t}{N}
\end{aligned}
$$

where we used $|k-\widetilde{k}| \leqslant 1 / 2$ ．Since $\arcsin (\theta) \geqslant \theta$ ，the number of queries is $k \leqslant \frac{\pi}{4 \theta} \leqslant \frac{\pi}{4} \sqrt{\frac{N}{t}}$ ．

§7．2 Grover＇s Algorithm

Algebraic argument：Let a_{k} denote the amplitude of the indices of the t 1－bits after k Grover iterates，and b_{k} the amplitude of the indices of the 0 －bits so that $t\left|a_{k}\right|^{2}+(N-t)\left|b_{k}\right|^{2}=1$ for all $k \in \mathbb{N}$ ． Initially，for the uniform superposition $|U\rangle$ we have $a_{0}=b_{0}=\frac{1}{\sqrt{N}}$ ． Since

entries are $\frac{2}{N}$ ；thus we find the following recursion：

§7．2 Grover＇s Algorithm

Algebraic argument：Let a_{k} denote the amplitude of the indices of the t 1－bits after k Grover iterates，and b_{k} the amplitude of the indices of the 0 －bits so that $t\left|a_{k}\right|^{2}+(N-t)\left|b_{k}\right|^{2}=1$ for all $k \in \mathbb{N}$ ． Initially，for the uniform superposition $|U\rangle$ we have $a_{0}=b_{0}=\frac{1}{\sqrt{N}}$ ． Since

$$
\mathrm{H}^{\otimes n}=\mathrm{H}_{n} \quad \text { and } \quad \mathrm{R}=\operatorname{diag}(1,-1,-1, \cdots,-1),
$$

$\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n}=\left[\frac{2}{N}\right]-\mathrm{I}$ ，where $\left[\frac{2}{N}\right]$ is the $N \times N$ matrix in which all entries are $\frac{2}{N}$ ；thus we find the following recursion

§7．2 Grover＇s Algorithm

Algebraic argument：Let a_{k} denote the amplitude of the indices of the t 1－bits after k Grover iterates，and b_{k} the amplitude of the indices of the 0 －bits so that $t\left|a_{k}\right|^{2}+(N-t)\left|b_{k}\right|^{2}=1$ for all $k \in \mathbb{N}$ ． Initially，for the uniform superposition $|U\rangle$ we have $a_{0}=b_{0}=\frac{1}{\sqrt{N}}$ ． Since

$$
\mathrm{H}^{\otimes n}=\mathrm{H}_{n} \quad \text { and } \quad \mathrm{R}=\operatorname{diag}(1,-1,-1, \cdots,-1),
$$

$\mathrm{H}^{\otimes n} \mathrm{RH}^{\otimes n}=\left[\frac{2}{N}\right]-\mathrm{I}$ ，where $\left[\frac{2}{N}\right]$ is the $N \times N$ matrix in which all entries are $\frac{2}{N}$ ；thus we find the following recursion：

$$
\begin{aligned}
& a_{k+1}=\frac{2}{N}\left[-t a_{k}+(N-t) b_{k}\right]+a_{k}=\frac{N-2 t}{N} a_{k}+\frac{2(N-t)}{N} b_{k}, \\
& b_{k+1}=\frac{2}{N}\left[-t a_{k}+(N-t) b_{k}\right]-b_{k}=\frac{-2 t}{N} a_{k}+\frac{N-2 t}{N} b_{k} .
\end{aligned}
$$

§7．2 Grover＇s Algorithm

With $\theta=\arcsin \sqrt{t / N}$ as before，we have

$$
\left[\begin{array}{l}
a_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \theta) & 2 \cos ^{2} \theta \\
-2 \sin ^{2} \theta & \cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] .
$$

By matrix diagonalization，we find that

$$
\left[\begin{array}{cc}
\cos (2 \theta) & 2 \cos ^{2} \theta \\
-2 \sin ^{2} \theta & \cos (2 \theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]\left[\begin{array}{cc}
e^{2 i \theta} & 0 \\
0 & e^{-2 i \theta}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]^{-1},
$$

thus

§7．2 Grover＇s Algorithm

With $\theta=\arcsin \sqrt{t / N}$ as before，we have

$$
\left[\begin{array}{l}
a_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \theta) & 2 \cos ^{2} \theta \\
-2 \sin ^{2} \theta & \cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] .
$$

By matrix diagonalization，we find that

$$
\left[\begin{array}{l}
a_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]\left[\begin{array}{cc}
e^{2 i \theta} & 0 \\
0 & e^{-2 i \theta}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]^{-1}\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right]
$$

thus

§7．2 Grover＇s Algorithm

With $\theta=\arcsin \sqrt{t / N}$ as before，we have

$$
\left[\begin{array}{l}
a_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \theta) & 2 \cos ^{2} \theta \\
-2 \sin ^{2} \theta & \cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] .
$$

By matrix diagonalization，we find that

$$
\left[\begin{array}{l}
a_{k+1} \\
b_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]\left[\begin{array}{cc}
e^{2 i \theta} & 0 \\
0 & e^{-2 i \theta}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]^{-1}\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right]
$$

thus

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] } & =\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]\left[\begin{array}{cc}
e^{2 i \theta} & 0 \\
0 & e^{-2 i \theta}
\end{array}\right]^{k}\left[\begin{array}{cc}
\cos \theta & \cos \theta \\
i \sin \theta & -i \sin \theta
\end{array}\right]^{-1}\left[\begin{array}{l}
a_{0} \\
b_{0}
\end{array}\right] \\
& =\frac{1}{\sqrt{N}}\left[\begin{array}{c}
\sin (2 k+1) \theta / \sin \theta \\
\cos (2 k+1) \theta / \cos \theta
\end{array}\right] .
\end{aligned}
$$

§7．2 Grover＇s Algorithm

Therefore，we obtain the following formulas for a_{k} and b_{k} ：

$$
a_{k}=\frac{1}{\sqrt{t}} \sin ((2 k+1) \theta) \quad \text { and } \quad b_{k}=\frac{1}{\sqrt{N-t}} \cos ((2 k+1) \theta) .
$$

Accordingly，after k iterations the success probability（the sum of squares of the amplitudes of the locations of the t 1－bits）is the same as in the geometric analysis

$$
P_{k}=t \cdot a_{k}^{2}=\sin ^{2}((2 k+1) \theta)
$$

Thus assuming t is known we have a bounded－error quantum search algorithm with $\mathcal{O}(\sqrt{N / t})$ queries．

§7．2 Grover＇s Algorithm

We now list（without proofs）a number of useful variants of Grover：
（1）If we know t exactly，the algorithm can be tweaked to end up in exactly the good state．Roughly speaking，you can make the angle θ slightly smaller，such that $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ becomes an integer．
（2）If we do not know t ，then there is a problem：we do not know which k to use so we do not know when to stop doing the Grover iterates．Note that if k gets too big，the success probability $\left.P_{k}=\sin ^{2}((2 k+1) \theta)\right)$ goes down again！However，a slightly more complicated algorithm（basically running the above algo－ rithm with systematic different guesses for k ）shows that an expected number of $\mathcal{O}(\sqrt{N} / t)$ queries still suffices to find a solution if there are t solutions．

§7．2 Grover＇s Algorithm

We now list（without proofs）a number of useful variants of Grover：
（1）If we know t exactly，the algorithm can be tweaked to end up in exactly the good state．Roughly speaking，you can make the angle θ slightly smaller，such that $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ becomes an integer．
（2）If we do not know t ，then there is a problem：we do not know which k to use so we do not know when to stop doing the Grover iterates．Note that if k gets too big，the success probability $\left.P_{k}=\sin ^{2}((2 k+1) \theta)\right)$ goes down again！

However，a slightly more complicated algorithm（basically running the above algo－ rithm with systematic different guesses for k ）shows that an expected number of $\mathcal{O}(\sqrt{1} / \mathrm{N} / t)$ queries still suffices to find a solution if there are t solutions．

§7．2 Grover＇s Algorithm

We now list（without proofs）a number of useful variants of Grover：
（1）If we know t exactly，the algorithm can be tweaked to end up in exactly the good state．Roughly speaking，you can make the angle θ slightly smaller，such that $\tilde{k}=\frac{\pi}{4 \theta}-\frac{1}{2}$ becomes an integer．
（2）If we do not know t ，then there is a problem：we do not know which k to use so we do not know when to stop doing the Grover iterates．Note that if k gets too big，the success probability $\left.P_{k}=\sin ^{2}((2 k+1) \theta)\right)$ goes down again！However，a slightly more complicated algorithm（basically running the above algo－ rithm with systematic different guesses for k ）shows that an expected number of $\mathcal{O}(\sqrt{N / t})$ queries still suffices to find a solution if there are t solutions．

§7．2 Grover＇s Algorithm

（3）If we know a lower bound τ on the actual（possibly unknown） number of solutions t ，then the algorithm in（2）uses an ex－ pected number of $\mathcal{O}(\sqrt{N / \tau})$ queries．If we run this algorithm for up to three times its expected number of queries，then（by Markov＇s inequality）with probability at least $2 / 3$ it will produce a solution．This way we can turn an expected runtime into a worst－case runtime．

If we do not know t but would like to reduce the probability of not finding a solution to some small $\varepsilon>0$ ，then we can do this using $O(\sqrt{N \operatorname{lng}(1 / \varepsilon)})$ queries．The important nart here is that the $\log (1 / \varepsilon)$ is inside the square－root；usual error reduction by $\mathcal{O}(\log (1 / \varepsilon))$ repetitions of basic Grover would give the worse unper bound of $\mathcal{O}(\sqrt{N} \log (1 / \varepsilon))$ queries．

§7．2 Grover＇s Algorithm

（3）If we know a lower bound τ on the actual（possibly unknown） number of solutions t ，then the algorithm in（2）uses an ex－ pected number of $\mathcal{O}(\sqrt{N / \tau})$ queries．If we run this algorithm for up to three times its expected number of queries，then（by Markov＇s inequality）with probability at least $2 / 3$ it will produce a solution．This way we can turn an expected runtime into a worst－case runtime．
（9）If we do not know t but would like to reduce the probability of not finding a solution to some small $\varepsilon>0$ ，then we can do this using $\mathcal{O}(\sqrt{N \log (1 / \varepsilon)})$ queries．The important part here is that the $\log (1 / \varepsilon)$ is inside the square－root；usual error reduction by $\mathcal{O}(\log (1 / \varepsilon))$ repetitions of basic Grover would give the worse upper bound of $\mathcal{O}(\sqrt{N} \log (1 / \varepsilon))$ queries．

§7．3 Amplitude Amplification

The analysis that worked for Grover＇s algorithm is actually much more generally applicable．Let $\chi: \mathbb{Z} \rightarrow\{0,1\}$ be any Boolean function；inputs $z \in \mathbb{Z}$ satisfying $\chi(z)=1$ are called solutions． Suppose we have an algorithm to check whether z is a solution． This can be written as a unitary O_{χ} that maps $|z\rangle$ to $(-1)^{\chi(z)}|z\rangle$ ． Suppose also we have some（quantum or classical）algorithm \mathcal{A} that uses no intermediate measurements and has probability p of finding a solution when applied to starting state $|0\rangle$ ．Classically，we would have to repeat \mathcal{A} roughly $1 / p$ times before we find a solution．

§7．3 Amplitude Amplification

The amplitude amplification algorithm below only needs to run \mathcal{A} and $\mathcal{A}^{-1} \mathcal{O}(1 / \sqrt{p})$ times：
（1）Setup the starting state $|U\rangle=\mathcal{A}|0\rangle$ ．
（2）Repeat the following $\mathcal{O}(1 / \sqrt{p})$ times：
（a）Reflect through $|B\rangle$（that is，apply O_{χ} ）．
（b）Reflect through $|U\rangle$（that is，apply $\mathcal{A R} \mathcal{A}^{-1}$ ）．
（3）Measure the first register and check that the resulting element x is marked．

§7．3 Amplitude Amplification

Defining $\theta=\arcsin \sqrt{p}$ and good and bad states $|G\rangle$ and $|B\rangle$ in analogy with the earlier geometric argument for Grover＇s algorithm， the same reasoning shows that amplitude amplification indeed finds a solution with high probability．This way，we can speed up a very large class of classical heuristic algorithms：any algorithm that has some non－trivial probability of finding a solution can be amplified to success probability nearly 1 （provided we can efficiently check solu－ tions；that is，implement O_{χ} ）．Note that the Hadamard transform $H^{\otimes n}$ can be viewed as an algorithm with success probability $p=t / N$ for a search problem of size N with t solutions，because $H^{\otimes n}\left|0^{n}\right\rangle$ is the uniform superposition over all N locations．Hence Grover＇s algo－ rithm is a special case of amplitude amplification，where $\mathrm{O}_{\chi}=\mathrm{O}_{x}$ and $\mathcal{A}=\mathrm{H}^{\otimes n}$

§7．3 Amplitude Amplification

Defining $\theta=\arcsin \sqrt{p}$ and good and bad states $|G\rangle$ and $|B\rangle$ in analogy with the earlier geometric argument for Grover＇s algorithm， the same reasoning shows that amplitude amplification indeed finds a solution with high probability．This way，we can speed up a very large class of classical heuristic algorithms：any algorithm that has some non－trivial probability of finding a solution can be amplified to success probability nearly 1 （provided we can efficiently check solu－ tions；that is，implement O_{χ} ）．Note that the Hadamard transform $\mathrm{H}^{\otimes n}$ can be viewed as an algorithm with success probability $p=t / N$ for a search problem of size N with t solutions，because $\mathrm{H}^{\otimes n}\left|0^{n}\right\rangle$ is the uniform superposition over all N locations．Hence Grover＇s algo－ rithm is a special case of amplitude amplification，where $\mathrm{O}_{\chi}=\mathrm{O}_{x, \pm}$ and $\mathcal{A}=\mathrm{H}^{\otimes n}$ ．

[^0]: Figure 2：The first iteration of Grover：（left）start with $|U\rangle$ ，（middle）reflect

