
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 6. Shor’s Factoring Algorithm

量子計算的數學基礎
MA5501*

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 6. Shor’s Factoring Algorithm

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.2 Reduction from Factoring to Period-finding

§6.3 Shor’s Period-finding Algorithm

§6.4 Continued fractions

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 6. Shor’s Factoring Algorithm

Chapter 6. Shor’s Factoring Algorithm
Suppose that N is the product of two unknown prime numbers p, q.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than

?
N is a factor of N.

The worse case scenario is to try this division
?

N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of
two prime numbers”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the
most famous quantum algorithm to factor large numbers, the Shor
algorithm.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
RSA is an asymmetric encryption (非對稱式加密) technique that
uses two different keys as public and private keys to perform the
encryption and decryption. The public key is represented by the
integers n and e, and the private key by the integer d. A basic
principle behind RSA is to find three very large positive integers e,
d, and n, such that with modular exponentiation all messages m P N
with 0 ď m ă n satisfies

(me)d ” m (mod n)
and that knowing e and n, or even m, it can be extremely difficult
to find d.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
§6.1.1 Mathematical foundation
Definition (Greatest common divisor)
Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = gcd(a, b), if

1 d is a common divisor of a and b.
2 every common divisor c of a and b is not greater than d.
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§6.1 RSA Encryption
Theorem
Let a and b be positive integers with a ď b. Suppose that b =

aq0 + r1, a = r1q1 + r2, rj´1 = rjqj + rj+1 for 2 ď j ď k, where
0 = rk+1 ă rk ă ¨ ¨ ¨ ă r2 ă r1 ă a and qj P N for all 0 ď j ď k.

1 gcd(a, b) = rk, the last non-zero remainder in the list.
2 If tsjuk

j=´1 and ttjuk
j=´1 are defined by

sj =

$

&

%

1 if j = ´1 ,
0 if j = 0 ,

sj´2 ´ qj´1sj´1 if j ě 1 ,

tj =

$

&

%

0 if j = ´1 ,
1 if j = 0 ,

tj´2 ´ qj´1tj´1 if j ě 1 ,

then
atj + bsj = rj @ 1 ď j ď k .
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§6.1 RSA Encryption
Proof.
Let a and b be positive integers with a ď b. By the Division Al-
gorithm, there exists positive integer q1 and non-negative integer r1
such that b = aq0+r1 and 0 ď r1 ă a. If r1 = 0, the lists terminate;
otherwise, for 0 ă r1 ă a, there exists positive integer q1 and non-
negative integer r2 such that a = r1q1+r2 and 0 ď r2 ă r1. If r2 = 0,
the lists terminate; otherwise, for 0 ă r2 ă r1, there exists positive
integer q2 and non-negative integer r3 such that r1 = r2q2 + r3 and
0 ď r3 ă r2. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers r1, r2, r3, ¨ ¨ ¨ . This lists must
end, so there is an integer k such that rk+1 = 0.
Therefore, with r´1 and r0 denoting b and a respectively, we have

r´1 ě r0 ą r1 ą r2 ą ¨ ¨ ¨ ą rk ą rk+1 = 0 ,

rj´1 = rjqj + rj+1 for all 0 ď j ď k . ˝
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§6.1 RSA Encryption
Proof (cont’d).

1 We now show that rk = d ” gcd(a, b).
a⃝ First we note that rk divides rk´1 since rk´1 = rkqk. There-

fore, the fact that rj´1 = rjqj+rj+1 for all 0 ď j ď k implies
that rk divides rj´1 for all 0 ď j ď k.

b⃝ On the other hand, d divides r´1 and r0. Therefore, by the
fact that rj+1 = rj´1 ´ rjqj for all 0 ď j ď k, we find that
d divides rj+1 for all 0 ď j ď k.

By a⃝, rk is a common divisor of a and b. By b⃝, the greatest
common divisor of a and b must divide rk; thus we conclude
that rk = gcd(a, b). ˝
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§6.1 RSA Encryption
Proof (cont’d).

2 To see that for all 1 ď j ď k,
atj + bsj = rj , (‹)

we note that
a⃝ (‹) holds for the case k = 1 since (s1, t1) = (1,´q0) and b =

aq0 + r1.
b⃝ (‹) holds for the case k = 2 since (s2, t2) = (´q1, 1+q0q1) and

at2+bs2 = a(1+q0q1)´bq1 = a´q1(b´aq0) = r0´q1r1 = r2 .

c⃝ Suppose that (‹) holds for k = ℓ, ℓ´ 1, ℓ ě 2. Then

atℓ+1 + bsℓ+1 = a(tℓ´1 ´ qℓtℓ) + b(sℓ´1 ´ qℓsℓ)
= atℓ´1 + bsℓ´1 ´ qℓ(atℓ + bsℓ)
= rℓ´1 ´ qℓrℓ = rℓ+1 .

By induction, we conclude that (‹) holds for 1 ď j ď k. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Remark: Let a, b P N with a ď b. The algorithm to compute
gcd(a, b) given in part 1 of the previous theorem is caleed Euclid’s
Algorithm (輾轉相除法), and the algorithm to compute x, y P Z
so that ax + by = gcd(a, b) given in part 2 of the previous theorem
is called Extended Euclid’s Algorithm.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Example
We compute gcd(32, 12) using Euclid’s algorithm as follows:

32 = 12 ˆ 2 + 8 , 12 = 8 ˆ 1 + 4 , 8 = 4 ˆ 2 + 0 .

Therefore, 4 = gcd(12, 32). Moreover, by working backward,

4 = 12 ´ 8 ˆ 1 = 12 ´ (32 ´ 12 ˆ 2) ˆ 1 = 12 ˆ 3 + 32 ˆ (´1) .

One can also obtain the “coefficients” 3 and ´1 using Extended
Euclid’s Algorithm:

j rj qj sj tj

-1 32 1 0
0 12 2 0 1
1 8 1 1 ´2
2 4 2 ´1 3
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Theorem
Let a and b be non-zero integers. The gcd of a and b is the smallest
positive linear combination of a and b; that is,

gcd(a, b) = min
␣

am + bn
ˇ

ˇ am + bn ą 0 ,m, n P Z
(

.

Proof.
Let d = am + bn be the smallest positive linear combination of a
and b.

1 By the Division Algorithm, there exist integers q and r such
that a = dq + r, where 0 ď r ă d. Then

r = a ´ dq = a ´ (am + bn)q = a(1 ´ m) + b(´nq) ;
thus r is a linear combination of a and b. Since 0 ď r ă d, we
must have r = 0. Therefore, a = dq; thus d |a. Similarly, d |b ;
thus d is a common divisor of a and b. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proof (cont’d).

2 Let c be a common divisor of a and b. Then c divides d since
d = am + bn. Therefore, c ď d.

By 1⃝ and 2⃝, we find that d = gcd(a, b). ˝

Definition (Euler function)
Let n P N. The function φ : N Ñ N defined by

φ(n) = #
␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

is called the Euler (phi) function. In other words, the Euler function
counts the positive integers up to a given integer n that are coprime
to n.
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Proof (cont’d).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proposition
For each n P N,

φ(n) = n
ź

p|n
p prime

(
1 ´

1

p
)
.

In particular, by writing n =
r
ś

j=1
pkj

j = pk1
1 pk2

2 ¨ ¨ ¨ pkrr , where

p1, ¨ ¨ ¨ , pr are prime numbers and k1, ¨ ¨ ¨ , kr P N, one has

φ(n) =
r
ź

j=1

pkj´1
j (pj ´ 1) .

Corollary
Let m, n P N be such that gcd(m, n) = 1. Then φ(mn) = φ(m)φ(n).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Definition
Given a P Z and n P N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs r if a = qn + r for some q P Z and r P t0, 1, ¨ ¨ ¨ , n ´ 1u.
For a, b P Z, the notation a ” b (mod n) denotes the fact that
n|(a ´ b); that is, there exists m P Z such that a ´ b = mn.

Definition
The addition ‘ on Zn is defined by

c = a ‘ b if and only if (a + b) mod n outputs c ,

and the multiplication d on Zn is defined by

c = a d b if and only if (a ¨ b) mod n outputs c ,

where + and ¨ are the usual addition and multiplication on Z.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proposition
(Zn,‘) is a group; that is,

1 Zn is closed under addition ‘;
2 there exists an additive identity 0 (that is, a ‘ 0 = a for all

a P Zn), and
3 every element in Zn has an additive inverse (that is, for each

a P Zn there exists b P Zn such that a ‘ b = 0).

Proposition
Let a, b, c, d P Z and n P N be such that a ” c (mod n) and b ” d
(mod n). Then a ¨ b ” c ¨ d (mod n).

Proposition (Cancellation law in Zn)
Let a, n P N be such that gcd(a, n) = 1. If a ¨ b ” a ¨ c (mod n),
then b ” c (mod n).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proposition
Let n ě 2 be an integer, and a, b P Z satisfy a ” b (mod n). Then
gcd(a, n) = 1 if and only if gcd(b, n) = 1.

Proof.
It suffices to shows that if gcd(a, n) ‰ 1, then gcd(b, n) ‰ 1.
Suppose that gcd(a, n) = p ą 1. Then a = pq1 and n = pq2 for
some q1, q2 P Z. Since a ” b (mod n), there exists m P Z such that
a ´ b = mn. Therefore, b = a ´ mn = pq1 ´ pq2m = p(q1 ´ q2m)

which shows that gcd(b, n) ě p. ˝

The proposition above shows that if a P Z satisfies gcd(a, n) = 1,
then (a mod n) is coprime to n.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Theorem
The integers coprime to n from the set t0, 1, ¨ ¨ ¨ , n−1u of n non-
negative integers form a group under multiplication modulo n. In
other words, let S be a subset of Zn consisting of numbers coprime
to n; that is, S =

␣

k P N
ˇ

ˇ 1 ď k ď n and gcd(k, n) = 1
(

. Then
(S,d) is a group; that is,

1 S is closed under multiplication d;
2 there exists an multiplicative identity 1 (that is, a d 1 = a for

all a P S), and
3 every element in S has an multiplicative inverse element (that

is, for each a P S there exists b P S such that a d b = 1).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Proof.
It suffices to prove 1 and 3.

1 Let a, b P S. Then a ¨ b is coprime to n; thus the previous
proposition implies that a ¨ b mod n is coprime to n as well.
Therefore, a d b P S.

3 Let a P S. Then the set a d S ”
␣

a d s
ˇ

ˇ s P S
(

is a subset of
S. Moreover, if s1, s2 P S satisfying that a d s1 = a d s2; that
is, a ¨ s1 ” a ¨ s2 (mod n), then s1 = s2; thus #(a d S) = φ(n).
This fact shows that there exists s P S such that a d s = 1. ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Definition
The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z˚

n ,d).

Theorem
Let n P N and a P Z˚

n . If a ¨ x + n ¨ y = 1 for some x, y P Z, then
a´1 ” x (mod n) ,

where a´1 denotes the unique number in Z˚
n satisfying

a d a´1 = a´1 d a = 1 .
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Theorem
Let a, n P N be such that gcd(a, n) = 1. Then aφ(n) ” 1 (mod n).

Proof.
Let aZ˚

n be the set aZ˚
n ”

␣

a ¨ s
ˇ

ˇ s P Z˚
n
(

. Then the set aZ˚
n mod

n ”
␣

(a ¨ s) mod n
ˇ

ˇ s P Z˚
n
(

is identical to Z˚
n . Therefore,

ź

kPZ˚
n

k ”
ź

kPaZ˚
n

k (mod n) .

Since
ś

kPaZ˚
n

k = aφ(n) ś

kPZ˚
n

k and
ś

kPZ˚
n

k is coprime to n, by the can-

cellation law for Zn we find that aφ(n) ” 1 (mod n). ˝
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Corollary (Fermat little theorem)
Let p be a prime number, and a P N satisfy gcd(a, p) = 1. Then
a p´1 ” 1 (mod p).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
‚ Key generation: The keys for the RSA algorithm are generated
in the following way:

1 Choose two distinct prime numbers p and q.
a⃝ For security purposes, p and q should be chosen at random

and should be similar in magnitude but differ in length by
a few digits to make factoring harder.

b⃝ p and q are kept secret.
2 Compute n = pq.

a⃝ n is used as the modulus for both the public and private
keys. Its length, usually expressed in bits, is the key length.

b⃝ n is released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
3 Compute φ(n), where φ is the Euler function. By previous

proposition, φ(n) = (p−1)(q−1). φ(n) is kept secret.
4 Choose an integer e such that 1 ă e ă φ(n) and gcd(e, φ(n)) =

1; that is, e and φ(n) are coprime.
a⃝ e having a short bit-length and small Hamming weight

results in more efficient encryption - the most commonly
chosen value for e is 216 + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for
e has been shown to be less secure in some settings.

b⃝ e is released as part of the public key.
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§6.1 RSA Encryption
3 Compute φ(n), where φ is the Euler function. By previous

proposition, φ(n) = (p−1)(q−1). φ(n) is kept secret.
4 Choose an integer e such that 1 ă e ă φ(n) and gcd(e, φ(n)) =

1; that is, e and φ(n) are coprime.
a⃝ e having a short bit-length and small Hamming weight

results in more efficient encryption - the most commonly
chosen value for e is 216 + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for
e has been shown to be less secure in some settings.

b⃝ e is released as part of the public key.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
5 Determine d as d ” e´1 (mod φ(n)); that is, d is the modular

multiplicative inverse of e modulo φ(n).
a⃝ This means: solve for d the equation d ¨ e ” 1 (mod
φ(n)); d can be computed efficiently by using the extended
Euclidean algorithm.

b⃝ d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or en-
cryption) exponent e. The private key consists of the private (or
decryption) exponent d, which must be kept secret. p, q, and φ(n)
must also be kept secret because they can be used to calculate d.
In fact, they can all be discarded after d has been computed.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Remark:

1 In modern RSA implementation the use of Euler function φ is
replaced by Carmichael’s totient function λ defined by

λ(n) = min
␣

k P N
ˇ

ˇ ak ” 1 (mod n) for all a P Z˚
n
(

.

If n = pq with prime numbers p and q, then λ(n) = rm lcm(p´

1, q ´ 1), the least common multiple of p ´ 1 and q ´ 1.
2 If both n and φ(n) are known, then two primes p and q satisfying

n = pq , φ(n) = (p ´ 1)(q ´ 1)

can be solved easily since p and q are zeros of
x 2 +

[
φ(n) ´ (n + 1)

]
x + n = 0 .
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
‚ Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, e) to Bob via a reliable, but not necessarily secret,
route. Alice’s private key (d) is never distributed.

‚ Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 ď m ă n. He then
computes the ciphertext c using Alice’s public key e by

c ” me (mod n) .

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice. Note
that some values of m will yield a ciphertext c equal to m, but this
is very unlikely to occur in practice.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
‚ Decryption: Alice can recover m from c by using her private key
exponent d by computing

c d ” (me)d ” m (mod n) .
Given m, she can recover the original message M by reversing the
padding scheme.
Example
Here is an toy example of RSA encryption and decryption.

1 Choose two prime numbers p = 11 and q = 31.
2 Compute n = pq = 341.
3 Compute φ(n) = (p´1)(q´1) = 300 / (λ(n) = lcm(10, 30) =

30).
4 Choose the encryption key e = 17 so that 1 ă e ă φ(n) and

gcd(e, φ(n)) = 1 / (1 ă e ă λ(n) and gcd(e, λ(n)) = 1).
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1 Choose two prime numbers p = 11 and q = 31.
2 Compute n = pq = 341.
3 Compute φ(n) = (p´1)(q´1) = 300 / (λ(n) = lcm(10, 30) =

30).
4 Choose the encryption key e = 17 so that 1 ă e ă φ(n) and

gcd(e, φ(n)) = 1 / (1 ă e ă λ(n) and gcd(e, λ(n)) = 1).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Example (cont’d)

5 Compute the decryption key d by Extended Euclid’s algorithm:
j rj qj sj tj

-1 300 1 0
0 17 17 0 1
1 11 1 1 ´17
2 6 1 ´1 18
3 5 1 2 ´35
4 1 5 ´3 53

j rj qj sj tj
-1 30 1 0
0 17 1 0 1
1 13 1 1 ´1
2 4 3 ´1 2
3 1 4 4 ´7

which implies that 300ˆ(´3)+17ˆ53 = 1 (30ˆ4+17ˆ(´7) =

1); thus d = 53 (d ” ´7 (mod 30) or d = 23).
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption
Example (cont’d)
Therefore, to encrypt m = 30, we raise to the power of 17 and
obtain the encrypted message:

3017 ” 123 (mod 341) .

To decrypt the encrypted message, we raise it to the power of 53

(23) and obtain that

12353 ” (1233)17 ¨ 1232 ” 3017 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)

(12323 ” (1233)7 ¨ 1232 ” 307 ¨ 125 ” 123 ¨ 125 ” 30 (mod 341)) .
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N ą 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x P t2, ¨ ¨ ¨ ,N ´ 1u

which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we
are already done. From now on consider x and N are coprime, so x
is an element of the multiplicative group Z˚

N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Consider the sequence

1 = x 0 mod N , x 1 mod N , x 2 mod N , ¨ ¨ ¨

This sequence will cycle after a while: there is a least 0 ă r ď N such
that x r ” 1 (mod N). This r is called the period of the sequence
(a.k.a. the order of the element x in the group (Z˚

N,d)). Assuming
that N is odd and not a prime power (those cases are easy to factor
anyway), it can be shown that with probability not less than 1/2,
the period r is even and x r/2 + 1 and x r/2 ´ 1 are not multiples of
N. In that case we have:

x r ” 1 (mod N) ô (x r/2)2 ” 1 (mod N)
ô (x r/2 + 1)(x r/2 ´ 1) ” 0 (mod N)
ô (x r/2 + 1)(x r/2 ´ 1) = kN for some k P N.
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§6.2 Reduction from Factoring to Period-finding
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(a.k.a. the order of the element x in the group (Z˚
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that N is odd and not a prime power (those cases are easy to factor
anyway), it can be shown that with probability not less than 1/2,
the period r is even and x r/2 + 1 and x r/2 ´ 1 are not multiples of
N. In that case we have:

x r ” 1 (mod N) ô (x r/2)2 ” 1 (mod N)
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Note that k ą 0 because both x r/2 + 1 ą 0 and x r/2 ´ 1 ą 0 since
x ą 1. Hence x r/2+1 or x r/2´1 will share a factor with N. Because
x r/2 + 1 and x r/2 ´ 1 are not multiples of N this factor will be less
than N, and in fact both these numbers will share a non-trivial factor
with N. Accordingly, if we have r then we can compute the greatest
common divisors gcd(x r/2+1,N) and gcd(x r/2 ´1,N), and both of
these two numbers will be non-trivial factors of N. If we are unlucky
we might have chosen an x that does not give a factor (which we
can detect efficiently), but trying a few different random x gives a
high probability of finding a factor.
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than N, and in fact both these numbers will share a non-trivial factor
with N. Accordingly, if we have r then we can compute the greatest
common divisors gcd(x r/2+1,N) and gcd(x r/2 ´1,N), and both of
these two numbers will be non-trivial factors of N. If we are unlucky
we might have chosen an x that does not give a factor (which we
can detect efficiently), but trying a few different random x gives a
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
Thus the problem of factoring reduces to finding the period r of
the function given by modular exponentiation f (a) = x a mod N. In
general, the period-finding problem can be stated as follows:
The period-finding problem: We are given some function f : N Ñ

t0, 1, ¨ ¨ ¨ ,N ´ 1u with the property that there is some unknown
r P t0, 1, ¨ ¨ ¨ ,N ´ 1u such that f (a) = f (b) if and only if a ” b mod
r. The goal is to find r.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
A naive algorithm is to compute f (0), f (1), f (2), ¨ ¨ ¨ until we en-
counter the value f (0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in N. To be efficient, we would like a runtime
that is polynomial in log N, since that is the bitsize of the inputs
to f. It is generally believed that classical computers cannot solve
period-finding efficiently. We will show below how we can solve this
problem efficiently on a quantum computer, using only O(log log N)

evaluations of f (query) and O(log log N) quantum Fourier trans-
forms. Even a somewhat more general kind of period-finding can
be solved by Shor’s algorithm with very few f-evaluations, whereas
any classical bounded-error algorithm would need to evaluate the
function Ω(N1/3/

?
log N) times in order to find the period.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding
How many steps (elementary gates) does Shor’s algorithm take? For
a = NO(1), we can compute f (a) = x a mod N in

O((log N)2 log log N log log log N)

steps by the “square-and-multiply” method, using known algorithms
for fast integer multiplication mod N.
Moreover, as explained in the previous chapter, the quantum Fourier
transform can be implemented using O((log N)2) steps. Accord-
ingly, Shor’s algorithm finds a factor of N using an expected number
of O((log N)2(log log N)2 log log log N) gates, which is only slightly
worse than quadratic in the input length.

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-finding Algorithm
Before proceeding to the discussion of Shor’s algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x P Z˚

N,
the (unitary) map

U |yy = |x d yy ” |x ¨ y mod Ny

has eigenvectors

|ψsy ”
1

?
r

r´1
ÿ

k=0

exp
(́

2πisk
r

)
|x k mod Ny

with 0 ď s ă r since

U |ψsy =
1

?
r

r´1
ÿ

k=0

exp
(́

2πisk
r

)
U |x k mod Ny

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |ψsy is known
(even though we do not know |ψsy for s ‰ 0).
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phase estimation problem in the following sense: given x P Z˚
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can be applied to find r as long as the eigenvector |ψsy is known
(even though we do not know |ψsy for s ‰ 0).
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§6.3 Shor’s Period-finding Algorithm
Now we will show how Shor’s algorithm finds the period r of the func-
tion f, given a “black-box” that maps |ay|0ny ÞÑ |ay|f (a)y. We can
always efficiently pick some q = 2ℓ such that N 2 ă q ď 2N 2. Then
we can implement the Fourier transform QFT using O((log N)2)

gates. Let Of denote the unitary that maps |ay|0ny ÞÑ |ay|f (a)y,
where the first register consists of ℓ qubits, and the second of
n = [log N ] qubits.

|0ℓy QFT
Of

QFT

|0ny

Figure 1: Shor’s period-finding algorithm
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§6.3 Shor’s Period-finding Algorithm

Register A
start with |0ℓy

|0y

QFT
or

Hb ℓ

Of

QFT...

|0y

Register B
start with |0ny

|0y

...

|0y

Figure 2: Shor’s period-finding algorithm
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-finding Algorithm
Shor’s period-finding algorithm is illustrated in previous figures. Start
with |0ℓy|0ny. Apply the QFT (or just ℓ Hadamard gates) to the first
register to build the uniform superposition

1
?q

q´1
ÿ

a=0

|ay|0ny .

The second register still consists of zeroes. Now use the “black-box”
to compute f (a) in quantum parallel:

1
?q

q´1
ÿ

a=0

|ay|f (a)y .

Measuring the second register gives some value f (s), with 0 ď s ă r.
Let m be the number of elements of t0, 1, ¨ ¨ ¨ , q ´ 1u that map to
the observed value f (s); that is,

m = #
␣

a P t0, 1, ¨ ¨ ¨ , q ´ 1u
ˇ

ˇ f (a) = f (s)
(

.
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§6.3 Shor’s Period-finding Algorithm
Because f (a) = f (s) if and only if a ” s (mod r), the a of the form
a = jr+ s (0 ď j ă m) are exactly the a for which f (a) = f (s). Thus
the first register collapses to a superposition of |sy, |r + sy, |2r + sy,
|3r + sy ¨ ¨ ¨ ; this superposition runs until the last number of the
form jr + s that is less than q. Since m is the number of elements
in this superposition; that is, the number of integers j such that
jr+ s P t0, 1, ¨ ¨ ¨ , q ´ 1u, (depending on s) we must have m = [q/r ]
or m = [q/r ]+1. The second register collapses to the classical state
|f (s)y. We can now ignore the second register, and have in the first
register:

1
?

m

m´1
ÿ

j=0

| jr + sy .
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in this superposition; that is, the number of integers j such that
jr+ s P t0, 1, ¨ ¨ ¨ , q ´ 1u, (depending on s) we must have m = [q/r ]
or m = [q/r ]+1. The second register collapses to the classical state
|f (s)y. We can now ignore the second register, and have in the first
register:

1
?

m

m´1
ÿ

j=0

| jr + sy .
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§6.3 Shor’s Period-finding Algorithm
Applying the QFT again gives

1
?

m

m´1
ÿ

j=0

1
?q

q´1
ÿ

b=0

e2πi (jr+s)b
q |by =

1
?mq

q´1
ÿ

b=0

e2πi sb
q

(
m´1
ÿ

j=0

e2πi jrb
q

)
|by .

We want to see which |by have amplitudes with large squared abso-
lute value - those are the b we are likely to see if we now measure.
Using that m´1

ÿ

j=0

z j =
1 ´ z m

1 ´ z @ z ‰ 1 ,

we have

m´1
ÿ

j=0

e2πi jrb
q =

m´1
ÿ

j=0

(
e2πi rb

q
)j

=

$

’

&

’

%

m if e2πi rb
q = 1 ,

1 ´ e2πi mrb
q

1 ´ e2πi rb
q

if e2πi rb
q ‰ 1 .

(1)
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-finding Algorithm
‚ The case r divides q:
Suppose r divides q, so the whole period “fits” an integer number
of times in the domain t0, 1, ¨ ¨ ¨ , q ´1u of f, and m = q/r. Looking
at the quantum state before applying the final measurement:

m
?mq

ÿ

0ďbďq´1,e2πi rb
q =1

e2πi sb
q |by +

1
?mq

ÿ

0ďbďq´1,e2πi rb
q ‰1

e2πi sb
q
1 ´ e2πi mrb

q

1 ´ e2πi rb
q

|by .

For the first sum, note that e2πi rb
q = 1 iff rb/q is an integer iff b

is a multiple of q/r. Such b will have squared amplitude equal to
(m/

?mq)2 = m/q = 1/r. Since there are exactly r such basis states
b, together they have all the amplitude: the sum of squares of those
amplitudes is 1, so the amplitudes of b that are not integer multiples
of q/r must all be 0.
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§6.3 Shor’s Period-finding Algorithm
Thus we are left with a superposition:

m
?mq

ÿ

0ďbďq´1,e2πi rb
q =1

e2πi sb
q |by =

1
?

r

r´1
ÿ

c=0

e2πi sc
r

ˇ

ˇ

ˇ
cq

r

E

.

Measuring this final superposition gives some random multiple b =

cq/r, with c a uniformly random number 0 ď c ă r ; thus
b
q =

c
r ,

where b and q are known to the algorithm, and c and r are not. There
are φ(r) P Ω(r/ log log r) numbers smaller than r that are coprime
to r, where φ is the Euler (phi) function, so c will be coprime to
r with probability Ω(1/ log log r). Accordingly, an expected number
of O(log log N) repetitions of the procedure of this section suffices
to obtain a b = cq/r with c coprime to r. Once we have such a b,
we can obtain r as the denominator by writing b/q in lowest terms.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor’s Period-finding Algorithm
‚ The case r does not divide q:
Because our q is a power of 2, it is actually quite likely that r does
not divide q. However, the same algorithm will still yield with high
probability a b which is close to a multiple of q/r. Note that q/r
is no longer an integer, so m = [q/r ] or m = [q/r ] + 1. Using
|1´ e iθ| = 2

ˇ

ˇ sin θ

2

ˇ

ˇ, we can rewrite the absolute value of the second
case of equation (1) to

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ e2πi mrb
q

1 ´ e2πi rb
q

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

sin(πmr b
q )

sin(πr b
q )

ˇ

ˇ

ˇ

ˇ

ˇ

.

The right-hand side is the ratio of two sine-functions of b, where
the numerator oscillates much faster than the denominator because
of the additional factor of m.
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‚ The case r does not divide q:
Because our q is a power of 2, it is actually quite likely that r does
not divide q. However, the same algorithm will still yield with high
probability a b which is close to a multiple of q/r. Note that q/r
is no longer an integer, so m = [q/r ] or m = [q/r ] + 1. Using
|1´ e iθ| = 2

ˇ

ˇ sin θ

2

ˇ

ˇ, we can rewrite the absolute value of the second
case of equation (1) to

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ e2πi mrb
q

1 ´ e2πi rb
q

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

sin(πmr b
q )

sin(πr b
q )

ˇ

ˇ

ˇ

ˇ

ˇ

.

The right-hand side is the ratio of two sine-functions of b, where
the numerator oscillates much faster than the denominator because
of the additional factor of m.
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§6.3 Shor’s Period-finding Algorithm
Now we apply the final measurement to the quantum state

m
?mq

ÿ

0ďbďq´1,e2πi rb
q =1

e2πi sb
q |by +

1
?mq

ÿ

0ďbďq´1,e2πi rb
q ‰1

e2πi sb
q
1 ´ e2πi mrb

q

1 ´ e2πi rb
q

|by

and obtain |by. Treating
ˇ

ˇ

ˇ

sin(mπx)
sin(πx)

ˇ

ˇ

ˇ
= m if x P N,

the probability of obtaining |by is 1

mq

ˇ

ˇ

ˇ

sin(πmr b
q )

sin(πr b
q )

ˇ

ˇ

ˇ

2

.

The |by that we will obtain is most likely one of those b’s satisfying
ˇ

ˇ

ˇ

rb
q ´ c

ˇ

ˇ

ˇ
ď

r
2q for some c P N.

It can be shown that with high probability the final measurement
yields a b satisfying

ˇ

ˇ

ˇ

rb
q ´ c

ˇ

ˇ

ˇ
ď

r
2q .
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§6.3 Shor’s Period-finding Algorithm
Therefore, with high probability the final measurement yields a b
satisfying

ˇ

ˇ

ˇ

b
q ´

c
r

ˇ

ˇ

ˇ
ď

1

2q .

As in the previous case, b and q are known to us while c and r are
unknown. Two distinct fractions, each with denominator not greater
than N, must be at least 1/N 2 apart. Since 1/N 2 ą 1/q, c/r is
the only fraction with denominator not greater than N at distance
not greater than 1/(2q) from b/q. Applying a classical method
called “continued-fraction expansion” to b/q efficiently gives us the
fraction with denominator not greater than N that is closest to b/q
(see the next section). This fraction must be c/r. Again, with good
probability c and r will be coprime, in which case writing c/r in
lowest terms gives us r.
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions
A continued fraction (連分數), or simply CF, is a real number of
the form

a0 +
1

a1 + 1

a2 +
1

¨ ¨ ¨

.

The continued fraction above is denote by [a0, a1, a2, ¨ ¨ ¨ ] (here the
number of ai’s can be finite or infinite), and the ai’s are called the
partial quotients. We assume these to be positive natural numbers.
[a0, ¨ ¨ ¨ , an] is called the n-th convergent of the continued fraction
[a0, a1, a2, ¨ ¨ ¨ ], and can be simply computed by the following itera-
tive scheme: [a0, ¨ ¨ ¨ , an], in its lowest terms, is pn/qn, where

p0 = a0 , p1 = a1a0 + 1 , pn = anpn´1 + pn´2 ,

q0 = 1 , q1 = a1 , qn = anqn´1 + qn´2 .
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§6.4 Continued fractions
Note that qn increases at least exponentially with n since qn ě

2qn´2. Given a real number x, the following “algorithm” gives a
continued fraction expansion of x :

a0 ” [x ] , x1 ” 1/(x ´ a0) ,
a1 ” [x1] , x2 ” 1/(x1 ´ a1) ,
a2 ” [x2] , x3 ” 1/(x2 ´ a2) ,

...
Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the
number.
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§6.4 Continued fractions
The convergents of the CF approximate x follows from the fact that

if x = [a0, a1, ¨ ¨ ¨ ], then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ď

1

q2
n
.

Recall that qn increases exponentially with n, so this convergence
is quite fast. Moreover, pn/qn provides the best approximation of x
among all fractions with denominator not greater than qn:

if n ě 1, q ď qn, p
q ‰

pn
qn

, then
ˇ

ˇ

ˇ
x ´

pn
qn

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
x ´

p
q

ˇ

ˇ

ˇ
.
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