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Chapter 6. Shor’s Factoring Algorithm

Chapter 6. Shor's Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to

find the correct factors.
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Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of

two prime numbers".

Ching-hsiao Cheng > 3 8 A # MA5501*



Chapter 6. Shor’s Factoring Algorithm

Chapter 6. Shor's Factoring Algorithm

Suppose that N is the product of two unknown prime numbers p, g.
Then a classical way of factoring N is to run a routine check to
see which natural number not greater than v/N is a factor of M.
The worse case scenario is to try this division v/N times in order to
find the correct factors. The current encryption system is designed
based on the fact that “it is much easier to compute the product of
two prime numbers than to factor a number which is the product of
two prime numbers”. In the following, we quickly review the current
encryption system and the mathematics behind it, and study the
most famous quantum algorithm to factor large numbers, the Shor

algorithm.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

RSA is an asymmetric encryption (2-4+4L35% 4c %) technique that
uses two different keys as public and private keys to perform the

encryption and decryption.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

RSA is an asymmetric encryption (2-4+4L35% 4c %) technique that
uses two different keys as public and private keys to perform the
encryption and decryption. The public key is represented by the
integers n and e, and the private key by the integer d. A basic
principle behind RSA is to find three very large positive integers e,
d, and n, such that with modular exponentiation all messages m e N
with 0 < m < n satisfies

(m®)4 = m (mod n)

and that knowing e and n, or even m, it can be extremely difficult
to find d.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.1 Mathematical foundation

Definition (Greatest common divisor)

Let a and b be non-zero integers. We say the integer d is the great-
est common divisor (gcd) of a and b, and write d = ged(a, b), if
@ dis a common divisor of a and b.

@ every common divisor ¢ of a and b is not greater than d.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjq;j + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k
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§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjq;j + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k

Q gcd(a, b) = ry, the last non-zero remainder in the list.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. Suppose that b =
aqo +ri, a = nqgi+ r, ri-1 = rjq;j + rig1 for 2 < j < k, where
O=rnq1<n<---<n<n<aandgqgeNforall 0 <j<k

Q gcd(a, b) = ry, the last non-zero remainder in the list.

Q If{s}k | and {tj}j-‘:_1 are defined by

=1
1 ifj=—1,

S = 0 ifj:(),

Si—2 — qj—15j—1 ifj=>1,
0 ifj=—1,

t= 1 ifji=0),

tio—qi1ti1 ifj>=1,
then

atj+ bs; = r; V1<j<k.

T = = =
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. By the Division Al-

gorithm, there exists positive integer g; and non-negative integer r
such that b= aqy+n and 0 < n < a. If B = 0, the lists terminate;
otherwise, for 0 < r; < a, there exists positive integer g; and non-
negative integer rp suchthat a= rigi+mnand 0 < rn < r. If =0,
the lists terminate; otherwise, for 0 < rn < ri, there exists positive
integer g2 and non-negative integer r3 such that r; = gy + r3 and
0 < r3 < rp. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers ry, ra, r3,---. This lists must
end, so there is an integer k such that rq = 0.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be positive integers with a < b. By the Division Al-

gorithm, there exists positive integer g; and non-negative integer r
such that b= aqy+n and 0 < n < a. If B = 0, the lists terminate;
otherwise, for 0 < r; < a, there exists positive integer g; and non-
negative integer rp suchthat a= rigi+mnand 0 < rn < r. If =0,
the lists terminate; otherwise, for 0 < rn < ri, there exists positive
integer g2 and non-negative integer r3 such that r; = gy + r3 and
0 < r3 < rp. Continuing in this fashion, we obtain a strictly decreas-
ing sequence of non-negative integers ry, ra, r3,---. This lists must
end, so there is an integer k such that rq = 0.

Therefore, with r_1 and ry denoting b and a respectively, we have

ri=rn>n>n>-->rn>rre =0,

ri-1 = riqj+riy1 forall 0 <j<k. o

= = =
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Proof (cont'd).
© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.

(® On the other hand, d divides r_; and ry. Therefore, by the
fact that rip1 = ri_1 — rjg; for all 0 < j < k, we find that
d divides rj;q for all 0 < j < k.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© We now show that ry = d = ged(a, b).

@ First we note that ry divides ry_q since rx_1 = rrqx. There-

fore, the fact that r;_1 = rjgj+rj;1 forall 0 < j < kimplies
that ry divides r;_; for all 0 < j < k.
(® On the other hand, d divides r_; and ry. Therefore, by the
fact that rip1 = ri_1 — rjg; for all 0 < j < k, we find that
d divides rj;q for all 0 < j < k.
By (@), rx is a common divisor of a and b. By (b), the greatest
common divisor of a and b must divide ry; thus we conclude
that r, = ged(a, b). o
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bs; = a(1+qoq1) —bq1 = a—qi(b—aqo) = nn—qir =r2.
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Proof (cont'd).
@ To see that for all 1 < j < k,
atj+ bs; = r;, (*)

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bsy = a(14+qoq1) —bgr = a—qi1(b—aqp) = nn—qir = ra.
(© Suppose that (%) holds for k=¢,£ —1, £ = 2. Then
atey1 + bser1 = a(t—1 — qete) + b(se—1 — qese)
= aty_1 + bsy_1 — qe(ate + bsy)
=lr—1—dqere = 41 -

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Proof (cont'd).

@ To see that for all 1 < j < k,
atj+ bs; = r;, (%)

we note that
@ (*) holds for the case k = 1 since (si,t1) = (1,—qo) and b =
aqo + .
® (*) holds for the case k = 2 since (s3, t2) = (—q1, L +qog1) and
aty+bsy = a(1+qoq1)—bg1 = a—q1(b—aqo) = o—quir = ra.
(© Suppose that (%) holds for k=¢,£ —1, £ = 2. Then
atey1 + bser1 = a(t—1 — qete) + b(se—1 — qese)
= aty_1 + bsy_1 — qe(ate + bsy)
=Tr—1— qere = 41 -

By induction, we conclude that (*) holds for 1 < j < k. o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark: Let a,b € N with a < b. The algorithm to compute
ged(a, b) given in part 1 of the previous theorem is caleed Euclid’s
Algorithm (#% # 4p “ﬁi i), and the algorithm to compute x,y € Z
so that ax+ by = ged(a, b) given in part 2 of the previous theorem
is called Extended Euclid’s Algorithm.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.
Therefore, 4 = ged(12, 32).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.

Therefore, 4 = ged (12, 32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x 1 =12 x 3432 x (—1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

We compute ged(32,12) using Euclid's algorithm as follows:
32=12x248, 12=8x1+4, 8=4x240.

Therefore, 4 = ged (12, 32). Moreover, by working backward,
4=12-8x1=12—-(32-12x2)x 1 =12 x 3432 x (—1).

One can also obtain the “coefficients” 3 and —1 using Extended
Euclid’s Algorithm:

Jlhnla| s |y
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be non-zero integers. The gcd of a and b is the smallest

positive linear combination of a and b; that is,
ged(a, b) = min{am+ bn|am+ bn > 0, m,ne Z} .
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a and b be non-zero integers. The gcd of a and b is the smallest

positive linear combination of a and b; that is,
ged(a, b) = min{am+ bn|am+ bn > 0, m,ne Z} .

Let d = am + bn be the smallest positive linear combination of a
and b.
@ By the Division Algorithm, there exist integers g and r such
that a= dq+ r, where 0 < r< d. Then
r=a—dq=a— (am+ bn)qg= a(l —m)+ b(—nq);
thus ris a linear combination of a and b. Since 0 < r < d, we
must have r = 0. Therefore, a = dg; thus d|a. Similarly, d|b;

thus d is a common divisor of a and b. o
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Proof (cont'd).
@ Let c be a common divisor of a and b. Then c divides d since
d = am+ bn. Therefore, c < d.
By @ and @, we find that d = gcd(a, b). =

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

.
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Proof (cont'd).

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Let ¢ be a common divisor of a and b. Then c divides d since

d = am + bn. Therefore, ¢ < d.
By @ and @, we find that d = gcd(a, b). =

.

Definition (Euler function)
Let ne N. The function ¢ : N — N defined by

o(n) = #{keN|1 < k< nand ged(k,n) =1}

is called the Euler (phi) function.
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Proof (cont'd).
@ Let ¢ be a common divisor of a and b. Then ¢ divides d since
d = am -+ bn. Therefore, ¢ < d.

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

By @ and @, we find that d = gcd(a, b). =

.

Definition (Euler function)
Let ne N. The function ¢ : N — N defined by

o(n) = #{keN|1 < k< nand ged(k,n) =1}

is called the Euler (phi) function. In other words, the Euler function

counts the positive integers up to a given integer n that are coprime

to n.
4
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption

PROPOSITION

For each ne N, 1
= 1—-).
et =nT] (1-7)

p prime
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PROPOSITION
For each ne N,

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@(n):nn (1—;).

pln
p prime

r .
In particular, by writing n = ] pjl-(’ = pll<1 pl; - plr, where
=1
pi,: -+, pr are prime numbers and ki, --- , k, € N, one has
T k-1
em)=11p’ (p—1).
j=1

.
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PROPOSITION

Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

For each ne N, 1
@(n):nn (1—7>.
plr P
p prime .
In particular, by writing n = ] pjl-(j = pll<1 pl; - plr, where
j=1
pi,: -+, pr are prime numbers and ki, --- , k, € N, one has
T k-1
em)=11p’ (p—1).
j=1

Let m,n € N be such that gcd(m, n) = 1. Then p(mn) = ¢(m)p(n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a= gn+ r for some ge Z and re {0,1,--- ,n— 1}.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a= gn+ r for some ge Z and re {0,1,--- ,n— 1}.
For a,b € Z, the notation a = b (mod n) denotes the fact that
n|(a — b); that is, there exists m € Z such that a— b= mn.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Definition

Given a€ Z and n€ N, a modulo n (abbreviated as a mod n) is the
remainder of the Euclidean division of a by n. In other words, a mod
n outputs rif a= gn+ r for some ge Z and re {0,1,--- ,n— 1}.
For a,b € Z, the notation a = b (mod n) denotes the fact that

n|(a — b); that is, there exists m € Z such that a— b= mn.
v

Definition
The addition @ on Z, is defined by

c=a®b if and only if (a+ b) mod n outputs c,
and the multiplication ® on Z,, is defined by

c=a®b if and only if (a- b) mod n outputs c,

where + and - are the usual addition and multiplication on Z.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).

PROPOSITION

Let a,b,c,de€ Z and n € N be such that a= ¢ (mod n) and b= d
(mod n). Then a-b=c-d (mod n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

(Zn,®) is a group; that is,
Q Z, is closed under addition @®;
@ there exists an additive identity 0 (that is, a® 0 = a for all
a€ Zp), and
© every element in Z, has an additive inverse (that is, for each
a € L, there exists b € Z,, such that a® b= 0).

PROPOSITION

Let a,b,c,de€ Z and n € N be such that a= ¢ (mod n) and b= d
(mod n). Then a-b=c-d (mod n).

PROPOSITION (CANCELLATION LAW IN Z,)

Let a,n € N be such that ged(a,n) = 1. Ifa-b= a-c (mod n),
then b= ¢ (mod n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

.,
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION

Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then
ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgo for

some qi,qs € Z.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION
Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then

ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgo for
some q1, g2 € Z. Since a = b (mod n), there exists m € Z such that

a— b= mn. Therefore, b=a— mn= pg, — pgom = p(q1 — gam)
which shows that ged(b, n) = p. o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

PROPOSITION
Let n > 2 be an integer, and a, b € Z satisfy a= b (mod n). Then

ged(a, n) = 1 if and only if ged(b, n) = 1.

v

It suffices to shows that if ged(a, n) # 1, then ged(b, n) # 1.
Suppose that ged(a,n) = p > 1. Then a = pg; and n = pgo for
some q1, g2 € Z. Since a = b (mod n), there exists m € Z such that

a— b= mn. Therefore, b=a— mn= pg, — pgom = p(q1 — gam)
which shows that ged(b, n) = p. o

The proposition above shows that if a € Z satisfies ged(a, n) = 1,
then (a mod n) is coprime to n.
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Chapter 6. Shor’s Factoring Algorithm

§6.1 RSA Encryption

The integers coprime to n from the set {0,1,---,n—1} of n non-

negative integers form a group under multiplication modulo n.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The integers coprime to n from the set {0,1,---,n—1} of n non-

negative integers form a group under multiplication modulo n. In
other words, let S be a subset of Z, consisting of numbers coprime
to n; that is, S = {ke€ N|1 < k < n and ged(k,n) = 1}. Then
(S,®) is a group; that is,

© S is closed under multiplication (;

Q there exists an multiplicative identity 1 (that is, a® 1 = a for
allae$), and

© every element in S has an multiplicative inverse element (that
is, for each a € S there exists b€ S such that a© b=1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.
@ Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.

@ Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.

Q Let ac S. Then theset a® S = {a®s|se S} is a subset of
S. Moreover, if si, s € S satisfying that a® s; = a® s; that
is, a-s1 = a- sz (mod n), then 51 = so; thus #(a® S) = (n).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

It suffices to prove 1 and 3.

@ Let a,be S. Then a- b is coprime to n; thus the previous
proposition implies that a- b mod n is coprime to n as well.
Therefore, a® be S.

Q Let ac S. Then theset a® S = {a®s|se S} is a subset of
S. Moreover, if si, s € S satisfying that a® s; = a® s; that
is, a-s1 = a- sz (mod n), then 51 = so; thus #(a® S) = (n).

This fact shows that there exists s € S such that a®s= 1. o )
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z%,®).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

The multiplicative group of integers modulo n (given in the previous
theorem) is denoted by (Z%,®).

\,

LetneNand aeZ}. Ifa-x+n-y=1 for some x,y € Z, then

a ' =x(mod n),

where a~! denotes the unique number in 7 satisfying

a@a_lza_lG)a:l.

\,

Ching-hsiao Cheng > 3 8 A # MA5501*



Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a,n e N be such that gcd(a, n) = 1. Then a¥(") =1 (mod n).

V
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Let a,n e N be such that gcd(a, n) = 1. Then a¥(") =1 (mod n).

Let aZ¥ be the set aZ} = {a-s|s€ Z}}. Then the set aZ} mod
n={(a-s) mod n|se Z*} is identical to Z%. Therefore,

1_[ k= H k (mod n).

keZ¥ keaZ¥
Since [| k=a%" J] kand [] kis coprime to n, by the can-
keaZ¥ keZ¥ keZ¥
cellation law for Z, we find that a#(") = 1 (mod n). o
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Corollary (Fermat little theorem)

Let p be a prime number, and a € N satisfy gcd(a,p) = 1. Then
aP~t =1 (mod p).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers

The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.

e Key generation: The keys for the RSA algorithm are generated
in the following way:
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
e Key generation: The keys for the RSA algorithm are generated
in the following way:
@ Choose two distinct prime numbers p and q.
@ For security purposes, p and g should be chosen at random
and should be similar in magnitude but differ in length by
a few digits to make factoring harder.
® p and g are kept secret.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

§6.1.2 Encryption based on factoring large numbers
The RSA algorithm involves four steps: key generation, key distri-
bution, encryption, and decryption.
e Key generation: The keys for the RSA algorithm are generated
in the following way:
@ Choose two distinct prime numbers p and q.
@ For security purposes, p and g should be chosen at random
and should be similar in magnitude but differ in length by
a few digits to make factoring harder.
® p and g are kept secret.
@ Compute n = pq.
@ n is used as the modulus for both the public and private
keys. Its length, usually expressed in bits, is the key length.
(® nis released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© Compute ¢(n), where ¢ is the Euler function. By previous
proposition, p(n) = (p—1)(g—1). ¢(n) is kept secret.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

© Compute ¢(n), where ¢ is the Euler function. By previous
proposition, p(n) = (p—1)(g—1). ¢(n) is kept secret.

© Choose an integer esuch that 1 < e < ¢(n) and ged(e, p(n)) =
1; that is, e and ¢(n) are coprime.

@ e having a short bit-length and small Hamming weight
results in more efficient encryption - the most commonly
chosen value for e is 21¢ + 1 = 65537. The smallest (and
fastest) possible value for e is 3, but such a small value for
e has been shown to be less secure in some settings.

(®) eis released as part of the public key.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Determine d as d = e ! (mod ¢(n)); that is, d is the modular
multiplicative inverse of e modulo ¢(n).

@ This means: solve for d the equation d-e = 1 (mod
©(n)); dcan be computed efficiently by using the extended
Euclidean algorithm.

(® dis kept secret as the private key exponent.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

@ Determine d as d = e ! (mod ¢(n)); that is, d is the modular
multiplicative inverse of e modulo ¢(n).
@ This means: solve for d the equation d-e = 1 (mod
©(n)); dcan be computed efficiently by using the extended
Euclidean algorithm.

(® dis kept secret as the private key exponent.

The public key consists of the modulus n and the public (or en-
cryption) exponent e. The private key consists of the private (or
decryption) exponent d, which must be kept secret. p, g, and ¢(n)
must also be kept secret because they can be used to calculate d.

In fact, they can all be discarded after d has been computed.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark:
@ In modern RSA implementation the use of Euler function ¢ is
replaced by Carmichael's totient function \ defined by
A(n) = min {ke N|a*=1 (mod n) for all a€ Z}}.
If n = pq with prime numbers p and g, then A(n) = rm lcm(p—
1, — 1), the least common multiple of p—1 and g — 1.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Remark:
@ In modern RSA implementation the use of Euler function ¢ is

replaced by Carmichael's totient function \ defined by
A(n) = min {ke N|a*=1 (mod n) for all a€ Z}}.
If n = pq with prime numbers p and g, then A(n) = rm lcm(p—
1, — 1), the least common multiple of p—1 and g — 1.
@ If both nand ¢(n) are known, then two primes p and g satisfying
n=pq, ¢(n)=(p-1(¢-1)
can be solved easily since p and g are zeros of
x>+ [p(n) — (n+1)]x+n=0.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, ) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, ) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.

e Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 < m < n. He then
computes the ciphertext c using Alice's public key e by

c=m°® (mod n).

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Key distribution: Suppose that Bob wants to send information to
Alice. To enable Bob to send his encrypted messages, Alice transmits
her public key (n, ) to Bob via a reliable, but not necessarily secret,
route. Alice's private key (d) is never distributed.

e Encryption: After obtaining Alice’s public key, Bob first turns
the message M into an integer m, such that 0 < m < n. He then
computes the ciphertext c using Alice's public key e by

c=m°® (mod n).

This can be done reasonably quickly, even for very large numbers,
using modular exponentiation. Bob then transmits c to Alice. Note
that some values of m will yield a ciphertext ¢ equal to m, but this
is very unlikely to occur in practice.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Decryption: Alice can recover m from c by using her private key
exponent d by computing

c?=(m®)9 = m (mod n).
Given m, she can recover the original message M by reversing the
padding scheme.
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

e Decryption: Alice can recover m from c by using her private key
exponent d by computing

c?=(m®)9 = m (mod n).
Given m, she can recover the original message M by reversing the
padding scheme.

Here is an toy example of RSA encryption and decryption.

@ Choose two prime numbers p =11 and g = 31.

@ Compute n = pg = 341.

© Compute p(n) = (p—1)(g—1) =300 / (A\(n) = lem(10,30) =
30).

© Choose the encryption key e = 17 so that 1 < e < ¢(n) and
ged(e,o(n) =1/ (1 < e< A(n) and ged(e, A(n)) = 1).
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Example (cont'd)

© Compute the decryption key d by Extended Euclid’s algorithm:

ri | g | s; t; -

J fi /j j j iTrnlal s t;
-1 | 300 1 0

-1 |30 1 0
0 17 | 17| O 1

0|17 ] 1 0 1
1 11 1 1 —17

1 13| 1 1 —1
2 6 1 | -1 18

2 4 3 | —1 2
3 5 1 2 | =35 30114/ 4 7
4 1 5 | =3 | 53

which implies that 300x (—=3)+17x53 =1 (30x44+17x(-7) =
1); thus d =53 (d = —7 (mod 30) or d = 23).

v
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Chapter 6. Shor’s Factoring Algorithm
§6.1 RSA Encryption

Example (cont'd)

Therefore, to encrypt m = 30, we raise to the power of 17 and

obtain the encrypted message:

307 =123 (mod 341).
To decrypt the encrypted message, we raise it to the power of 53
(23) and obtain that
123% = (123%)'7 - 123% = 30'" - 125 = 123 - 125 = 30 (mod 341)
(123% = (123%)7-1232 = 30" - 125 = 123 - 125 = 30 (mod 341))

V.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for

period-finding implies an efficient algorithm for factoring.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x € {2,--- , N — 1}
which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we

are already done.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

The crucial observation of Shor was that there is an efficient quan-
tum algorithm for the problem of period-finding and that factoring
can be reduced to this, in the sense that an efficient algorithm for
period-finding implies an efficient algorithm for factoring. We first
explain the reduction. Suppose we want to find factors of the com-
posite number N > 1. We may assume N is odd and not a prime
power, since those cases can easily be filtered out by a classical al-
gorithm. Now randomly choose some integer x € {2,--- , N — 1}
which is coprime to N. If x is not coprime to N, then the greatest
common divisor of x and N is a nontrivial factor of N, so then we
are already done. From now on consider x and N are coprime, so x

is an element of the multiplicative group Zjy,.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence
1=x"mod N, x!mod N, x%modN,---
This sequence will cycle after a while: there is a least 0 < r < N such

that x" = 1 (mod N). This ris called the period of the sequence
(a.k.a. the order of the element x in the group (Z},®)).
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence

1=x"mod N, x!mod N, x%modN,---
This sequence will cycle after a while: there is a least 0 < r < N such
that x" = 1 (mod N). This ris called the period of the sequence
(a.k.a. the order of the element x in the group (Z},®)). Assuming
that N is odd and not a prime power (those cases are easy to factor

anyway), it can be shown that with probability not less than 1/2,

the period ris even and x2 + 1 and x"/2 — 1 are not multiples of
.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Consider the sequence

1=x"mod N, x!mod N, x%modN,---
This sequence will cycle after a while: there is a least 0 < r < N such
that x" = 1 (mod N). This ris called the period of the sequence
(a.k.a. the order of the element x in the group (Z},®)). Assuming
that N is odd and not a prime power (those cases are easy to factor
anyway), it can be shown that with probability not less than 1/2,
the period ris even and x2 + 1 and x"/2 — 1 are not multiples of
N. In that case we have:

x"=1 (mod N) < (x72)2 =1 (mod N)
S (x72 + 1)(x"72 = 1) = 0 (mod N)
< (x? +1)(x7? — 1) = kN for some ke N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that k > 0 because both x7/2 +1 > 0 and x”/2 — 1 > 0 since
x> 1. Hence x"/241 or x7%2 —1 will share a factor with N. Because
x"? 41 and x/2 — 1 are not multiples of N this factor will be less

than N, and in fact both these numbers will share a non-trivial factor
with N.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Note that k > 0 because both x”/2 41 > 0 and x/2 — 1 > 0 since
x> 1. Hence x"72+1 or x"/2 —1 will share a factor with V. Because
x"? 41 and x/2 — 1 are not multiples of N this factor will be less
than N, and in fact both these numbers will share a non-trivial factor
with N. Accordingly, if we have r then we can compute the greatest
common divisors ged(x/2 41, N) and ged(x/? —1, N), and both of
these two numbers will be non-trivial factors of . If we are unlucky
we might have chosen an x that does not give a factor (which we
can detect efficiently), but trying a few different random x gives a

high probability of finding a factor.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

Thus the problem of factoring reduces to finding the period r of
the function given by modular exponentiation f(a) = x? mod N. In
general, the period-finding problem can be stated as follows:

The period-finding problem: We are given some function f: N —
{0,1,--- , N — 1} with the property that there is some unknown
re {0,1,---,N—1} such that f(a) = f(b) if and only if a= b mod
r. The goal is to find r.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-

counter the value f(0) for the second time.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in .
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in N. To be efficient, we would like a runtime
that is polynomial in log N, since that is the bitsize of the inputs
to f.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in N. To be efficient, we would like a runtime
that is polynomial in log N, since that is the bitsize of the inputs
to f. It is generally believed that classical computers cannot solve

period-finding efficiently.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in N. To be efficient, we would like a runtime
that is polynomial in log N, since that is the bitsize of the inputs
to f. It is generally believed that classical computers cannot solve
period-finding efficiently. We will show below how we can solve this
problem efficiently on a quantum computer, using only O(log log N)
evaluations of f (query) and O(loglog N) quantum Fourier trans-

forms.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

A naive algorithm is to compute 7(0), f(1), f(2), --- until we en-
counter the value f(0) for the second time. The input at which this
happens is the period r that we are trying to find; however, r could
be huge, polynomial in N. To be efficient, we would like a runtime
that is polynomial in log N, since that is the bitsize of the inputs
to f. It is generally believed that classical computers cannot solve
period-finding efficiently. We will show below how we can solve this
problem efficiently on a quantum computer, using only O(log log N)
evaluations of f (query) and O(loglog N) quantum Fourier trans-
forms. Even a somewhat more general kind of period-finding can
be solved by Shor's algorithm with very few fevaluations, whereas
any classical bounded-error algorithm would need to evaluate the
function Q(N'/3/,/Iog N) times in order to find the period.
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Chapter 6. Shor’s Factoring Algorithm

§6.2 Reduction from Factoring to Period-finding

How many steps (elementary gates) does Shor’s algorithm take? For

a= N9 we can compute f(a) = x? mod N in
O((log N)*loglog Nlogloglog N)

steps by the “square-and-multiply” method, using known algorithms
for fast integer multiplication mod M.

Moreover, as explained in the previous chapter, the quantum Fourier
transform can be implemented using O((log N)?) steps. Accord-
ingly, Shor's algorithm finds a factor of NV using an expected number
of O((log N)?(loglog N)? logloglog N) gates, which is only slightly

worse than quadratic in the input length.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = \/Z pr< 27r7'.SI<>U\X/‘ mod N)

r
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = \/Z pr< 27r7'.SI<>U\X/‘ mod N)

p
k=0

Therefore, the phase estimation algorithm introduced in Section 5.5

can be applied to find r as long as the eigenvector |15y is known

(even though we do not know [1s) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1

Ulys) = %Z eXp(—LriSk) X1 mod N)
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ultbs) = iz exp(—ﬂ) X1 mod N)

r

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [1s) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

B =1l . )
Ulibs) = cxp(QTs) %Z exp (—w) X1 mod N)
k=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1
_ o (2mis\ L 2mis(k+1) \ |kt
U\ws>—gxp( ; )\ﬂ;)exp( — )\X mod N)

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [1s) for s # 0).
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§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = exp(QLri's) in] exp(—ﬂ) Ix*  mod N)
‘

r
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulys) = exp(QLri's) \%ij exp(—ﬂ) Ix*  mod N)
=1

r

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |1)s) is known
(even though we do not know [ts) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U\Q/}s>:exp(2Lris) \lfrrzzl exp<7%7is£)\xf mod N)

r
£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ud}s>:exp(m)1§exp<w)xf mod N)

r

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |1)s) is known
(even though we do not know |1)s) for s # 0).
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§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1

Ulys) = exp(@)%z exp( 27”“) Ix* mod N)

£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1
. 2mis\ 1 2mist
Ulvsy = exp(—r )\/r;;) exp( )|X mod N)

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [ts) for s # 0).
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§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

Ulysy = exp (27”5>\/Z pr( 2“’Sé>|x mod N)

£=0
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince
r—1
_ 2mis\ 1 . 2misl ¢
U|1/)5>—exp(>\/r£2 pr( >| mod N)

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [ts) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U|ws> = CXP(@) |ws> :
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Before proceeding to the discussion of Shor's algorithm, let us point
out that the period-finding problem in §6.2 can be related to the
phase estimation problem in the following sense: given x € Z},
the (unitary) map

Uly) = [x@y) = |x- y mod N)
has eigenvectors

sy = \/ Z exp ( 27—’Sk)}xk mod N)

k=0

with 0 < s < rsince

U|ws> = CXP(@) |ws> :

Therefore, the phase estimation algorithm introduced in Section 5.5
can be applied to find r as long as the eigenvector |15y is known
(even though we do not know [1s) for s # 0).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Now we will show how Shor's algorithm finds the period r of the func-
tion f, given a “black-box" that maps |a)|0") — |a)|f(a)). We can
always efficiently pick some g = 2¢ such that N? < g < 2N2. Then
we can implement the Fourier transform QFT using O((log N)?)
gates. Let Oy denote the unitary that maps |ay|0") — |a)|f(a)),
where the first register consists of ¢ qubits, and the second of

n = [log N| qubits.

0 = QFT QFT =

Or
n—{ =

Figure 1: Shor's period-finding algorithm

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

o - A
Register A QT
egister ] L
start with |0°) 4 = HOC;é ] QFT
oL | =
Or
0
Register B
start with [0") 4
0) —~

Figure 2: Shor's period-finding algorithm
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0¢5]0™). Apply the QFT (or just £ Hadamard gates) to the first
register to build the uniform superposition

=
j@;)@lo ).

The second register still consists of zeroes.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0¢5]0™). Apply the QFT (or just £ Hadamard gates) to the first
register to build the uniform superposition

— 2, 1207

\/a a=0
The second register still consists of zeroes. Now use the “black-box”
to compute f(a) in quantum parallel:

1 =
\77;] |a)[f(a)) -

Measuring the second register gives some value f(s), with 0 < s < r.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Shor’s period-finding algorithm is illustrated in previous figures. Start
with [0¢5]0™). Apply the QFT (or just £ Hadamard gates) to the first
register to build the uniform superposition

— 2, 1207

\/a a=0
The second register still consists of zeroes. Now use the “black-box”
to compute f(a) in quantum parallel:

1 9
— 2 |lf(a)).
Vi
Measuring the second register gives some value f(s), with 0 < s < r.
Let m be the number of elements of {0,1,---,g— 1} that map to

the observed value f(s); that is,

m=#{ac{0,1,---,q—1}|f(a) =f(s)}.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Because f(a) = f(s) if and only if a= s (mod r), the a of the form

a = jr+s (0 < j < m) are exactly the a for which f(a) = f(s).
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Because f(a) = f(s) if and only if a= s (mod r), the a of the form

a = jr+s (0 <j < m) are exactly the a for which f(a) = f(s). Thus

the first register collapses to a superposition of |s), |[r+ sy, |2r+ s),

|3r+s) ---; this superposition runs until the last number of the

form jr+ s that is less than q.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Because f(a) = f(s) if and only if a= s (mod r), the a of the form

a = jr+s (0 <j < m) are exactly the a for which f(a) = f(s). Thus
r+sy, |2r+s,

|3r+s) ---; this superposition runs until the last number of the

the first register collapses to a superposition of |s),

form jr+ s that is less than g. Since m is the number of elements
in this superposition; that is, the number of integers j such that
Jjr+se{0,1,---,g— 1}, (depending on s) we must have m = [g/r]
orm=[q/r]+1.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Because f(a) = f(s) if and only if a= s (mod r), the a of the form

a = jr+s (0 <j < m) are exactly the a for which f(a) = f(s). Thus
r+sy, |2r+s,

|3r+s) ---; this superposition runs until the last number of the

the first register collapses to a superposition of |s),

form jr+ s that is less than g. Since m is the number of elements
in this superposition; that is, the number of integers j such that
Jjr+se{0,1,---,g— 1}, (depending on s) we must have m = [g/r]
or m= [q/r]+1. The second register collapses to the classical state
|f(s)). We can now ignore the second register, and have in the first

register:
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm
Applying the QFT again gives

— rs —1 : S m—1 L jri
mZ Z U+)b _\/;ﬁqquZmé’ (ZeQW/Jf) ’b>

3\
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm
Applying the QFT again gives

ﬂl(]rJrs)b o i A= Til=
\/72\/522 by = —— Zez ‘f( ¢ ")’b>
Jj=0

Vma i,
We want to see which |b) have amplitudes with large squared abso-

lute value - those are the b we are likely to see if we now measure.
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§6.3 Shor's Period-finding Algorithm

Applying the QFT again gives

Z Z 27’I'I(Jr+s)b ‘b> _ ‘721 6271'!'%’ A= 271'/? ’b>
\/7 \/E’ Vma i, j=0
We want to see which |b) have amplitudes with large squared abso-

lute value - those are the b we are likely to see if we now measure.

Using that mel o m
Z A Vz#1,
1—-z
Jj=0
we have
.o omit -
o jib = 2mi2 J " rb e T 1,
Z e 9 = Z (e Q) = l_eZTImT L ogith (1)
j=0 =0 —— if e a #£1.
1 e 7TIE
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Applying the QFT again gives

smrb

m oish 1 b1 — ™
Z eZTrlq‘b>+ Z e27rlq '1 | >
vmq milh vmq 27ib 1— eQWIE
a=1 0<b<q—1,e " 7 #1

0<b<q717e2
We want to see which |b) have amplitudes with large squared abso-

lute value - those are the b we are likely to see if we now measure.

Using that _— -
j 1—2z
Z z) = Vz#1,
< 11—z
Jj=0
we have
omitb
m—1 irh m—1 b\ Jj m lfeﬂlq :1
2wl 272 - o mrb
DI Carch B ST PRl
j=0 =0 ———— ife 9 #1.
1 — e 7TIE
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r divides g:

Suppose r divides g, so the whole period “fits” an integer number
of times in the domain {0,1,--- ,g—1} of f, and m = q/r. Looking

at the quantum state before applying the final measurement:

m 27isL 1 2#/@179
— e by +—— =
e >, b = D ) T 1.

omith .
0<b<qg—1,e" a=1 0<b<g—1,eq #1
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r divides g:

Suppose r divides g, so the whole period “fits” an integer number
of times in the domain {0,1,--- ,g—1} of f, and m = q/r. Looking
at the quantum state before applying the final measurement:

smrb

27712
m 2mrish 1 omie 1 — e a
— ), &b +—— > &M —0|b.
mq 2mith mq 2milk 11— 627”;
0<b<g—1,e 9 =1 0<b<g—1,e 9 #1

27ri2

For the first sum, note that "'« = 1 iff rb/q is an integer iff b
is a multiple of g/r.
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§6.3 Shor's Period-finding Algorithm

e The case r divides g:

Suppose r divides g, so the whole period “fits” an integer number
of times in the domain {0,1,--- ,g—1} of f, and m = q/r. Looking
at the quantum state before applying the final measurement:

O i mrb

m 2mrish 1 omie 1 — e a

= ) et > ei—0|b).

mq 27j 2 mq 27D 1— 627”;
0<b<g—1,e 9 =1 0<b<g—1,e 9 #1

27ri2

For the first sum, note that "'« = 1 iff rb/q is an integer iff b

is a multiple of g/r. Such b will have squared amplitude equal to

(m//ma)? = m/q =1/r.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r divides g:

Suppose r divides g, so the whole period “fits” an integer number
of times in the domain {0,1,--- ,g—1} of f, and m = q/r. Looking
at the quantum state before applying the final measurement:

O i mrb

m 2mrish 1 omie 1 — e a
= ) et 3 i —0p|b).
mq 27ith mq 27ith 1 - 627”;
0<b<g—1l,e 9=1 0<b<g—1l,e” 9 #1

27ri2

For the first sum, note that "'« = 1 iff rb/q is an integer iff b
is a multiple of g/r. Such b will have squared amplitude equal to
(m/\/mq)> = m/q = 1/r. Since there are exactly r such basis states
b, together they have all the amplitude: the sum of squares of those

amplitudes is 1,
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§6.3 Shor's Period-finding Algorithm

e The case r divides g:

Suppose r divides g, so the whole period “fits” an integer number
of times in the domain {0,1,--- ,g—1} of f, and m = q/r. Looking
at the quantum state before applying the final measurement:

O i mrb

m omish 1 omist 1l — €™ a
— e"a|lby +— e ——
/mq Z ‘ > /mq Z e27rl%’

o :th -rb 1 —
0<b<qg—1,e" a=1 0<b<g—1,eq #1

b).

27ri2

For the first sum, note that "'« = 1 iff rb/q is an integer iff b
is a multiple of g/r. Such b will have squared amplitude equal to
(m/\/mq)> = m/q = 1/r. Since there are exactly r such basis states
b, together they have all the amplitude: the sum of squares of those
amplitudes is 1, so the amplitudes of b that are not integer multiples

of g/r must all be 0.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Thus we are left with a superposition:

m omi (1 27ri5—“ q
e Z e q|b>—wZe ¢

jrb
Osbéq—l,ezm ¢ =il
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Thus we are left with a superposition:

m 272 1 O onis
P — e q b = — e r
ym & D=7 &

irb
Osbéq—l,ezm 9 =1

.
r

Measuring this final superposition gives some random multiple b =
cq/r, with c a uniformly random number 0 < ¢ < r; thus

q
where b and g are known to the algorithm, and c and rare not.

5

I G
r
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Thus we are left with a superposition:

m 2mi 1 & 27ri5—“ q>
— e alby=— el ).
A/mq 2 19 \r ; r

irb

Osbéq—l,ezmq =il
Measuring this final superposition gives some random multiple b =
cq/r, with c a uniformly random number 0 < ¢ < r; thus

q
where b and g are known to the algorithm, and cand rare not. There

I G
r

are ¢(r) € Q(r/loglogr) numbers smaller than r that are coprime
to r, where ¢ is the Euler (phi) function, so ¢ will be coprime to
r with probability ©2(1/loglogr).
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§6.3 Shor's Period-finding Algorithm

Thus we are left with a superposition:

m 2mi 1 & 27ri5—“ CI>
— e alby=— el ).
A/mq 2 19 \r ; r

irb

0<b<q—1,e" a =1
Measuring this final superposition gives some random multiple b =
cq/r, with c a uniformly random number 0 < ¢ < r; thus
b_ &
r

q
where b and g are known to the algorithm, and cand rare not. There

are ¢(r) € Q(r/loglogr) numbers smaller than r that are coprime
to r, where ¢ is the Euler (phi) function, so ¢ will be coprime to
r with probability ©2(1/loglogr). Accordingly, an expected number
of O(loglog N) repetitions of the procedure of this section suffices
to obtain a b = cq/r with ¢ coprime to r. Once we have such a b,
we can obtain r as the denominator by writing b/q in lowest terms.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r does not divide g:

Because our g is a power of 2, it is actually quite likely that r does
not divide g. However, the same algorithm will still yield with high
probability a b which is close to a multiple of g/r.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r does not divide g:

Because our g is a power of 2, it is actually quite likely that r does
not divide g. However, the same algorithm will still yield with high
probability a b which is close to a multiple of g/r. Note that g/r
is no longer an integer, so m = [q/r] or m = [q/r] + 1.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

e The case r does not divide g:

Because our g is a power of 2, it is actually quite likely that r does
not divide g. However, the same algorithm will still yield with high
probability a b which is close to a multiple of g/r. Note that g/r
is no longer an integer, so m = [q/r] or m = [g/r] + 1. Using

7 .0 .
|1 —e®| = 2|sin §|, we can rewrite the absolute value of the second

case of equation (1) to

1 — i sin(ﬂ'mrg)
1_ ™9 | sin(ﬂrg)

The right-hand side is the ratio of two sine-functions of b, where
the numerator oscillates much faster than the denominator because
of the additional factor of m.
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Now we apply the final measurement to the quantum state

mrb

m Z 271-,'%’ ’b> + 1 Z 27”2 1—e¢e 277 j L2 | >
A/ mq - A/ mq oith 1— 27rl’b
0<b<q—1,e" d =1 0<b<g—1l,e " a1

and obtain |b).
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§6.3 Shor's Period-finding Algorithm

Now we apply the final measurement to the quantum state

,n_’mrb

m orish 1 2 ﬂl—e
— ) ebh+— " T |6

\/mq e v/ mq b 1 —
27i 27
0<b<g—1l,e 9=1 0<b<g—1l,e 9 #1
51n(m7rx

and obtain |b). Treating

‘—mn‘xeN

q

1 sin(wmr?2) ‘2
: b
sin(mry)

the probability of obtaining |b) is —

mq
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§6.3 Shor's Period-finding Algorithm

Now we apply the final measurement to the quantum state

,n_’mrb

m orish 1 2 ﬂl—e
— ) ebh+— " T |6

\/mq e v/ mq b 1 —
27i 27
0<b<g—1l,e 9=1 0<b<g—1l,e 9 #1
51n(m7rx

and obtain |b). Treating

‘—mn‘xeN

q

1 sin(wmr?2) ‘2
: b
sin(mry)

the probability of obtaining |b) is —

mq

The |b) that we will obtain is most likely one of those b's satisfying
L
q

,
— c) < — for some ce N.
2q
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§6.3 Shor's Period-finding Algorithm

Now we apply the final measurement to the quantum state

,n_’mrb

m orish 1 2 ﬂl—e
— ) bht— " T |6

\/mq e v/ mq b 1-—
27i 27
0<b<g—1l,e 9=1 0<b<g—1l,e 9 #1
51n(m7rx

and obtain |b). Treating

‘—mn‘xeN

q

1 sin(wmr?2) ‘2
: b
sin(mry)

the probability of obtaining |b) is —

mq

The |b) that we will obtain is most likely one of those b's satisfying
E—c) <L for some ce N.
q 2q

It can be shown that with high probability the final measurement

yields a b satisfying
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Chapter 6. Shor’s Factoring Algorithm

§6.3 Shor's Period-finding Algorithm

Therefore, with high probability the final measurement yields a b

satisfying

b ¢ 1
— < —

‘ q r 2q

As in the previous case, b and g are known to us while ¢ and r are

unknown.
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§6.3 Shor's Period-finding Algorithm

Therefore, with high probability the final measurement yields a b

satisfying

b ¢ 1
— < —

‘ q r 2q

As in the previous case, b and g are known to us while ¢ and r are

unknown. Two distinct fractions, each with denominator not greater
than N, must be at least 1/N? apart.
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§6.3 Shor's Period-finding Algorithm

Therefore, with high probability the final measurement yields a b
satisfying

'b C 1
=== € =
g rl 2q

As in the previous case, b and g are known to us while ¢ and r are
unknown. Two distinct fractions, each with denominator not greater
than N, must be at least 1/N? apart. Since 1/N% > 1/q, c/ris
the only fraction with denominator not greater than N at distance
not greater than 1/(2q) from b/q.
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§6.3 Shor's Period-finding Algorithm

Therefore, with high probability the final measurement yields a b

satisfying

b ¢ 1
— < —

‘ q r 2q

As in the previous case, b and g are known to us while ¢ and r are

unknown. Two distinct fractions, each with denominator not greater
than N, must be at least 1/N? apart. Since 1/N% > 1/q, c/ris
the only fraction with denominator not greater than N at distance
not greater than 1/(2q) from b/q. Applying a classical method
called “continued-fraction expansion” to b/q efficiently gives us the
fraction with denominator not greater than N that is closest to b/q
(see the next section). This fraction must be ¢/r. Again, with good
probability ¢ and r will be coprime, in which case writing ¢/r in

lowest terms gives us r.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

A continued fraction (& 4 #&c), or simply CF, is a real number of

the form .

ao + 71 c
at——

as + —

The continued fraction above is denote by [ag, a1, a2, - - - | (here the

number of a;'s can be finite or infinite), and the a;'s are called the

partial quotients. We assume these to be positive natural numbers.
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§6.4 Continued fractions

A continued fraction (& 4 #&c), or simply CF, is a real number of

the form .
ao + 71 c
at——
as + —
The continued fraction above is denote by [ag, a1, a2, - - - | (here the

number of a;'s can be finite or infinite), and the a;'s are called the

partial quotients. We assume these to be positive natural numbers.

[a0, -+ -, an] is called the n-th convergent of the continued fraction
[a0, a1, @2, - -], and can be simply computed by the following itera-
tive scheme: [ag, -, ap], in its lowest terms, is p,/q,, where

po=4ap, p1=aia +1, Pn = anPn—1+ Pn—2,
qo=1, q=a, 4n = anqn-1+ qn—2 -
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

Note that g, increases at least exponentially with n since g, >

2qn72-
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Chapter 6. Shor’s Factoring Algorithm

§6.4 Continued fractions

Note that g, increases at least exponentially with n since g, >
2gp—o. Given a real number x, the following “algorithm” gives a

continued fraction expansion of x:

o=, x=1/(x-a),
alz[xl], XQEl/(Xl—al),
QQE[XQ], X351/(x2—32),

Informally, we just take the integer part of the number as the partial
quotient and continue with the inverse of the decimal part of the

number.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

The convergents of the CF approximate x follows from the fact that

1
<

_ P
92

if x=[ao,a1,---], then ’x
dn

Recall that g, increases exponentially with n, so this convergence

is quite fast.
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Chapter 6. Shor’s Factoring Algorithm
§6.4 Continued fractions

The convergents of the CF approximate x follows from the fact that

1
CIn

Pn

ifx:[ag,ah-'-],then’ .

Recall that g, increases exponentially with n, so this convergence
is quite fast. Moreover, p,/q, provides the best approximation of x

among all fractions with denominator not greater than gp:

ifn>1 g<qn = 7&— then)
q

n
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