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Chapter 5. The Fourier Transform

§5.1 The Classical Discrete Fourier Transform
The Fourier transform occurs in many different versions throughout
classical computing, in areas ranging from signal-processing to data
compression to complexity theory. For our purposes, the Fourier
transform is going to be an N ˆ N unitary matrix, all of whose
entries have the same magnitude. For N = 2, it’s just our familiar
Hadamard transform:

F2 = H =
1

?
2

[
1 1
1 ´1

]
.

Doing something similar in 3 dimensions is impossible with real num-
bers: we cannot give three orthogonal vectors in t1,−1u3. However,
using complex numbers allows us to define the Fourier transform for
any N.
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Chapter 5. The Fourier Transform

§5.1 The Classical Discrete Fourier Transform
Let ωN = exp

(2πi
N
)

be an N-th root of unity. The rows of the
matrix will be indexed by j P t0, ¨ ¨ ¨ ,N−1u and the columns by
k P t0, ¨ ¨ ¨ ,N−1u (so we use the (0, 0)-entry to denote the usual
(1, 1)-entry). Define the ( j, k)-entry of the matrix FN by 1

?
N
ω jk

N :

FN =
1

?
N


1 1 1 ¨ ¨ ¨ 1

1 ωN ω2
N ¨ ¨ ¨ ωN´1

N
1 ω2

N ω4
N ¨ ¨ ¨ ω

2(N´1)
N

...
...

...
. . .

...
1 ωN´1

N ω
2(N´1)
N ¨ ¨ ¨ ω

(N´1)(N´1)
N

 .

Note that FN is a unitary matrix, since each column has norm 1, and
any pair of columns (say those indexed by k and k 1) is orthogonal:

N´1
ÿ

j=0

1
?

N
ω jk

N ¨
1

?
N
ω jk 1

N =
1

N
N´1
ÿ

j=0

ω
j(k 1´k)
N =

"

1 if k 1 = k ,
0 otherwise .
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Chapter 5. The Fourier Transform

§5.1 The Classical Discrete Fourier Transform

FN =
1

?
N


1 1 1 ¨ ¨ ¨ 1

1 ωN ω2
N ¨ ¨ ¨ ωN´1

N
1 ω2

N ω4
N ¨ ¨ ¨ ω

2(N´1)
N

...
...

...
. . .

...
1 ωN´1

N ω
2(N´1)
N ¨ ¨ ¨ ω

(N´1)(N´1)
N

, ωN = exp
(2πi

N
)
.

Since FN is unitary and symmetric, the inverse F 1́
N = F ˚

N only differs
from FN by having minus signs in the exponent of the entries. For
a vector v P CN, the vector pv = FNv is called the discrete Fourier
transform (DFT) of v. Doing the matrix-vector multiplication, its
entries are given by

pvj =
1

?
N

N´1
ÿ

k=0

ω jk
N vk .
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Chapter 5. The Fourier Transform

§5.2 The Fast Fourier Transform
A naive way of computing the Fourier transform pv = FNv of v P RN

just does the matrix-vector multiplication to compute all the entries
of pv. This would take O(N) steps (additions and multiplications) per
entry, and O(N 2) steps to compute the whole vector pv. However,
there is a more efficient way of computing pv. This algorithm is
called the Fast Fourier Transform (FFT, due to Cooley and Tukey
in 1965), and takes only O(N log2N) steps. This difference between
the quadratic N 2 steps and the near-linear N log2N is tremendously
important in practice when N is large, and is the main reason that
Fourier transforms are so widely used.
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Chapter 5. The Fourier Transform

§5.2 The Fast Fourier Transform
We will assume N = 2n, which is usually fine because we can add
zeroes to our vector to make its dimension a power of 2 (but similar
FFTs can be given also directly for most N that are not a power of
2). The key to the FFT is to rewrite the entries of pv as follows:

pvj =
1

?
N

N´1
ÿ

k=0

ω jk
N vk =

1
?

N

(
ÿ

k even
ω jk

N vk +
ÿ

k odd
ω jk

N vk
)

=
1

?
2

(
1

a

N/2

ÿ

k even
ω

jk/2
N/2 vk +

ω j
N

a

N/2

ÿ

k odd
ω

j(k´1)/2
N/2 vk

)
.

ω jk
N = exp

(2πjki
N

)
= exp

(2πj(k/2)i
N/2

)
= ω

jk/2
N/2 if k is even,

ω jk
N = ω j

Nω
j(k´1)
N = ω j

N ω
j(k´1)/2
N/2 if k is odd.
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Chapter 5. The Fourier Transform

§5.2 The Fast Fourier Transform
Note that we have rewritten the entries of the N-dimensional discrete
Fourier transform pv in terms of two N

2
-dimensional discrete Fourier

transforms, one of the even-numbered entries of v, and one of the
odd-numbered entries of v. This suggests a recursive procedure for
computing pv : first separately compute the Fourier transform zveven

of the N
2

-dimensional vector of even-numbered entries of v and the
Fourier transform yvodd of the N

2
-dimensional vector of odd-numbered

entries of v, and then compute the N entries using

pvj =
1

?
2

[
(zveven)j + ω j

N(yvodd)j
]

@ 0 ď j ď
N
2

´ 1 ,

pvj+N
2
=

1
?
2

[
(zveven)j ´ ω j

N(yvodd)j
]

@ 0 ď j ď
N
2

´ 1 .
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Chapter 5. The Fourier Transform

§5.2 The Fast Fourier Transform
The computation time T(N) it takes to implement FN this way can
be written recursively as T(N) = 2T

(N
2

)
+ 2N, because we need to

compute two N
2

-dimensional Fourier transforms and do 2N additional
operations (additions and multiplications) to compute pv. This works
out to time T(N) = O(N log2N), as promised. Similarly, we have an
equally efficient algorithm for the inverse discrete Fourier transform
F 1́

N = F ˚
N, whose entries are 1

?
N
ω´jk

N .
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Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
Suppose we are given two real-valued polynomials p and q, each of
degree at most d :

p(x) =
d
ÿ

j=0

ajx j and q(x) =
d
ÿ

k=0

bkx k .

We would like to compute the product of these two polynomials

p(x)q(x) =
( d
ÿ

j=0

ajx j
)( d

ÿ

k=0

bkx k
)
=

2d
ÿ

ℓ=0

( ℓ
ÿ

j=0

ajbℓ´j
)

l jh n

cℓ

x ℓ .

Clearly, each coefficient cℓ by itself takes (2ℓ + 1) steps (additions
and multiplications) to compute, which suggests an algorithm for
computing the coefficients of p ¨q that takes O(d 2) steps. However,
using the fast Fourier transform we can do this in O(d log2d) steps,
as follows.
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Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
The convolution of two vectors a, b P RN is a vector a ˙ b P RN

whose ℓ-th entry is defined by

(a ˙ b)ℓ =
1

?
N

N´1
ÿ

j=0

ajb(ℓ´j ) mod N .

Let us set N = 2d + 1 (the number of nonzero coefficients of p ¨ q)
and make the (d + 1)-dimensional vectors of coefficients a and b
N-dimensional by adding d zeroes. Then the coefficients of the
polynomial p ¨ q are proportional to the entries of the convolution:
cℓ =

?
N(a ˙ b)ℓ. It is easy to show that the Fourier coefficients of

the convolution of a and b are the products of the Fourier coefficients
of a and b: for every ℓ P t0, ...,N−1u we have (za ˙ b)ℓ = (pa .̊ pb)ℓ :

(za ˙ b)ℓ =
1

?
N

N´1
ÿ

k=0

ω ℓkN (a ˙ b)k
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Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
The convolution of two vectors a, b P RN is a vector a ˙ b P RN

whose ℓ-th entry is defined by

(a ˙ b)ℓ =
1

?
N

N´1
ÿ

j=0

ajb(ℓ´j ) mod N .

Let us set N = 2d + 1 (the number of nonzero coefficients of p ¨ q)
and make the (d + 1)-dimensional vectors of coefficients a and b
N-dimensional by adding d zeroes. Then the coefficients of the
polynomial p ¨ q are proportional to the entries of the convolution:
cℓ =

?
N(a ˙ b)ℓ. It is easy to show that the Fourier coefficients of

the convolution of a and b are the products of the Fourier coefficients
of a and b: for every ℓ P t0, ...,N−1u we have (za ˙ b)ℓ = (pa .̊ pb)ℓ :
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N
N´1
ÿ

j=0

ω ℓjN aj
N´1
ÿ

k=0

ω ℓkN bk

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
The convolution of two vectors a, b P RN is a vector a ˙ b P RN

whose ℓ-th entry is defined by

(a ˙ b)ℓ =
1

?
N

N´1
ÿ

j=0

ajb(ℓ´j ) mod N .

Let us set N = 2d + 1 (the number of nonzero coefficients of p ¨ q)
and make the (d + 1)-dimensional vectors of coefficients a and b
N-dimensional by adding d zeroes. Then the coefficients of the
polynomial p ¨ q are proportional to the entries of the convolution:
cℓ =

?
N(a ˙ b)ℓ. It is easy to show that the Fourier coefficients of

the convolution of a and b are the products of the Fourier coefficients
of a and b: for every ℓ P t0, ...,N−1u we have (za ˙ b)ℓ = (pa .̊ pb)ℓ :

(za ˙ b)ℓ =
(

1
?

N

N´1
ÿ

j=0

ω ℓjN aj
)(

1
?

N

N´1
ÿ

k=0

ω ℓkN bk
)

Ching-hsiao Cheng 量子計算的數學基礎 MA5501*



Chapter 5. The Fourier Transform
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Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
This immediately suggests an algorithm for computing the vector
of coefficients cℓ: apply the FFT to a and b to get pa and pb, mul-
tiply those two vectors entrywise to get pa .̊ pb, apply the inverse
FFT to get a ˙ b, and finally multiply a ˙ b with

?
N to get the

vector c of the coefficients of p ¨ q. Since the FFTs and their in-
verse take O(N log2N) steps, and pointwise multiplication of two
N-dimensional vectors takes O(N) steps, this whole algorithm takes
O(N log2N) = O(d log2d) steps.

Note that if two numbers ad ¨ ¨ ¨ a1a0 and bd ¨ ¨ ¨ b1b0 are given in
decimal notation, then we can interpret the digits as coefficients
of polynomials p and q, respectively, and the two numbers will be
p(10) and q(10). Their product is the evaluation of the product-
polynomial p ¨ q at the point x = 10.
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Chapter 5. The Fourier Transform

§5.3 Application: Multiplying Two Polynomials
This suggests that we can use the above procedure (for fast mul-
tiplication of polynomials) to multiply two numbers in O(d log2d)
steps, which would be a lot faster than the standard O(d 2) algo-
rithm for multiplication that one learns in primary school. However,
in this case we have to be careful since the steps of the above al-
gorithm are themselves multiplications between numbers, which we
cannot count at unit cost anymore if our goal is to implement a
multiplication between numbers! Still, it turns out that implement-
ing this idea carefully allows one to multiply two d-digit numbers in
O(d log2d log2log2d) elementary operations. This is known as the
Schönhage-Strassen algorithm. We will skip the details.
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Chapter 5. The Fourier Transform

§5.4 The Quantum Fourier Transform
Since FN is an N ˆ N unitary matrix, we can interpret it as a quan-
tum operation, mapping an N-dimensional vector of amplitudes to
another N-dimensional vector of amplitudes. This is called the quan-
tum Fourier transform (QFT). In case N = 2n (which is the only
case we will care about), this will be an n-qubit unitary. We will
see below that the QFT can be implemented by a quantum circuit
using O(n2) elementary gates. This is exponentially faster than
even the FFT (which takes O(N log2N) = O(2nn) steps), but it
achieves something different: computing the QFT will NOT give
us the entries of the Fourier transform written down on a piece of
paper, but only as the amplitudes of the resulting state.
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Chapter 5. The Fourier Transform

§5.4 The Quantum Fourier Transform
Definition
The N-dimnesional quantum Fourier transform FN, where N = 2n,
is a linear map on the n-qubit space

␣

|0y, |1y, ¨ ¨ ¨ , |N ´ 1y
(

satisfying

FN|ky =
1

?
N

N´1
ÿ

j=0

ω jk
N | jy @ |ky = |k1k2 ¨ ¨ ¨ kny = |k1y b ¨ ¨ ¨ b |kny ,

where again ωN = exp
(2πi

N
)
.
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Chapter 5. The Fourier Transform

§5.4 The Quantum Fourier Transform
Theorem
Let ϕ1, ¨ ¨ ¨ , ϕn P R. For each n P N,

n
â

ℓ=1

(
|0y + e iϕℓ |1y

)
=

2n´1
ÿ

j=0

e i ( j1ϕ1+j2ϕ2+¨¨¨+jnϕn)| jy , (1)

where | jy = | j1 j2 ¨ ¨ ¨ jny for j P t0, 1un.

Proof.

Since |0y + e iϕℓ |1y =
1
ÿ

jℓ=0

e ijℓϕℓ | jℓy, we find that
n
â

ℓ=1

(
|0y + eiϕℓ |1y

)
=

( 1
ÿ

j1=0

e ij1ϕ1 | j1y

)
b ¨ ¨ ¨ b

( 1
ÿ

jn=0

e ijnϕn | jny

)
=

1
ÿ

j1=0

1
ÿ

j2=0

¨ ¨ ¨
1
ÿ

jn=0

e i ( j1ϕ1+j2ϕ2+¨¨¨jnϕn)| j1y b | j2y b ¨ ¨ ¨ b | jny

=
1
ÿ

j1=0

1
ÿ

j2=0

¨ ¨ ¨
1
ÿ

jn=0

e i ( j1ϕ1+j2ϕ2+¨¨¨jnϕn)| j1 j2 ¨ ¨ ¨ jny . ˝
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Chapter 5. The Fourier Transform

§5.4 The Quantum Fourier Transform
Definition
The N-dimnesional quantum Fourier transform FN, where N = 2n,
is a linear map on the n-qubit space

␣

|0y, |1y, ¨ ¨ ¨ , |N ´ 1y
(

satisfying

FN|ky =
1

?
N

N´1
ÿ

j=0

ω jk
N | jy @ |ky = |k1k2 ¨ ¨ ¨ kny = |k1y b ¨ ¨ ¨ b |kny ,

where again ωN = exp
(2πi

N
)
.

Since exp
(2πijk

2n

)
= exp

(
i

n
ÿ

ℓ=1

2πkjℓ
2ℓ

)
for 0 ď j = ( j1 ¨ ¨ ¨ jn)2 ď

2n ´ 1, using (1) we find that

FN|ky =
1

?
N

N´1
ÿ

j=0

e
2πijk
2n | jy =

n
â

ℓ=1

1
?
2

(
|0y + e

2πik
2ℓ |1y

)
. (2)
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Chapter 5. The Fourier Transform

§5.4 The Quantum Fourier Transform
Using the convection 0.b1b2 ¨ ¨ ¨ bm =

m
ř

ℓ=1

bℓ2´ℓ for b = b1b2 ¨ ¨ ¨ bm P

t0, 1um
(

for example, 0.101 = 1 ¨
1

2
+0 ¨

1

4
+1 ¨

1

8
=

5

8

)
, by the fact

that e 2πi = 1 we have

exp
(
2πik
2ℓ

)
= exp

(
2πi

n
ÿ

j=1

kj2n´j´ℓ
)
= exp

(
2πi

n
ÿ

j=n´ℓ+1

kj2n´j´ℓ
)

= exp
(
2πi

ℓ
ÿ

m=1

kn´ℓ+m2´m
)

= exp
(
2πi 0.kn´ℓ+1kn´ℓ+2 ¨ ¨ ¨ kn

)
so that (2) implies that

FN|ky =
n
â

ℓ=1

1
?
2

(
|0y + e 2πi 0.kn´ℓ+1¨¨¨kn |1y

)
. (3)
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
In the following, we will describe the efficient circuit for the n-qubit
QFT. The elementary gates we will allow ourselves are Hadamards
and controlled-Rs gates, where

Rs =

[
1 0

0 e 2πi/2s

]
.

Note that R1 = Z =

[
1 0
0 ´�1

]
, R2 =

[
1 0
0 i

]
, and

Rs|ky = e2πi k
2s |ky @ k P t0, 1u .

For large s, e 2πi/2s is close to 1 and hence the Rs-gate is close to
the identity-gate I. We could implement Rs-gates using Hadamards
and controlled-Rs gates for s = 1, 2, 3, but for simplicity we will just
treat each Rs as an elementary gate.
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
Example
In this example we illustrate how to construct the quantum circuit
of F8. Using (3),

F8|k1k2k3y =
1

?
2

(
|0y + e 2πi 0.k3 |1y

)
b

1
?
2

(
|0y + e 2πi 0.k2k3 |1y

)
b

1
?
2

(
|0y + e 2πi 0.k1k2k3 |1y

)
.

1 To prepare the first qubit of the desired state F8|k1k2k3y, just
apply a Hadamard to |k3y since

H|k3y =
1

?
2

(
|0y + (´1)k3 |1y

)
=

1
?
2

(
|0y + e 2πi 0.k3 |1y

)
.
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
Example (cont.)

2 To prepare the second qubit of the desired state, we first apply
a Hadamard to |k2y to obtain 1

?
2

(
|0y + e 2πi 0.k2 |1y

)
, and then

conditioned on k3 (before we apply the Hadamard to |k3y) apply
R2: by applying R2 it multiplies |1y with a phase e 2πi 0.0k3 ,
producing the correct qubit 1

?
2

(
|0y + e 2πi 0.k2k3 |1y

)
.

3 To prepare the third qubit of the desired state, we apply
a Hadamard to |k1y, apply R2 conditioned on k2 and R3

conditioned k3. This produces the correct qubit 1
?
2

(
|0y +

e 2πi 0.k1k2k3 |1y
)
.
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Chapter 5. The Fourier Transform
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
Example (cont.)
Note that the order of the output is wrong: the first qubit should
be the third and vice versa. So the final step is just to swap qubits
1 and 3. Therefore, F8 can be achieved by the following quantum
circuit:

|k1y H R2 R3

|k2y H R2

|k3y H

Figure 1: QFT for 3-qubits
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
The general case works analogously: starting with ℓ = 1, we apply
a Hadamard to |kℓy and then “rotate in” the additional phases re-
quired, conditioned on the values of the later bits kℓ+1, ¨ ¨ ¨ , kn.

. . . |0y+e 2πi 0.kℓ¨¨¨kn |1y
?
2

. . .

. . .

. . .

. . .

|ψy |ψy

|kℓy H R2 R3 Rn´ℓ Rn´ℓ+1

|kℓ+1y |kℓ+1y

|kℓ+2y |kℓ+2y

|kn´1y |kn´1y

|kny |kny

Figure 2: The ℓ-th block of QFT for n-qubits, where |ψy is a (ℓ´ 1) qubit
quantum state
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
Some swap gates at the end then put the qubits in the right order.

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

|k1y H R2 Rn´1 Rn

|k2y H Rn´2 Rn´1

|kn´1y H R2

|kny H

Figure 3: The quantum circuit of QFT for n-qubits (finally one should
apply an order reverse operator)
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Chapter 5. The Fourier Transform

§5.5 An Efficient Quantum Circuit
Since the circuit involves n qubits, and at most n gates are applied to
each qubit, the overall circuit uses at most n2 gates. In fact, many
of those gates are phase gates Rs with s " log2n, which are very
close to the identity and hence do not do much anyway. We can
actually omit those from the circuit, keeping only O(log2n) gates
per qubit and O(n log2 n) gates overall. Intuitively, the overall error
caused by these omissions will be small (a homework exercise asks
you to make this precise). Finally, note that by inverting the circuit
(that is, reversing the order of the gates and taking the adjoint U∗

of each gate U) we obtain an equally efficient circuit for the inverse
quantum Fourier transform F 1́

N = F ˚
N.
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Chapter 5. The Fourier Transform

§5.6 Application: phase estimation
Suppose we can apply a unitary U and we are given an eigenvector
|ψy of U corresponding to an unknown eigenvalue λ (that is, U |ψy =

λ|ψy for some unknown λ P C), and we would like to compute or at
least approximate the λ. Since U is unitary, λ must have magnitude
1, so we can write it as λ = e 2πiϕ for some real number ϕ P [0, 1);
the only thing that matters is this phase ϕ.

Suppose for simplicity that we know that ϕ = 0.ϕ1ϕ2 ¨ ¨ ¨ϕn can be
written exactly with n bits of precision. Then here’s the algorithm
for phase estimation:

1 Start with |0ny|ψy.
2 For N = 2n, apply FN to the first n qubits to get 1

?
N

N´1
ř

j=0
| j y|ψy

(in fact, Hn b I would have the same effect).
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Chapter 5. The Fourier Transform

§5.6 Application: phase estimation
3 Apply the map | j y|ψy ÞÑ | j yU j|ψy. In other words, apply U

to the second register for a number of times given by the first
register.

4 Apply the inverse Fourier transform F 1́
N to the first n qubits

and measure the result.
Note that after step 3, the first n qubits are in state

1
?

N

N´1
ÿ

j=0

e 2πiϕj| j y ,

hence the inverse quantum Fourier transform is going to give us
|2nϕy = |ϕ1 ¨ ¨ ¨ϕny with probability 1. In case ϕ cannot be written
exactly with n bits of precision, one can show that this procedure
still (with high probability) spits out a good n-bit approximation to
ϕ. We will omit the calculation.
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Chapter 5. The Fourier Transform

§5.6 Application: phase estimation
Definition
Let U P U(2m) be an 2m ˆ 2m unitary matrix and let |ψy be one
of the eigenvector of U with corresponding eigenvalue e 2πiθ. The
Quantum Phase Estimation algorithm, abbreviated QPE, takes the
inputs the m-qubit quantum gate for U and the state |0ny|ψy and
returns the state |rθy|ψy, where rθ denotes a binary approximation to
2nθ and the n subscript denotes it has been truncated to n digits.
In notation, with [¨] denoting the Gauss/floor function,

QPE(U, |0ny|ψy) = |rθy|ψy , rθ = [2nθ] .

We will use |θyn to denote |rθy if rθ =
[
2nθ

]
.
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