N S X4
' MAS501*

£ 538 enicd A # MA5501*



Chapter 3. Mathematical Backgrounds

Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps
§3.2 Direct Sum of Vector Spaces and Multi-linear Maps
§3.3 Inner Product Spaces and Hilbert Spaces
§3.4 Dual Spaces and Adjoint Operators
§3.5 Unitary Operators and Unitary Matrices
§3.6 Tensor Product of Vector Spaces
§3.7 Unitary Decomposition

§3.8 Implementation of Multi-Controlled Rotation Gates

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

§3.1.1 Vector spaces

Definition

A vector space V over a scalar field F is a collection of elements
called vectors, with given operations of vector addition 4+ : VxV —
V and scalar multiplication - : F x V — V such that

Q@ v+tw=w+vforall vy weV.

Q (v+w)+u=v+ (u+w)forall u,v,we V.

© there exists 0, the zero vector, such that v+0 = vforall ve V.

@ for each ve V there exists we V such that v+ w= 0.

QN (vtw=X-v+ A -wforall \eFand v,we V.

QO A+p)-v=XA-v+pu-vforall \,ueF and ve V.

Q@ AN-p)-v=XA-(u-v)forall \;peF and ve V.

Q@ 1l-v=vforall veV.

Ching-hsiao Cheng B335 i A # MAS501*
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§3.1 Vector Spaces and Linear Maps

Remark: In the following we always assume that the scalar field F
under consideration is R or C.
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Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

Remark: In the following we always assume that the scalar field F
under consideration is R or C.

Remark: In property 4 of the definition above, it is easy to see that
for each v, there is only one vector w such that v++w = 0. We often
denote this w by —v, and the vector substraction — : V xV —» V
is then defined (or understood) as v— w = v+ (—w).
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Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

Remark: In the following we always assume that the scalar field F
under consideration is R or C.

Remark: In property 4 of the definition above, it is easy to see that
for each v, there is only one vector w such that v++w = 0. We often
denote this w by —v, and the vector substraction — : V xV —» V
is then defined (or understood) as v— w = v+ (—w).

Let IF be a scalar field. The space " is the collection of n-tuple v =
(v1,va, - ,Vp) with v; € F with addition + and scalar multiplication
- defined by

(Vl’... 7Vn)+(W17.” ,Wn)E<V1+W1,"' ’Vn+wn)7

a(vy, o+, vp) = (avy, - ,avy).

Then IF" is a vector space over FF.

Ching-hsiao Cheng



Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

Let I be a scalar field. The collection of m x n matrices with entries
in F is denoted by M (m, n;F) or F™*"; that is, A€ M(m,n;F) if

and only if A = [ajj]1<i<m,1<j<n for some aj; € F. Define the addition

+ and scalar multiplication - on M(m, n;F) by
A+B:[a;j+bij] if A:[a,-j] and B:[b;j]

and
c-A=[c- aj if A=][ay].

Then (M(m, n;F),+,-) is a vector space over F.
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§3.1 Vector Spaces and Linear Maps

Let I be a scalar field. The collection of m x n matrices with entries
in F is denoted by M (m, n;F) or F™*"; that is, A€ M(m,n;F) if

and only if A = [ajj]1<i<m,1<j<n for some aj; € F. Define the addition

+ and scalar multiplication - on M(m, n;F) by
A+B:[a;j+bij] if A:[a,-j] and B:[b;j]

and
c-A=[c- aj if A=][ay].

Then (M(m, n;F),+,-) is a vector space over F.

Definition (Vector subspace)

Let V be a vector space over scalar field F. A subset W < V is

called a vector subspace of V if itself is a vector space over F.
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§3.1 Vector Spaces and Linear Maps

Definition

Let V be a vector space over a scalar field F. k vectors v, vo, - -+, vk
in V is said to be linearly dependent if there exist a1, - ,ax € F,
(a1, -+ ,ak) # 0 such that aj vy +agve +- - -+ agvg = 0. k vectors
vi, Vo, -+, Vg in V is said to be linearly independent if they are
not linearly dependent. In other words, {vq,---,vx} are linearly

independent if

avy +tasve+ - +oavk=0 = ar=as=---=a,=0.
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§3.1 Vector Spaces and Linear Maps

Definition

Let V be a vector space over a scalar field F. k vectors v, vo, - -+, vk
in V is said to be linearly dependent if there exist a1, - ,ax € F,
(a1, -+ ,ak) # 0 such that aj vy +agve +- - -+ agvg = 0. k vectors
vi, Vo, -+, Vg in V is said to be linearly independent if they are
not linearly dependent. In other words, {vq,---,vx} are linearly
independent if

ajvi +agve+ - +avk=0 = a=ar=--=a,=0.

2

The k vectors {1,x,x°,- - 7x"_l} are linearly independent in the

space of polynomials for all k€ N.
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§3.1 Vector Spaces and Linear Maps

Definition
The dimension of a vector space V is the number of maximum
linearly independent set in V, and in such case V is called an n-

dimensional vector space, where n is the dimension of V. If for
every number n € N there exists n linearly independent vectors in V,

the vector space V is said to be infinitely dimensional.
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Definition

Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

The dimension of a vector space V is the number of maximum
linearly independent set in V, and in such case V is called an n-
dimensional vector space, where n is the dimension of V. If for
every number n € N there exists n linearly independent vectors in V,

the vector space V is said to be infinitely dimensional.

A\

Definition (Basis)

Let V be a vector space over F. A collection of vectors {v;}icz in
V is called a basis of V if for every v € V, there exists a unique
{ai}ieI C IF such that

V= 2 QjVi.

ael

For a given basis B = {v;}icz, the coefficients {a;}icz given in the

above relation is denoted by [v]3.

Ching-hsiao Cheng



Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

§3.1.2 Linear Maps and their matrix representations

Definition

Let V, W be vector spaces over a common scalar field F. A map L
from V to W is said to be linear if L(cvy + v») = cL(vy) + L(w) for
all vi, vy € Vand ce F. We often write Lv instead of L(v), and the
collection of all linear maps from V to W is denoted by £(V;W).
We also write £(V) instead of £(V;V) if W = V. An element in
L(V;TF) is called a linear functional on V.

.
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§3.1 Vector Spaces and Linear Maps

§3.1.2 Linear Maps and their matrix representations

Definition

Let V, W be vector spaces over a common scalar field F. A map L
from V to W is said to be linear if L(cvy + v») = cL(vy) + L(w) for
all vi, vy € Vand ce F. We often write Lv instead of L(v), and the
collection of all linear maps from V to W is denoted by £(V;W).
We also write £(V) instead of £(V;V) if W = V. An element in
L(V;TF) is called a linear functional on V.

PROPOSITION
Let V and W be vector spaces over a common scalar field F. Then

L(V; W) is a vector space over .
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§3.1 Vector Spaces and Linear Maps

Let F be a scalar field, and A = [ajj|i<i<mi<j<n € M(m, n;F) be

an m x n matrix. Define a vector-valued function L : F” — ™ by

n n n
Lixi,++ xn) = (Z alejaZaZij,"' 723mjxj) .
j=1 j=1 =1

Then Le L(F",F™).

A
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§3.1 Vector Spaces and Linear Maps

Let F be a scalar field, and A = [ajj|i<i<mi<j<n € M(m, n;F) be

an m x n matrix. Define a vector-valued function L : F” — ™ by

n n n
Lixi,++ xn) = (Z alejaZaZij,"' 723mjxj) .
j=1 j=1 =1

Then Le L(F",F™).

A

From the example above, we see that any m x n matrix is associated

with a linear map.
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§3.1 Vector Spaces and Linear Maps

Let F be a scalar field, and A = [ajj|i<i<mi<j<n € M(m, n;F) be

an m x n matrix. Define a vector-valued function L : F” — ™ by

n n n
Lixi,++ xn) = (Z alejaZaZij,"' 723mjxj) .
j=1 j=1 =1

Then Le L(F",F™).

From the example above, we see that any m x n matrix is associated
with a linear map. Now suppose that V and W are vector spaces
over a common scalar field IF, V is a n-dimensional vector space with
basis B = {v;}7_;, and W is a m-dimensional vector space with basis
B= {wit;.
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§3.1 Vector Spaces and Linear Maps

Let L € £(V;W). Since B= {w;}, is a basis of W, for each vj e B

m
there exist unique ajj, agj, -+, amj € F such that Lv; = > a;w;.
i=1
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§3.1 Vector Spaces and Linear Maps

Let L € £(V; W). Since B= {w;} T, is a basis of W, for each h vj € B

there exist unique ayj, agj, ---, amj € IF such that Lv; = Z ajjwi.
i=1
Moreover, if u€ V, then there exist ¢y, - - , ¢, € F such that
u=>gqgvy o c=u]g,

and by the linearity of L,

n

Lu= L(E cjvj) Z cilvj = Z q(é a,-jw,-> = Zm: (J a,-jcj>w

Jj=1 i=1 j=1
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§3.1 Vector Spaces and Linear Maps

Let L € £(V; W). Since B= {w;} T, is a basis of W, for each h vj € B

there exist unique ayj, agj, ---, amj € IF such that Lv; = Z ajjwi.
i=1
Moreover, if u€ V, then there exist ¢y, - - , ¢, € F such that
u=>gqgvy o c=u]g,

and by the linearity of L,

Lu= L(E cjvj) Z cilvj = Z q(i a,-jw,-> = Zm: (Zn] a,-jcj> w,
Jj=1 i=1 =1 j=1

Let b; = Z aiicj, and b= [by,--- , bm]T. Then with A denoting the
j=1
m x n matrix [aj]1<i<m 1<j<n:

[LU]E =b=Ac= A[U]B.
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§3.1 Vector Spaces and Linear Maps

The discussion above induces the following

Definition

Let V,W be two vector spaces over a common scalar field F,
dim(V) = n and dim(W) = m, and B, B be basis of V, W, respec-
tively. For L € L(V; W), the matrix representation of L relative
to bases B and B, denoted by (L] is the matrix in M(m, n; F)

satisfying
[Luly = [L]&B[U]B VueV.

If Le L£(V;V), we simply use [L]3 to denote [L]3 3.
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§3.1 Vector Spaces and Linear Maps

The discussion above induces the following

Definition

Let V,W be two vector spaces over a common scalar field F,
dim(V) = n and dim(W) = m, and B, B be basis of V, W, respec-
tively. For L € L(V; W), the matrix representation of L relative
to bases B and B, denoted by [L] is the matrix in M(m, n; )
satisfying

BB’

[Luly = [L]&B[U]B VueV.

If Le L£(V;V), we simply use [L]3 to denote [L]3 3.

v

Remark: If V has a standard basis B or B is well-known, we also
use [L] instead of [L]g to simplify the notation.
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§3.1 Vector Spaces and Linear Maps

Let V = span(1,x,--- ,x" 1) and W = span(1, x,--- ,x™1) with
m=n—1. Then di’x .V — W defined by

(;i(l;l aka71> = I; ax(k — 1)Xk72
is linear, and the matrix representation of d—‘i (relative to the standard
basis of V and W) is

0 1 0 0
0 2
' 0
m-rows : .0 (n—1)
0
L 0 0 .
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§3.1 Vector Spaces and Linear Maps

Let V1,V5, V3 be finite dimensional vector spaces, and By, Ba, Bs

be basis of V1, Vs, V3, respectively. Then
[T5]337B1 - [T]B3,B2 [5]52,31 VSe L(VIQVQ)a Te L(VQQVI&) .

v
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§3.1 Vector Spaces and Linear Maps

Let V1,V5, V3 be finite dimensional vector spaces, and By, Ba, Bs

be basis of V1, Vs, V3, respectively. Then
[TS]Bs,8, = [T]Bs,8,[S|Bs3 VS € L(Vi;Va), Te L(Vo;V5).

v

Let Se L(V;V,) and T e L£L(Va;V3) be given. For all veVy,
[TSV]Bs = [T]Bs,5:[5V]B, = [T]83,8.[5]82,8: [V]B
[TSv]s, = [T5]5;.5 (VB -
Therefore,
[T1Bs,85[S)Bo,8. VB, = [TS|Bs,B: [VIB, VY VveV;
thus letting u be any basis vector implies that

[T5]33,31 = [T]33,52 [5]52731 0 =
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§3.1 Vector Spaces and Linear Maps

§3.1.3 Algebraic dual space

For a given vector space V over scalar field F, the algebraic dual
space of Vis L(V;F) (also denoted by V’).
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§3.1 Vector Spaces and Linear Maps

§3.1.3 Algebraic dual space

For a given vector space V over scalar field F, the algebraic dual
space of Vis L(V;F) (also denoted by V’).

Let V=R" and F = R. From Linear Algebra we know that V' has
one-to-one correspondence with V: every fe V’ corresponds to a
unique matrix @ = [a1, - - , ap] € R"” such that

fix) =a-x

and vice versa. We write V/ “="V.
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§3.1 Vector Spaces and Linear Maps

§3.1.3 Algebraic dual space

For a given vector space V over scalar field F, the algebraic dual
space of Vis L(V;F) (also denoted by V’).

Let V=R" and F = R. From Linear Algebra we know that V' has
one-to-one correspondence with V: every fe V’ corresponds to a

unique matrix @ = [a1, - - , ap] € R"” such that

fix) =a-x
and vice versa. We write V’ “="V. A bit more generalized version of
the result above is that (C"”)" = C" in the sense that every fe (C")’
corresponds to a unique vector @ = (cj,- -+, ¢,) € C" such that
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§3.1 Vector Spaces and Linear Maps

PROPOSITION

Let V be a finite dimensional vector space over field F. Then
dim(V’) = dim(V).
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§3.1 Vector Spaces and Linear Maps

PROPOSITION

Let V be a finite dimensional vector space over field F. Then
dim(V’) = dim(V).

v

Let {e1, - ,en} be a basis of V. Define ¢y, - ¢, by
90”(29"3]) ZCJ j Vl<i<nandcePF. (1)
=1

Then @1, -+, € V',

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.1 Vector Spaces and Linear Maps

PROPOSITION
Let V be a finite dimensional vector space over field F. Then
dim(V’) = dim(V).

4

Let {e1, - ,en} be a basis of V. Define ¢y, - ¢, by

@;(chej> ch j V1i<i<nandceF. (1)
=1
Then @1, -+, € V', Moreover, the collection {¢1, - ,¢n} are
linearly independent since if aq,--- ,a, € F verify that

a1p1 + agpa + -+ + anpn = 0 (the zero function)
we must have

(01 + agpa + -+ + anpn)(e) =0 V1i<j<n
which implies that o; =0 for all 1 < j < n;
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§3.1 Vector Spaces and Linear Maps

PROPOSITION
Let V be a finite dimensional vector space over field F. Then
dim(V’) = dim(V).

4

Let {e1, - ,en} be a basis of V. Define ¢y, - ¢, by

@;(chej> ch j V1i<i<nandceF. (1)
=1
Then @1, -+, € V', Moreover, the collection {¢1, - ,¢n} are
linearly independent since if aq,--- ,a, € F verify that

a1p1 + agpr + - - + anp, = 0 (the zero function),
we must have

(a1p1 +aopa + -+ anpn)(e) =0  V1<j<n
which implies that o = 0 for all 1 < j < n; thus dim(V "Y=n o
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§3.1 Vector Spaces and Linear Maps

Proof (cont.)
On the other hand, suppose that g € V' and g(e;) = d;. If x =
x1€1 + - - - + Xpep, the linearity of g implies that
g(x) = g(xier + - - + xpep) = x1g(e1) + - - - + xng(en)
=dix1 + -+ dpxy
and (1) shows that
(dipr + -+ + dnn) (x) n "
= (dipr + - + dnipn) (X181 + - -+ + Xn€n) = )| dﬂPi(Z Xjej>

_ZZdXJéU—ZdX:—Chn%- -+ dpxp .

i=1j=1

Therefore, g = dip1 + - + duyp, which implies that V/ =
span(y1, -+, ,). This establishes that dim(V’) = n. o
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§3.2 Direct Sum and Multi-Linear Maps

§3.2.1 Direct sum of vector spaces

Definition

Given sets A and B, the Cartesian product of A and B, denoted by
A x B, is the set of all ordered pairs (a, b) with a€ A and b€ B;
that is, A x B= {(a,b)|a€ A and be B}. The Cartesian of three

or more sets are defined similarly.

Let X and Y be vector spaces over a common scalar field F. The
direct sum of X and Y, denoted by X@Y, is X x Y'with the following

vector space structure: VA e, x;,x2 € Xand y;,y, € Y,

A (x1,y1) + (X2, ) = (A X1+ x2, A -y + yo) -

For xe X and y € Y, the ordered pair (x, y) is also written as x@® y.
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§3.2 Direct Sum and Multi-Linear Maps

Remark:

@ The direct sum is a way of getting a new big vector space from
two (or more) smaller vector spaces in the simplest way one can
imagine: you just line them up.
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§3.2 Direct Sum and Multi-Linear Maps

Remark:

@ The direct sum is a way of getting a new big vector space from
two (or more) smaller vector spaces in the simplest way one can
imagine: you just line them up.

@ Let X, Y be finite dimensional vector spaces over a scalar field
IF, where F = R or C. Then X@Y is a finite dimensional vector
space over F and dim(X@®Y) = dim(X) 4 dim(Y).
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§3.2 Direct Sum and Multi-Linear Maps

Remark:

@ The direct sum is a way of getting a new big vector space from
two (or more) smaller vector spaces in the simplest way one can
imagine: you just line them up.

@ Let X, Y be finite dimensional vector spaces over a scalar field
IF, where F = R or C. Then X@Y is a finite dimensional vector
space over F and dim(X@®Y) = dim(X) 4+ dim(Y). In fact, if
{x1,--,xm} is a basis of X and {y;,---,y,} is a basis of Y,
then X@Y has a basis

{XI@O,XQ@O./"' Xm@D0,0Dy;, 0D y,,- - ./()@yn}.
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§3.2 Direct Sum and Multi-Linear Maps

Remark:

@ The direct sum is a way of getting a new big vector space from
two (or more) smaller vector spaces in the simplest way one can
imagine: you just line them up.

@ Let X, Y be finite dimensional vector spaces over a scalar field
IF, where F = R or C. Then X@Y is a finite dimensional vector
space over F and dim(X@®Y) = dim(X) 4+ dim(Y). In fact, if
{x1,--,xm} is a basis of X and {y;,---,y,} is a basis of Y,
then X@Y has a basis

{XI@O,XQ@O./"' Xm@D0,0Dy;, 0D y,,- - ./()@yn}.

This basis is called the induced basis of basis {xl, <+ Xm} of
X and basis {y;, - ,y,} of Y.
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Chapter 3. Mathematical Backgrounds
§3.2 Direct Sum and Multi-Linear Maps

Let X, Y, Z W be vector spaces over a common scalar field IF, and

Ae L(X;Z), Be L(Y;W). The direct sum of A and B, denoted by

A® B, is a linear map in L(X®Y; Z@ W) satisfying that
(A®B)(x®y) = (Ax)® (By) VYxeXyeY.

A
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Chapter 3. Mathematical Backgrounds
§3.2 Direct Sum and Multi-Linear Maps

Let X, Y, Z W be vector spaces over a common scalar field IF, and
Ae L(X;Z), Be L(Y;W). The direct sum of A and B, denoted by
A® B, is a linear map in L(X®Y; Z@ W) satisfying that

(A®B)(x®y) = (Ax)® (By) VYxeXyeY.

Let X1, X2, X3, Y1, Yo, Y3 be vectors spaces over a common scalar
field ¥, and A1 € L(Xl;Xg), A2 € Q(XQ;Xg), Bl € L(Yl; Yg), Bg €
L(YQ; Y3) Then (A2 @ Bg)(Al @ Bl) = (AQAl) @ (BgBl)
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§3.2 Direct Sum and Multi-Linear Maps

Let X, Y, Z W be vector spaces over a common scalar field IF, and

Ae L(X;Z), Be L(Y;W). The direct sum of A and B, denoted by
A® B, is a linear map in L(X®Y; Z@ W) satisfying that

(A®B)(x®y) = (Ax)® (By) VYxeXyeY.

Let Xi,X2,X3, Y1, Yo,

Y3 be vectors spaces over a common scalar
field F, and A1 € L(Xl;Xg), A2 € Q(XQ;Xg), Bl € L(Yl; Yg), Bg =
L(YQ; Y3) Then (A2 @ Bg)(Al @ Bl) = (AQAl) @ (BgBl)

Let xe Xy and ye Y;. Then
(Ac® B) (A1 @ B1)(x®y) = (A2 ® By)(A1x® Bry)
= (A2A1x® BaBry) = (A2A1 @ BBy ) (x @ y) - o
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§3.2 Direct Sum and Multi-Linear Maps

The following theorem concerns with the matrix representation of
A® B if A, B are linear maps.

Let X1, Xo, Y1, Yo be finite dimensional vector spaces over field
F, and A € L(X1;X2), B € L(Y1;Y2). Suppose that relative to
given basis of X1, Xo, Y1, Yo, the matrix representations of A and

B are [A] and [B], respectively. Then relative to the induced basis
of X1 @Y1 and Xy @Y, of given basis of X1, Xs, Y1, Yo, the matrix

. | [A] o
representation of A@ B is { o (8] |

A
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§3.2 Direct Sum and Multi-Linear Maps

§3.2.2 Multi-Linear Maps

Definition

Let V7, Vo, W be vector spaces over a common scalar field F. A map
L:Vi®V, - W is said to be bilinear provided that

Lcu+ v,w) = cl(u,w) + L(v,w) YVuveV,weV;and ceF,
L(u,cv+ w) = cl(u,v) + L(u,w) YueV,v,weV, and ceF.

The collection of all maps L : Vi &V, — W satisfying two identities
above is denoted by £(V;, Va; W).

v
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§3.2 Direct Sum and Multi-Linear Maps

The extension of the bilinearity is the multi-linearity given by

Definition
Let Vi, ---,V,,W be vector spaces over a common scalar field F.
AmapL:Vi@®---®V, > W is said to be multi-linear, denoted by

Le L(Vy, -, V,;; W), provided that

L(Ul,"',uj—l,CVjJr wj, Uj+17"'7un)

:CL(Ul,"',Ujfl, Vi, uj+1>"'7un)+L(ulf"aujfl?M/j7 uj+17"'7un)

foralll1<j<nand cel, and uy €V, for all £ # j, vj,w;e V;.
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§3.2 Direct Sum and Multi-Linear Maps

The extension of the bilinearity is the multi-linearity given by

Definition

Let Vi, ---,V,,W be vector spaces over a common scalar field F.
AmapL:Vi@®---®V, > W is said to be multi-linear, denoted by
Le L(Vy, -, V,;; W), provided that

L(Ul,"',uj—l,CVjJr wj, Uj+17"'7un)

:CL(Ul,"',Ujfl, Vi, uj+1>"'7un)+L(ulf"aujfl?M/j7 uj+17"'7un)

foralll1<j<nand cel, and uy €V, for all £ # j, vj,w;e V;.
v

Remark: One can think of the space of linear maps £(V; W) as
collection of “one”-linear maps.
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Let Vq,--- ,V,, W be vector spaces over a common scalar field .

Then L(Vy, -, V,; W) is a vector space over F.

A
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Let Vq,--- ,V,, W be vector spaces over a common scalar field .

Then L(Vy, -, V,; W) is a vector space over F.

Let ,ge L(Vi,---,V,), and € F. Thenif 1 <j<n, ceF, and
uy eV, for all £ # j, vj,w; € V;, we have
(af+g)(uy, -, i1, cvj+ wj, Uy, -, )
=af(uy, -, ui_1,cvj+ wj, Upy1, -, Up)
+g(uy, -, Uj1, CVj + W), Ui, Up)
= alcf(uy, U, Vi Ui, ) + F(uy, o, Wy b, )]
+egun, - U1, Vi, Ui, - ) + gun, - U, W U, - Up)
= c(af+g)(ur, -, Uj—1, Vj, Ujp1, -, Up)
+(af+g)(u17"'vuj—17M/j’uj+1"">un)- o
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Chapter 3. Mathematical Backgrounds
§3.3 Inner Product Spaces and Hilbert Spaces

An inner product space (V,(,-)) is a vector space V over a scalar
field F associated with a function (-,-) : V x V — F such that

QO (x,x)=>0, VxeV.

Q (x,x) =0 if and only if x=0.

QO (xy+2z)=<{(xy)+{x,z) for all x,y,ze V.

Q (x,Ay) = Xx,y)forall \e F and x,ye V.

Q@ (x,y) = {y,x) for all x,y € V, where € denotes the complex

conjugate of c.

A function (., -) satisfying (D-®) is called an inner product on V.
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Definition

An inner product space (V,(,-)) is a vector space V over a scalar
field F associated with a function (-,-) : V x V — F such that

QO (x,x)=>0, VxeV.

Q (x,x) =0 if and only if x=0.

QO (xy+2z)=<{(xy)+{x,z) for all x,y,ze V.

Q (x,Ay) = Xx,y)forall \e F and x,ye V.

Q@ (x,y) = {y,x) for all x,y € V, where € denotes the complex

conjugate of c.

A function (., -) satisfying (D-®) is called an inner product on V.

Remark: Properties 3) and @) are called the right-linearity of inner
products, while ) is called the left-antilinearity of inner products.
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PROPOSITION

Let {-,-) be an inner product on a vector space V over a scalar field
F. Then
Q (u v+ puw) = Xu,v) + pu, wy for all u,vy,we V, A\, n e F.
Q O+ uw,uy = Xv,u) + i{w, u) for all u,v,we V, \, u e F.
Q (0,w)={(w,0)=0 for allwe V.

.
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§3.3 Inner Product Spaces and Hilbert Spaces

PROPOSITION
Let {-,-) be an inner product on a vector space V over a scalar field

F. Then

Q (u v+ puw) = Xu,v) + pu, wy for all u,vy,we V, A\, n e F.
Q O+ uw,uy = Xv,u) + i{w, u) for all u,v,we V, \, u e F.
Q (0,w)={(w,0)=0 for allwe V.

The inner product {-,-) on a vector space V over scalar field F

satisfies the Cauchy-Schwarz inequality

(DI <V 0\ y ) ¥xyeV.

Moreover, for non-zero vectors x, y, the equality holds if and only if

there exists v € F such that x = ~y.
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Definition

A normed vector space (or simply normed space) (V,| - |) is
a vector space V over a scalar field F associated with a function
| -] :V — R such that

@ x| >0 forall xeV.

@ |x|| =0 if and only if x = 0.

Q |A-x| =]\ |x| forall \e F and xe V.

Q |x+y| < |x|+|y| forall x,yeV.
A function || - || satisfying D-@) is called a norm on V.
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Definition

A normed vector space (or simply normed space) (V,| - |) is
a vector space V over a scalar field F associated with a function
| -] :V — R such that

@ x| >0 forall xeV.

@ |x|| =0 if and only if x = 0.

Q |A-x| =]\ |x| forall \e F and xe V.

Q |x+y| < |x|+|y| forall x,yeV.
A function || - || satisfying D-@) is called a norm on V.

A\

The inner product {-,-) on a vector space V (over scalar field F)
induces a norm || - | given by || x| = 1/{x, x).
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Definition
A Banach space is a complete normed vector space, and a Hilbert

space is a complete inner product space (that is, a Banach space

whose norm is induced by the inner product).
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Definition
A Banach space is a complete normed vector space, and a Hilbert

space is a complete inner product space (that is, a Banach space

whose norm is induced by the inner product).

Remark: In the definition above, the completeness of a normed
vector space is defined as follows.

Q@ A sequence {x,}7°, is called a Cauchy sequence in a normed
space (V.| - ) if
(Ve>0)AN>0)(n,m=N=|x, — xm| <¢).
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§3.3 Inner Product Spaces and Hilbert Spaces

Definition
A Banach space is a complete normed vector space, and a Hilbert

space is a complete inner product space (that is, a Banach space

whose norm is induced by the inner product).

Remark: In the definition above, the completeness of a normed
vector space is defined as follows.

Q@ A sequence {x,}7°, is called a Cauchy sequence in a normed
space (V.| - ) if
(Ve>0)AN>0)(n,m=N=|x, — xm| <¢).
@ A normed space (V, | - |) is complete if every Cauchy sequence

in V converges;
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§3.3 Inner Product Spaces and Hilbert Spaces

Definition
A Banach space is a complete normed vector space, and a Hilbert
space is a complete inner product space (that is, a Banach space

whose norm is induced by the inner product).

Remark: In the definition above, the completeness of a normed
vector space is defined as follows.

Q@ A sequence {x,}7°, is called a Cauchy sequence in a normed
space (V, | - [ if
(Ve>0)AN>0)(n,m=N= |x,— xm| <¢).
@ A normed space (V, | - |) is complete if every Cauchy sequence
in V converges; that is, if {x,}72; is a Cauchy sequence in V,

then there exists x € V such that lim ||x, — x| = 0.
n—a0
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Definition

Let (V,{:,-)) be a finite dimensional inner product space. A basis
B = {vi,---,vn} of Vis said to be orthonormal if {v;,v;) = §;; for

all 1 < i, j < n, where §j; is the Kronecker delta.
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§3.3 Inner Product Spaces and Hilbert Spaces

Definition
Let (V,{:,-)) be a finite dimensional inner product space. A basis
B = {vi,---,vn} of Vis said to be orthonormal if {v;,v;) = §;; for

all 1 < i, j < n, where §j; is the Kronecker delta.

Let (V,{-,-),) and (W, (., -),,) be finite dimensional inner product
spaces over C, B = {vy,---,v,} and B = {wi, - ,wn} be or-
thonormal basis of V and W, respectively, and L € L£(V;W).
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§3.3 Inner Product Spaces and Hilbert Spaces

Definition

Let (V,{:,-)) be a finite dimensional inner product space. A basis
B = {vi,---,vn} of Vis said to be orthonormal if {v;,v;) = §;; for

all 1 < i, j < n, where §j; is the Kronecker delta.

Let (V,{-,-),) and (W, (., -),,) be finite dimensional inner product
spaces over C, B = {vy,---,v,} and B = {wi, - ,wn} be or-
thonormal basis of V and W, respectively, and L € L(V;W). If
A = [L]5 g = laijlmxn be the matrix representation of L relative to
B and Evthen

(w, Lvy,, = <2 WKW, ) | (Zauvj) > Z Z ajj Vi Wi, Wiy,

i=1 “j=1 Jj=1ik=1

= ' Y agyw =((w], Alvls) =Wz (L5 5lV]B),,

i=1 j=1
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§3.3 Inner Product Spaces and Hilbert Spaces
so that

<W7 LV>W = <[W]§7 [L]&B[V]B>€m = <[W]§7 [LV]§>C,,,’ ¢
The identity above converts the computation of the inner product of

w and Lvin W in terms of the inner product of [w]z and [Lv]z(=

(L] 5[vlg) in C™ using the matrix representation of L and matrix
multiplications.
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§3.3 Inner Product Spaces and Hilbert Spaces

so that

<W7 LV>W = <[W]§7 [L]&B[V]B>€m = <[W]§7 [LV]§>C,,,’ ¢
The identity above converts the computation of the inner product of
w and Lvin W in terms of the inner product of [w]z and [Lv]z(=
[L]5 zlv]p) in C™ using the matrix representation of L and matrix

multiplications.

In general, if L1, Ly € £(V) and B is an orthonormal basis of V, then

(Liu, Lyvy, = {[L1]B[u]B, [LQ}B[V]B>CH VuveV

since

<L1u> L2V>V = <[L1U]Bv [LZ]B[V]B>C'7 = <[L1]B[U]Ba [LQ]B[V]B>(C” o
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Definition

Let V and W be vector spaces over a common scalar field IF equipped
with norms | - |, and | - |,,, respectively. A linear map L : V — W
is said to be bounded if the number

ILllev,wy = sup |Lx], < co.
x|, =1

The collection of all bounded linear maps from V to W is denoted
by B(V,W). When W =V, we write B(V) instead of B(V,V).
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§3.4 Dual Spaces and Adjoint Operators

Definition

Let V and W be vector spaces over a common scalar field IF equipped
with norms | - |, and | - |,,, respectively. A linear map L : V — W
is said to be bounded if the number

ILllev,wy = sup |Lx], < co.
x|, =1

The collection of all bounded linear maps from V to W is denoted
by B(V,W). When W =V, we write B(V) instead of B(V,V).

Definition

|

Let X be a Banach space over scalar field F. The (continuous) dual
space of X, denoted by X*, is the collection of all bounded linear
functionals on X:
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Definition

Let V and W be vector spaces over a common scalar field IF equipped
with norms | - |, and | - |,,, respectively. A linear map L : V — W
is said to be bounded if the number

ILllev,wy = sup |Lx], < co.
x|, =1

The collection of all bounded linear maps from V to W is denoted
by B(V,W). When W =V, we write B(V) instead of B(V,V).

Definition

|

Let X be a Banach space over scalar field F. The (continuous) dual
space of X, denoted by X*, is the collection of all bounded linear
maps from X to IF;
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Definition

Let V and W be vector spaces over a common scalar field IF equipped
with norms | - |, and | - |,,, respectively. A linear map L : V — W
is said to be bounded if the number

ILllev,wy = sup |Lx], < co.
x|, =1

The collection of all bounded linear maps from V to W is denoted
by B(V,W). When W =V, we write B(V) instead of B(V,V).

Definition

|

Let X be a Banach space over scalar field F. The (continuous) dual
space of X, denoted by X*, is the collection of all bounded linear
maps from X to F; that is,

X* = {Le L(X,F)

sup |L(x)| < oo}.

lIx[x=1
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If (H,{:,-)) is a finite dimensional Hilbert space over field F, then

H* is also finite dimensional and dim(H) = dim(H*).

v
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§3.4 Dual Spaces and Adjoint Operators

If (H,{:,-)) is a finite dimensional Hilbert space over field F, then
H* is also finite dimensional and dim(H) = dim(H*).
v

Let {e1,e2, -+ ,e,} be an orthonormal basis of H (one can always

find an orthonormal basis through the Gram-Schmidt process). For
each 1 < k < n, define ¢, : H — F by

Pi(x) = (e, %) .
The Cauchy-Schwarz inequality then implies that

k(| < lewll - x| = lIx]| ¥ xeH;

thus ¢, € H* for each 1 < k< n. =
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Proof (cont.)

Moreover, if aq,--- , a, are numbers in F and
a1p1(X) + agpa(x) + -+ - + appn(x) =0 VxeH,

then foreach 1 <j<n
0= arpi(e)) + azpa(e)) + -+ + anpn(e)) = Z ol = o

Therefore, {©1, 92, -+ ,@n} is a linearly independent set.
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§3.4 Dual Spaces and Adjoint Operators

Proof (cont.)

Moreover, if aq,--- , a, are numbers in F and

a11(X) + aopa(x) + -+ anpn(x) =0 VxeH,

then foreach 1 <j<n
0= arpi(e)) + azpa(e)) + -+ + anpn(e)) = Z ol = o
Therefore, {©1, 92, -+ ,@n} is a linearly independent set.

Finally, by the fact that x = ) (ek, x) e for all x € H, we find that
k=1
for fe H*,

(x)zf(é](ek,@ek):;]f(ek)@k(x) VxeH.

This shows that {¢1, @2, ,¢n} is a basis of H*; thus dim(H*) =
n. (]
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Theorem (Riesz Representation)

Let (H,<{-,-)) be a Hilbert space. Then every L € H* corresponds
to a unique y € H such that L(x) = (y, x) for all x e H. In other
words, there exists a bijection ¢ : H* — H such that

L(x) = {p(L), x) VxeH.

Moreover, |¢(L)| = ||L||l3mr) for all L e H*.
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Theorem (Riesz Representation)

Let (H,<{-,-)) be a Hilbert space. Then every L € H* corresponds
to a unique y € H such that L(x) = (y, x) for all x e H. In other
words, there exists a bijection ¢ : H* — H such that

L(x) = {p(L), x) VxeH.
o) = |Llp@p) for all L e H*.
W.L.O.G., we assume that L is not the zero map.

Let N be the null space of L; that is, N= L='({0}). Then N, the

orthogonal complement of N, has a non-zero element z with |[z| = 1
(details required).

Moreover,

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.4 Dual Spaces and Adjoint Operators

Theorem (Riesz Representation)

Let (H,<{-,-)) be a Hilbert space. Then every L € H* corresponds
to a unique y € H such that L(x) = (y, x) for all x e H. In other
words, there exists a bijection ¢ : H* — H such that

L(x) = {p(L), x) VxeH.
o) = |Llp@p) for all L e H*.
W.L.O.G., we assume that L is not the zero map.

Let N be the null space of L; that is, N = L='({0}). Then N, the
orthogonal complement of N, has a non-zero element z with |[z| = 1

(details required). Such z verifies the identity that

L(L(x)z— L(z)x) = L(x)L(z) — L(z)L(x) =0 VxeH. o

= = - =

Moreover,
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Proof (cont.)
Therefore, the vector L(x)z— L(z)x € N for all x € H; thus for each
xe H,
0=(z,L(x)z - L(2)x) = LX)|2|* - L(2){z, %)
= L(x) = L(2){z, )

so that letting y = L(2)z, we have
L(x) =y, x) VxeH.
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§3.4 Dual Spaces and Adjoint Operators

Proof (cont.)
Therefore, the vector L(x)z— L(z)x € N for all x € H; thus for each
xe H,
0=(z,L(x)z - L(2)x) = LX)|2|* - L(2){z, %)
= L(x) = L(2){z, )

so that letting y = L(2)z, we have
L(x) =y, x) VxeH.

Suppose that y;,y, € H satisfy L(x) = (y;,x) = {yy,x) for all

x € H. Then
Y1 =y, %=0 VxeH.
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Proof (cont.)
Therefore, the vector L(x)z— L(z)x € N for all x € H; thus for each
xe H,
0=(z,L(x)z - L(2)x) = LX)|2|* - L(2){z, %)
= L(x) = L(2){z, )

so that letting y = L(2)z, we have
L(x) =y, x) VxeH.

Suppose that y;,y, € H satisfy L(x) = (y;,x) = {yy,x) for all

x € H. Then
Y1 =y, %=0 VxeH.

In particular, letting x = y; — y, shows that |y; — y,| = 0; thus
Yi = Yo

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
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Proof (cont.)
Therefore, the vector L(x)z— L(z)x € N for all x € H; thus for each
xe H,
0=(z,L(x)z - L(2)x) = LX)|2|* - L(2){z, %)
= L(x) = L(2){z, )

so that letting y = L(2)z, we have
L(x) =y, x) VxeH.

Suppose that y;,y, € H satisfy L(x) = (y;,x) = {yy,x) for all

x € H. Then
Y1 =y, %=0 VxeH.

In particular, letting x = y; — y, shows that |y; — y,| = 0; thus
¥, = ¥5. Therefore, each L € H* corresponds to a unique y € H

satisfying L(x) = (y, x) for all xe H. o
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Proof (cont.)
Finally, let ¢ : H* — H denote the map satisfying
L(x) = {p(L), x) VxeH.

Using the identity that |y|| = sup <y, x)| for all y € H,
Ixl=1

le(L)] = sup [Kp(L), 0| = sup |LC)| = Ll - 5

Ix|=1 Ix|=1

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.4 Dual Spaces and Adjoint Operators

Proof (cont.)
Finally, let ¢ : H* — H denote the map satisfying
L(x) = {p(L), x) VxeH.

Using the identity that |y|| = sup <y, x)| for all y € H,
Ixl=1

le(L)] = sup [Kp(L), 0| = sup |LC)| = Ll - 5

Ix]=1 Ix=1

v

Remark: Let (H,{-,-)) be a Hilbert space, and ¢ be the map given
in the Riesz Representation Theorem. Define

(L, Loy, = {p(L1), o(L2)) Vi, Ly e H".

Then (H*,(:,-).,) is a Hilbert space, and | - [g(mr) is the norm
induced by the inner product above. The operator norm | - | g r)
sometimes is denoted by || - || .
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Let (V,{-,-),) and (W,{-,-),) be Hilbert spaces over a common
scalar field F, where F =R or C, and A€ B(V,W). Note that the
boundedness of A implies that

|Av]y, < [Alzwwlv]y <o  VveV.
For a given we W, define L : V — T by

L(v) = (w, AV),,.
Then L € V'’ (the algebraic dual space of W)
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Let (V,{-,-),) and (W,{-,-),) be Hilbert spaces over a common
scalar field F, where F =R or C, and A€ B(V,W). Note that the
boundedness of A implies that

|Av]y, < [Alzwwlv]y <o  VveV.

For a given we W, define L : V — F by
L(v) = (w, Avy,, .
Then L € V'’ (the algebraic dual space of W) and the Cauchy-
Schwarz inequality implies that
ILW)| < [wly, [Av]y, < Iwly, [Alswwlv],

so that
sup |L(v)| < ||Algw,w)lwl, < .
[v]y=1

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.4 Dual Spaces and Adjoint Operators

Let (V,{-,-),) and (W,{-,-),) be Hilbert spaces over a common
scalar field F, where F =R or C, and A€ B(V,W). Note that the
boundedness of A implies that

|Av]y, < [Alzwwlv]y <o  VveV.

For a given we W, define L : V — F by
L(v) = (w, Avy,, .
Then L € V'’ (the algebraic dual space of W) and the Cauchy-
Schwarz inequality implies that
ILW)| < [wly, [Av]y, < Iwly, [Alswwlv],

so that

H sHup1 ’L(V)’ < HAHB(V,W)HWHW < .
vl,=

Therefore, L € V* (the continuous dual space of W).

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.4 Dual Spaces and Adjoint Operators

By the Riesz representation theorem, there exists a unique vector
u eV such that

L(v) =<u, v, VveV.
The map w — u is denoted by A* (so A* : W — V), and A* is
called the adjoint operator of A.
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By the Riesz representation theorem, there exists a unique vector

u eV such that
L(v) =<u, v, VveV.

The map w — u is denoted by A* (so A* : W — V), and A* is
called the adjoint operator of A.
We note that A* satisfies that
(w, Av),, = (A*(w), v), VveV, weW
so that for all veV and wy, wy in W,
(A*(Awn + pws), vy

= (AW + pwg, Av), = A wy, Av)y, + i {ws, Av),,

= X<A*(w1), V>V—|— [L<A*(w2), v>V

= OA*(wy) + pA* (wy), v>V .
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Therefore,
A*(Awy + pws) = MNA* (wy) + pA* (we) Vw, wy eW;
thus A* € L(W, V).
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§3.4 Dual Spaces and Adjoint Operators

Therefore,
A*(Awy + pws) = MNA* (wy) + pA* (we) Vw, wy eW;

thus A* € L(W, V). Moreover,
HA*HB(W,V) = sup sup }<A* w, V>V‘ = sup sup ‘<w,Av>W‘
Iwlw=1|v]v=1 [wlw=1 |v]v=1

= sup sup [(w, Av),| = |Alsww)
Ivlv=1 Jwlw=1

thus A* is indeed bounded.
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§3.4 Dual Spaces and Adjoint Operators

Therefore,
A*(Awy + pws) = MNA* (wy) + pA* (we) Vw, wy eW;
thus A* € L(W, V). Moreover,
|A*|gwyy = sup  sup [(A*w,v),|= sup sup [(w,Av),|
Iwlw=1 |v]v=1 [wlw=1 |v]v=1

= sup sup [(w, Av),| = |Alsww)
Ivlv=1 Jwlw=1

thus A* is indeed bounded.

Definition

Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field IF, where
F=TRorC, and Ae B(V,W). The adjoint operator of A, denoted
by A*, is the unique element in B(W,V) satisfying that

(w, Av),, = (A*w, v), VveV, weW.
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Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field IF, where
F=RorC, and Aec B(V,W). By the property of inner product,

(Av,wy,, = (w, Av),, = (A*w, v), = (v, A*w), YveV,weW.
Therefore, the adjoint operator A* of A satisfies

w, Av)., = (A*w, v), ,(Av,w), = (v, A*w), YveV, weW. (2
W \% W \%
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§3.4 Dual Spaces and Adjoint Operators

Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field IF, where
F=RorC, and Aec B(V,W). By the property of inner product,

(Av,wy,, = (w, Av),, = (A*w, v), = (v, A*w), YveV,weW.
Therefore, the adjoint operator A* of A satisfies
(w, Av),, = (A*w, vy, ,(Av,w), = (v, A*w), YveV,weW. (2)

PROPOSITION
Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field F, where
F=RorC, and Ae B(V,W). Then (A*)* = A.
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§3.4 Dual Spaces and Adjoint Operators

Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field IF, where
F=RorC, and Aec B(V,W). By the property of inner product,

(Av,wy,, = (w, Av),, = (A*w, v), = (v, A*w), YveV,weW.
Therefore, the adjoint operator A* of A satisfies

(w, Av),, = (A*w, vy, ,(Av,w), = (v, A*w), YveV,weW. (2)

PROPOSITION
Let (V,{-,-)y) and (W, {-,-),,) be Hilbert spaces over field F, where

F=RorC, and Ae B(V,W). Then (A*)* = A.

4

Let veV be given. Then if we W, using (2) we find that
<AV7 W>W = <V7 A* W>V = <(A*)*V7 W>W 0
Therefore, Av = (A*)*v for all ve H; thus A = (A*)*. o
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§3.4 Dual Spaces and Adjoint Operators

Let (V,{,-),) and (W, (., -),,) be finite dimensional inner product
spaces over C, B = {vi,---,v,} and B = {wy,--- ,Wn} be or-
thonormal basis of V and W, respectively, and L € L(V; W).
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§3.4 Dual Spaces and Adjoint Operators

Let (V,{,-),) and (W, (., -),,) be finite dimensional inner product
spaces over C, B = {vi,---,v,} and B = {wy,--- ,Wn} be or-
thonormal basis of V and W, respectively, and L € £(V;W). Then
the (i,j)-entry of [L*]B,E
= Wvils, [L*]5 51wl )., = <vii L*wjp, = (Lviy Wy = (W Lvip
= the complex conjugate of the (j, i)-entry of [L]z .
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§3.4 Dual Spaces and Adjoint Operators

Let (V,{,-),) and (W, (., -),,) be finite dimensional inner product
spaces over C, B = {vi,---,v,} and B = {wy,--- ,Wn} be or-
thonormal basis of V and W, respectively, and L € £(V;W). Then

the (i, j)-entry of [L*]; &
= <[Vf}137 [L*]g,g[wj]g%n = <Vf7 L*Wj>v = <va7 Wj>w = <Wj= LV,->
= the complex conjugate of the (j, i)-entry of [L]z .

This observation motivates the following

Definition (Conjugate transpose of matrices)

Let A = [aj]mxn be an m x n complex matrix. The conjugate
transpose of A, denoted by AH A% o AT (the last one is often
used in quantum mechanics), is an n x m matrix [bjj|,xm given by

Ching-hsiao Cheng
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§3.4 Dual Spaces and Adjoint Operators

Remark: For real matrices, the conjugate transpose is just the trans-
pose.
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§3.4 Dual Spaces and Adjoint Operators

Remark: For real matrices, the conjugate transpose is just the trans-
pose.

Let (V,{-,-),) and (W,{-,->,) be finite dimensional inner product

spaces over C, B and B be orthonormal basis of V.and W, respec-

tively. If Le L(V; W), then [L*], 5= [L]EB'

A
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§3.4 Dual Spaces and Adjoint Operators

Remark: For real matrices, the conjugate transpose is just the trans-
pose.

Let (V,{-,-),) and (W,{-,->,) be finite dimensional inner product

spaces over C, B and B be orthonormal basis of V.and W, respec-

tively. If Le L(V; W), then [L*], 5= [L]EB'

Definition

Let A = [aj] be a square matrix.
@ A s said to be Hermitian if A= AT,
Q A s said to be skew Hermitian if AT = —A.
© A is said to be normal if AAT = ATA.
Q A s said to be unitary if A=' = AT (explained in §3.5).
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§3.5 Unitary Operators and Unitary Matrices

§3.5.1 Unitary operators
Let (H,(-,-)) be a Hilbert space, and U € B(H).
@ U is said to be self-adjoint if U* = U.

© U is said to be unitary if UU* = U*U = Id, where Id denotes
the identity map on H.

The collection of self-adjoint operators on H is denoted by B, (H),
and the collection of unitary operators on H is denoted by U(H).
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§3.5 Unitary Operators and Unitary Matrices

§3.5.1 Unitary operators
Let (H,(-,-)) be a Hilbert space, and U € B(H).
@ U is said to be self-adjoint if U* = U.

© U is said to be unitary if UU* = U*U = Id, where Id denotes
the identity map on H.

The collection of self-adjoint operators on H is denoted by B, (H),
and the collection of unitary operators on H is denoted by U(H).

Remark: Let (H,{-,-)) be a Hilbert space over I, and U € B(H).
Q If F = R, then U satisfying UU* = U*U = Id is often called
orthogonal instead of unitary. Therefore, when the term “uni-
tary” is used, we often assume that IF = C.
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§3.5 Unitary Operators and Unitary Matrices

§3.5.1 Unitary operators
Let (H,(-,-)) be a Hilbert space, and U € B(H).
@ U is said to be self-adjoint if U* = U.

© U is said to be unitary if UU* = U*U = Id, where Id denotes
the identity map on H.

The collection of self-adjoint operators on H is denoted by B, (H),
and the collection of unitary operators on H is denoted by U(H).

Remark: Let (H,{-,-)) be a Hilbert space over I, and U € B(H).
Q If F = R, then U satisfying UU* = U*U = Id is often called
orthogonal instead of unitary. Therefore, when the term “uni-
tary” is used, we often assume that IF = C.

@ If U is unitary, then U* is also unitary.
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§3.5 Unitary Operators and Unitary Matrices

Let (H,{:,-)) be a Hilbert space over field C, and U € B(H). The

following three statements are equivalent.

@ U is unitary.
@ U is surjective and |Ux| = ||x| for all x € H.
© U is surjective and (Ux, Uy) = (x,y) for all x,y € H.
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§3.5 Unitary Operators and Unitary Matrices

Let (H,{:,-)) be a Hilbert space over field C, and U € B(H). The

following three statements are equivalent.

@ U is unitary.

@ U is surjective and |Ux| = ||x| for all x € H.

© U is surjective and (Ux, Uy) = (x,y) for all x,y € H.
@D = @: Let ze€ H be given. Then y = U*z € H satisfies Uy = z.

This implies that U is surjective. Moreover, if x € H is given,
then

x| = {x, ) = (x, UUx) = (Ux, Ux) = | Ux||*;

thus |Ux| = | x| for all xe H. o
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§3.5 Unitary Operators and Unitary Matrices

Proof (cont.)
@ = @: Let x,ye H. Then
[Ux+ y)|? = (U(x +y), Ux+ y))
= | Ux|* + {Ux, Uy) + Uy, Ux) + | Uy|?
= | Ux[? + 2Re({Ux, Uy)) + | Uy|?,
Ix+yI? =[x + 3 + <y, %0 + |yl
= [x[* + 2Re(<{x, ) + y?,
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§3.5 Unitary Operators and Unitary Matrices

Proof (cont.)
@ = @: Let x,ye H. Then
[Ux+ y)|? = (U(x +y), Ux+ y))
= | Ux|* + {Ux, Uy) + Uy, Ux) + | Uy|?
= | Ux[? + 2Re({Ux, Uy)) + | Uy|?,
Ix+yI? =[x + 3 + <y, %0 + |yl
= [x[* + 2Re(<{x, ) + y?,

and
[Ux+ iy)[? = {U(x + iy), Ulx + iy))
= | Ux|* + i{Ux, Uy) — i{Uy, Ux) + | Uy
= [ Ux|? — 2Im(CUx, Uy)) + | Uy|?,
[x 4+ iy]? = Ix]* +i<x y) — i<y, %) + ]
= [x[?* = 2Im({x, y)) + [y[* - 0
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§3.5 Unitary Operators and Unitary Matrices

Proof (cont.)

Since |Ux|| = | x| for all x € H, we have

Re((Ux, Uy)) = Re((x,¥)),
Im((Ux, Uy)) = Im((x, y)) -
Therefore, (Ux, Uy) = (x, y) for all x,y e H.
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§3.5 Unitary Operators and Unitary Matrices

Proof (cont.)

Since |Ux|| = | x| for all x € H, we have

Re((Ux, Uy)) = Re((x,y)) ,
Im(CUx, Uy)) = Im((x, y)) -
Therefore, (Ux, Uy) = (x, y) for all x,y e H.
® = @D: Let xe H be given. Then
(U*Ux,y) = (Ux, Uy) =<{x,y) ~ VyeH;
thus U*Ux = x. This implies that U*U = Id on H.
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§3.5 Unitary Operators and Unitary Matrices

Proof (cont.)

Since |Ux|| = | x| for all x € H, we have

Re((Ux, Uy)) = Re({x, y)),

Im(CUx, Uy)) = Im((x, y)) -
Therefore, (Ux, Uy) = (x, y) for all x,y e H.

® = @D: Let xe H be given. Then
(U*Ux, yy = (Ux, Uy) = (x,yy VyeH;

thus U*Ux = x. This implies that U*U = Id on H.
On the other hand, since U is surjective, for each y € H there
exists x € H such that Ux = y. Using U*U = Id, this x must be

U*y, thus UU*y = y for all y € H. This shows that UU* = Id
on H; thus U is unitary. E
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§3.5 Unitary Operators and Unitary Matrices

Let (H,{(-,-)) be a Hilbert space over field C. If U € U(H), then
Ul =1.

V.
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§3.5 Unitary Operators and Unitary Matrices

Let (H,{(-,-)) be a Hilbert space over field C. If U € U(H), then
Ul =1.

.

Definition
Let (X,| - |) be a Banach space, and T € B(X). The spectrum of
T, denoted by o(T), is the collection of all A € C for which the

operator T — Ald is not invertible. In other words,

o(T) = {A e C|(T— Ald) is not bijective} .

A\
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§3.5 Unitary Operators and Unitary Matrices

Let (H,{(-,-)) be a Hilbert space over field C. If U € U(H), then
Ul =1.

.

Definition
Let (X,| - |) be a Banach space, and T € B(X). The spectrum of
T, denoted by o(T), is the collection of all A € C for which the

operator T — Ald is not invertible. In other words,

o(T) = {A e C|(T— Ald) is not bijective} .

A number A\ € C is called an eigenvalue of T if T — Ald is not

one-to-one. The collection of all eigenvalues of T is called the point

spectrum of T and is denoted by o,(T).

v
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§3.5 Unitary Operators and Unitary Matrices

§3.5.2 Unitary matrices

Definition
A unitary matrix A is the matrix representation of some unitary map

U : H — H, where H is a finite dimensional inner product space

over C, relative to an orthonormal basis of H.
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§3.5 Unitary Operators and Unitary Matrices

§3.5.2 Unitary matrices

Definition

A unitary matrix A is the matrix representation of some unitary map
U : H — H, where H is a finite dimensional inner product space

over C, relative to an orthonormal basis of H.

By the definition of unitary maps, the facts that

[TS]B3,31 = [T]537B2 [5}32731 and [L*]B,E = [L]%B

)

provide an alternative definition of unitary matrices:

Definition (Alternative Definition of Unitary Matrices)

A square matrix A is said to be unitary if AAT = ATA = 1. The

collection of all n x n unitary matrices is denoted by U(n).
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§3.5 Unitary Operators and Unitary Matrices

If Ae U(n), then A=' = AT and |det(A)| = 1.
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§3.5 Unitary Operators and Unitary Matrices

If Ae U(n), then A=' = AT and |det(A)| = 1.

Definition
The special unitary group of degree n, denoted by SU(n), is the

collection of n x n unitary matrices with determinant 1. An element

in SU(n) is called a special unitary matrix.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.5 Unitary Operators and Unitary Matrices

If Ae U(n), then A=' = AT and |det(A)| = 1.

Definition

The special unitary group of degree n, denoted by SU(n), is the
collection of n x n unitary matrices with determinant 1. An element

in SU(n) is called a special unitary matrix.

Definition (Walsh-Hadamard Matrix)
For m € N U {0}, the Walsh-Hadamard matrix Hp, is a 2™ x 2™

matrix defined recursively by
QO Ho=1,

eHm:

L [ Hm—l Hm—l
\/5 Hmfl _Hmfl

} for all me N.
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§3.5 Unitary Operators and Unitary Matrices

Remark:

© We note that H,, is symmetric and orthogonal /unitary for all
m € N (which can be proved by induction).
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§3.5 Unitary Operators and Unitary Matrices

Remark:

© We note that H,, is symmetric and orthogonal /unitary for all
m € N (which can be proved by induction).

@ The original definition of the Hadamard matrix (of order 2™),
again denoted by H,,, is a 2™ x 2™ matrix defined recursively

by
Hm—l Hm—l

@ Hy=1; ® H,, = ", —H, for all me N.

However, in quantum computing we usually only consider uni-
tary matrices, so the factor 1/4/2 is to normalized the original
Hadamard matrices so that the norm of each colum (and also
each row) all become 1. Therefore, the Hadamard matrices
given in the definition last page is sometimes called the nor-
malized Hadamard matrices.
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§3.5 Unitary Operators and Unitary Matrices

© Let the (k, ¢)-entry of H, be denoted by hy; that is, H, =
[hke)1<ke<2m. Then

hie = 2-3(~1) k"D =D

where the bitwise dot product e of two numbers k and / is
given by

kel = ijgj: kif1 + koly + - - + kbl m
=1
if k= (klkz s km)Q and / = (Elﬁg < 'fm)g.
In matlab®, the bitwise dot product of x and y can be computed

by
x ey = de2bi(x, n) * de2bi(y, n)’

if both x and y can be expressed as n bits binary numbers.
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§3.5 Unitary Operators and Unitary Matrices

Exercise: For matrices A = [ay] and B = [by] of the same size
m x n, define the Hadamard product of A and B, denoted by A® B,
as an m x n matrix whose (k, £)-entry is give by axsbys; that is,

C=A0B, C=lcul, cw = akbu.

In matlab®, the Hadamard product of A and B can be computed
by A® B = A .« B. In the following, we will always use .x to
denote the Hadamard product.
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§3.5 Unitary Operators and Unitary Matrices

Let H, be the unnormalized Hadamard matrix whose (k, £)-entry is
given by (—1)(<=D*(*=1) 'and r; be the (j+ 1)-th row of H,,. Define
@ :{0,1}" — {ro,r,- -+ ,ren_1} by

o(t,d2, ++ 5dn) =1 if j=(j1j2-Jjn)2-
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§3.5 Unitary Operators and Unitary Matrices

Let H, be the unnormalized Hadamard matrix whose (k, £)-entry is
given by (—1)(<=D*(*=1) 'and r; be the (j+ 1)-th row of H,,. Define
@ :{0,1}" > {ro,r,- -+ ,ren_1} by
U J2, -+ dn) = 0 iF j= (juj2---Jn)2-
Show that ¢ : ({0,1}",®) — ({ro,r, -+ ,rn_1}, =) is a group
isomorphism, where @ is the element-wise addition in Zs; that is,
(le"' ;Xn)C‘D(YI;' t 7}/n) - (Xl @YL 7Xn@}/n) °

In other words, show that ¢ : {0,1}" — {ry, r1, -, ren_1} defined

above is a bijection and

(p((kl,--' ,k,,)@(£1,~- ,E,,)) =rg .x K
for all k= (kle s k,,)Q and ¢ = (£1€2 a 'ﬁn)g.
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§3.6 Tensor Products

Recall that for ag, a1, Bo, B1 satisfying |ao|?+|a1]? = |Bo|>+|B1]? =
1, the quantum states |11y = ag|0)+a1|1) and |¢2) = Bo|0)+F1(1)
are the short-hand notation for the two wave functions

| ifx=10), | By ify=10),
wl(x’t){al if x=1), “2(”){31 if y=11),

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.6 Tensor Products

Recall that for ag, a1, Bo, B1 satisfying |ao|?+|a1]? = |Bo|>+|B1]? =
1, the quantum states |11 ) = ap|0)+a1|1) and |1)2) = Bo|0)+51]1)
are the short-hand notation for the two wave functions
| ifx=10), | Bo ify=10),
Yilxt) = { ar if x=|1), =1 5 iy 1),
If two qubits with probability amplitude 1 and vy are manipulated
independently, then the probability amplitude of the combined sys-
tem is 1 (x, y) = ¥1(x)2(y) given by
@By if x=y=10),
) apBi ifx=]0)and y=|1),
Y=Y By if x=[1>and y=[0).
al/Bl IfX:y:|1>7
and the short-hand notation for the wave function above is
‘1/}> = a0ﬁ0|00> I Oéoﬁ1|01> aF O[1ﬁo|10> aF 041,81‘11> .
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§3.6 Tensor Products

In this section, we would like design a proper idea of “product” so
that the product of [¢1) and |¢9) is |¢)). This product, called the
tensor product and denoted by ®, satisfies 1)) = |1)1) ® [¢)2).
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§3.6 Tensor Products

In this section, we would like design a proper idea of “product” so
that the product of [¢1) and |¢9) is |¢)). This product, called the
tensor product and denoted by ®, satisfies 1)) = |1)1) ® [¢)2).
Caution: The definition of the tensor product given in the following
is purely mathematics. You do not need to understand this section
fully in order to learn quantum computing; however, we encourage
you to go through this once for it will explain a lot of things that
normal textbooks for quantum computing will not talk about.
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§3.6 Tensor Products

In this section, we would like design a proper idea of “product” so
that the product of [¢1) and |¢9) is |¢)). This product, called the
tensor product and denoted by ®, satisfies 1)) = |1)1) ® [¢)2).

Caution: The definition of the tensor product given in the following
is purely mathematics. You do not need to understand this section
fully in order to learn quantum computing; however, we encourage
you to go through this once for it will explain a lot of things that
normal textbooks for quantum computing will not talk about.

Idea: Recall that we talk about “multi-linearity” of the compu-
tations of the tensor product of quantum states in Chapter 2.
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§3.6 Tensor Products

In this section, we would like design a proper idea of “product” so
that the product of [¢1) and |¢9) is |¢)). This product, called the
tensor product and denoted by ®, satisfies 1)) = |1)1) ® [¢)2).

Caution: The definition of the tensor product given in the following
is purely mathematics. You do not need to understand this section
fully in order to learn quantum computing; however, we encourage
you to go through this once for it will explain a lot of things that
normal textbooks for quantum computing will not talk about.

Idea: Recall that we talk about “multi-linearity” of the compu-
tations of the tensor product of quantum states in Chapter 2. To
make sense of the tensor product of vectors, we need to treat these
vectors as “linear functionals” so that we can treat vi ® - - - ® v,
as an element in £(Vy,--- ,V,;; F).
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§3.6 Tensor Product of Vector Spaces

§3.6.1 Tensor product

Let V be a vector space over a scalar field F. Then V' is also a vector
space over .
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§3.6 Tensor Product of Vector Spaces

§3.6.1 Tensor product
Let V be a vector space over a scalar field F. Then V' is also a vector
space over F. This enables us to consider (V’)’, the algebraic dual

space of V.
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§3.6 Tensor Product of Vector Spaces

§3.6.1 Tensor product

Let V be a vector space over a scalar field F. Then V' is also a vector
space over F. This enables us to consider (V’)’, the algebraic dual
space of V'. In general, (V') = V is not true, but there is an
injection ¢ : V — (V’)’ in the sense that

t(v)(F) = f(v) VfeV'. (3)
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§3.6 Tensor Product of Vector Spaces

§3.6.1 Tensor product

Let V be a vector space over a scalar field F. Then V' is also a vector
space over F. This enables us to consider (V’)’, the algebraic dual
space of V'. In general, (V') = V is not true, but there is an
injection ¢ : V — (V’)’ in the sense that

t(v)(F) = f(v) VfeV'. (3)

The linear embedding ¢ : V — (V’)’ is a natural vector space iso-
morphism provided, again, dim(V) is finite, the proof being evident
as the embedding is a linear and injective map between spaces with
equal finite dimension.
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§3.6 Tensor Product of Vector Spaces

§3.6.1 Tensor product

Let V be a vector space over a scalar field F. Then V' is also a vector
space over F. This enables us to consider (V’)’, the algebraic dual
space of V'. In general, (V') = V is not true, but there is an
injection ¢ : V — (V’)’ in the sense that

t(v)(F) = f(v) VfeV'. (3)

The linear embedding ¢ : V — (V’)’ is a natural vector space iso-
morphism provided, again, dim(V) is finite, the proof being evident
as the embedding is a linear and injective map between spaces with
equal finite dimension.

The embedding (3) permits us to define a vector space V; ® Vo ®
-+ ®V, called the tensor product of vector spaces Vi, Vs, --,V,
with a common field of scalars .
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§3.6 Tensor Product of Vector Spaces

Before proceeding to the definition of the tensor product of vector
spaces, we first look at the tensor product of vectors.

Definition

Let Vq,---,V, be vector spaces over a common scalar field IF, and
v; € V; be given for 1 < j < n. The tensor product vi ® --- ® v, is
a function from V/@® --- @V, to F defined by

(V1®"'®Vn fl? ) vaj )fn<Vn)
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Before proceeding to the definition of the tensor product of vector
spaces, we first look at the tensor product of vectors.

Definition

Let Vq,---,V, be vector spaces over a common scalar field IF, and
v; € V; be given for 1 < j < n. The tensor product vi ® --- ® v, is
a function from V/@® --- @V, to F defined by

(V1®"'®Vn fl? ) vaj ) ""fn<Vn).

v

Warning: The tensor product space Vi ® --- ® V, is NOT the

collection of all vectors of the form v; ® - -- ® v, with v;e V.
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let U,V,W be vector spaces over a common scalar field F, and
uelU, veV and we W. Then

URX VW= (URV)W=u® (v w).
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let U,V,W be vector spaces over a common scalar field F, and
uelU, veV and we W. Then

URX VW= (URV)W=u® (v w).
Proof. ...
Let fe U’, ge V' and he W’. Then
(@ v w)(f, g, h)
= f(u) - g(v) - h(w) = [f(u) - g(v)] - h(w) = (u® v)(f, g) - h(w)
= [(u®v)®w]((fg).h) = [(u® V)@ wW](f g h)

so that uQ VR w = (UR v)@w. The identity UQVR W = UR (VR w)
can be proved in the similar fashion. o
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let Vq, ---, V, be vector spaces over a common scalar field F. For
1<j<n, letveV, forl +#j u,wjeV; and ce F. Then
Vi QVi_1®(cuj+ w) Qv 1®---QVy
=c(V® @V 1QURV1® @ V)
+(V® -V 1QWRQVH1Q- - QVy).
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let Vq, ---, V, be vector spaces over a common scalar field F. For
1<j<n, letveV, forl +#j u,wjeV; and ce F. Then
Vi® Qi1 ®(cj+ W) QVip1® @y
=c(Vi® - V1 QURVH1R - Q)
+(Vi® Q1 QWQVi11 Q@ Vy) . )
(Proof. |
Let f, € V for 1 < ¢ < n be given. Then
(vi®---®vi_ ®(cuj+ W)@V 1 Q@) (i, -+, f)
= f(v) - fia(vio1) - filcwj + wj) - fi1a(vj) - - fo(vi)
= cfi(vi)- 6 1(vj1) - fi(w)) - B2 (v)) - - Fa(Vn)
+h(v1) - B (vier) - fi(wg) - G (v)) - - fa(vin)
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let Vq, ---, V, be vector spaces over a common scalar field F. For
1<j<n, letveV, forl +#j u,wjeV; and ce F. Then
ViR Qi1 ®(cuj+ wj) Qv 1 ®- @ v,
=c(Vi® - V1 QURVH1R - Q)
+(Vi® Q1 QWQVi11 Q@ Vy) . )
(Proof. ...
Let f, € V for 1 < ¢ < n be given. Then
(M®- - @V 1®(ctj+ W)@V 1 ® - ®vy) (fi, -, fr)
= f(v) - fia(vio1) - filcwj + wj) - fi1a(vj) - - fo(vi)
=c(V® - QV1QURV1®Q - ®Vy)(Fi, -, fn)
+(V® AV 1 QWRVi1®- - ®V,)(f1, -, fp)
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let Vq, ---, V, be vector spaces over a common scalar field F. For
1<j<n, letveV, forl +#j u,wjeV; and ce F. Then
ViR Qi1 ®(cuj+ wj) Qv 1 ®- @ v,
=c(Vi® - V1 QURVH1R - Q)
+(Vi® Q1 QWQVi11 Q@ Vy) . )
(Proof. ...
Let f, € V for 1 < ¢ < n be given. Then
(vi® - Qvi1Q(cuj+ w)Qvis1Q - Qvy) (Fi, -+, fy)
= f(v) - fia(vio1) - filcwj + wj) - fi1a(vj) - - fo(vi)
=c(V® - QV1QURV1®Q - ®Vy)(Fi, -, fn)
+(V® AV 1 QWRVi1®- - ®V,)(f1, -, fp)

which establishes the proposition. o
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§3.6 Tensor Product of Vector Spaces

PROPOSITION

Let V,---,V, be vector spaces over a common scalar field F, and
vie V;begivenforl <j< n. Thenvi®---®v, e L(V/,--- V. F).

n

v
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let V,---,V, be vector spaces over a common scalar field F, and
vie V;begivenforl <j< n. Thenvi®---®v, e L(V/,--- V. F).

Proof ...
Let 1 <j<n, feV,forl+#j g hjeVJf and ce F. Then
(V1®"'®Vn)(f1"" 7fj—1’cgj+hj76'+1a"' 7fn)
= fi(v) - fi1(vjm1) - [cgi(v) + hi(v)] - (Vi) - - Fa(Vi)
= cfi(va) - fia(vi1) - gi(v) - fra (V1) -~ - fa(va)
+h(ve) - fio1(vim1) - hi(v) - fra (V1) -+ fa(vi)
=@ - @) (A, Fi1,g, fis1, 5 Fn)
+(n®: - ®@wvy)(f,- -, fio1, hyy fir1,- -+, )

which shows that v; ® - - - ® v, satisfies the multi-linearity. o
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§3.6 Tensor Product of Vector Spaces

The fact that £(V/,--- | V/;F) is a vector space over F motivates
the definition of the tensor product of vector spaces.

Definition

Let Vi, ---, V, be vector spaces over a common scalar field
F. The tensor product space Vi ® -+ ® V, is the subspace of
L(V/,--- V) F) spanned by all finite linear combinations of ten-
sor products vi ® --- ® v,, where v; € V; for 1 < j < n and
Vi®: - Qvp,e LV, -, VI F) is given by

n

J=1
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let U,V, W be vector spaces over a common scalar field F. Then

UEVOW=(UV)QW=U® (VQW).

.

The proposition follows from the previous proposition that
uRQvRW = (URV)Qw=u®(v®w) YuelU,veV,weW

and the definition of tensor product spaces. o

€
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let U,V, W be vector spaces over a common scalar field F. Then

UEVOW=(UV)QW=U® (VQW).

.

The proposition follows from the previous proposition that
uRQvRW = (URV)Qw=u®(v®w) YuelU,veV,weW

and the definition of tensor product spaces. o |
PROPOSITION
Let Vq,---,V, be finite-dimensional vector spaces over a common

scalar field F. Then V; ® --- ®V, is finite-dimensional and

dim (Vi ® .- ®@ V) = [ [ dim(V)) = dim(Vy) - -- - - dim(V,) .
j=1
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§3.6 Tensor Product of Vector Spaces

By previous proposition it suffices to show the case n = 2.

Let {e1,e2,- - ,e,} and {€1,€2, -+ ,€n} be basis of V; and Vs,
respectively. For x € V; and y € Vo, write x = Z xxex and y =
Z yi€s. Then
xXQy= (Z Xkek) ® (Z eee> =D D xwye(ek ®&).
k=1 =1 k=10=1
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§3.6 Tensor Product of Vector Spaces

By previous proposition it suffices to show the case n = 2.

Let {e1,e2,- - ,e,} and {€1,€2, -+ ,€n} be basis of V; and Vs,
respectively. For x € V; and y € Vo, write x = Z xxex and y =
Z ye€p. Then
XQy= (Z Xkek) ® (Z )/eEe) =) Z xkye(ex ® €) .
k=1 /=1 k=1 /¢=1

Since vectors in V; ® V5 can be expressed as a linear combination
of vectors of the form x® y, we find that every vectors in V; ® Vo
can be expressed as a linear combination of vectors from the set
Bz{ek®54|l <k<nl</i< m}.
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§3.6 Tensor Product of Vector Spaces

By previous proposition it suffices to show the case n = 2.

Let {e1,e2,- - ,e,} and {€1,€2, -+ ,€n} be basis of V; and Vs,
respectively. For x € V; and y € Vo, write x = Z xxex and y =
Z ye€p. Then
XQy= (Z Xkek) ® (Z )/eEe) =) Z xkye(ex ® €) .
k=1 /=1 k=1 /¢=1

Since vectors in V; ® V5 can be expressed as a linear combination
of vectors of the form x® y, we find that every vectors in V; ® Vo
can be expressed as a linear combination of vectors from the set
B = {ek®64 | 1<k<nl</i< m}. Since #B = nm, it suffices
to show that B is a linearly independent set. =
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§3.6 Tensor Product of Vector Spaces

Proof (cont.)

Let {Ckg}lgkgn,lgfgm be a collection of scalars in F such that

D) ek ®e€ =0 (the zero vector in Vi ® Va).

k=1/¢=1
Let fi € V/ and gj € Vj satisfy
filex) =6 and  gj(€) =dy,

where §.. are the Kronecker delta.
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§3.6 Tensor Product of Vector Spaces

Proof (cont.)

Let {Ckg}lgkgn,lgfgm be a collection of scalars in F such that

D) ek ®e€ =0 (the zero vector in Vi ® Va).

k=1/¢=1
Let fi € V/ and gj € Vj satisfy
filex) =0 and  gj(€) = dj,

where §.. are the Kronecker delta. Then for each 1 < i < n and
I<j<m
OZ(ZZCMGM@E/) fi, gj) = ZZ CkeOikOje = Cij -
1¢=1 —1 f—
This implies that B is a linearly independent set; thus dim(V;®V,) =
#B = nm. =
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§3.6 Tensor Product of Vector Spaces

Next we consider the (matrix/coordinate) representation of tensor

product of vectors. We start with the following

Let U and V be vector spaces over a common scalar field F, and
By = {uy, uz, u3} and By = {v1, va} be basis of U and V.
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§3.6 Tensor Product of Vector Spaces

Next we consider the (matrix/coordinate) representation of tensor

product of vectors. We start with the following

Let U and V be vector spaces over a common scalar field F, and

By = {u1, uz, u3} and By = {v1, va} be basis of U and V. For xe U

and y e V, there exist unique xq, x2, x3, y1, ¥2 € I such that
X=xu; + xoup + x3u3 and y=yivi + yovo,.

By the properties of tensor product of vectors,

& 2
x®@y = > xyju®v)

=1 j=1
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§3.6 Tensor Product of Vector Spaces

Next we consider the (matrix/coordinate) representation of tensor
product of vectors. We start with the following

Let U and V be vector spaces over a common scalar field F, and
By = {u1, uz, u3} and By = {v1, va} be basis of U and V. For xe U
and y e V, there exist unique xq, x2, x3, y1, ¥2 € I such that
X=Xt + xoUuy +x3u3 and y=yivi + yavo,.
By the properties of tensor product of vectors,
302
xQy =2 > xy(ui®v)
i=1j=1
so that the coordinate of x® y w.r.t. the ordered basis B = {u; ®
VI, U @ Vo, b @ Vi, th ® Vo, U3 @ v, u3 @ va } of UV is given by

(X1y1, X1Y2, X2Y1, X2)/2, X3Y1, X3Y/2).

.
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§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X1y1

X1Y2

_[Xen

[X ® y]B B X2Y2
X3Y1

X3Y2
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§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X11 X 1

lez :.y2:

_ x| Y1

[X® y]B - X2Y2 - 1V2 ]
X3Y1 (vi ]

v X3 N

3Y2 Vo
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§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X1Y1
X1Y2
X2Y1
xX2Y2
X3)1
X3Y2

x®yls=

Y1
V2]

Y1
|2 ]

Y1
V2]

X1

= | X2

X3

X1
Yo

X3

Ching-hsiao Cheng
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§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X11 X 1
X1Y2 :)/2: X1
_ | Xen| _ ni| _ yi|_
[X@ y]B _ X2y2 = |* _y2_ = [*2 ® |)’2] - [X]BU ® [y]BV
X3y1 (1] 3
X3Y2 X3 Vo
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§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X11 X 1
X1Y2 :)/2: X1
X2Yy1 i 34l
X = = | x = (x| &® = |X| .
[ @ y]B X2Y2 2 __y2_ 2 L,Q] [ ]BU ® [y]BV
X3y1 (1] 3
X3Y2 X3 Vo

The ordered basis B is called the induced basis of the ordered basis
B[U and Bv.

Ching-hsiao Cheng = D chlcd A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Example (cont.)

Writing the coordinate in terms of a column vector, we have

X11 X 1
X1Y2 :)/2: X1
X2Yy1 i 34l
X = = | x = (x| &® = |X| .
[ @ y]B X2Y2 2 __y2_ 2 L,Q] [ ]BU ® [y]BV
X3y1 (1] 3
X3Y2 X3 Vo

The ordered basis B is called the induced basis of the ordered basis
B[U and Bv.

Remark: For given basis of vector spaces, there are two induced
basis, one for direct sum of spaces and one for tensor product of
spaces. We will abuse the use of the word “induced” but keep in
mind that it refers to one particular type.
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§3.6 Tensor Product of Vector Spaces

The example above motivates the formal/computational definition
of the tensor product of vectors in C™ and C" as follows. Let
X=[x1, - ,xm]L € C™and y = [y1,---,ya]* € C". The “tensor
product” of x and y, denoted by [x® ], is a vector in C™" given by

_X1}/1 1
: X1
X1Yn Yn X1 n
x@yl=| | =] + |=|:|® X ®y]
XmY1 n Xm Yn
Xm |
L XmYn | L Yn] |
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§3.6 Tensor Product of Vector Spaces

The example above motivates the formal/computational definition
of the tensor product of vectors in C™ and C" as follows. Let
X=[x1, - ,xm]L € C™and y = [y1,---,ya]* € C". The “tensor
product” of x and y, denoted by [x® ], is a vector in C™" given by

_X1}/1 1
: X1
X1Yn Yn X1 n
x@yl=| : |=|  |=]:|®]|: =KV
XmY1 n Xm Yn
a Xm a
[ XmYn ] L Yn] |

In fact, [x® y|] € C™" is indeed the coordinate of x® y w.r.t. the
induced ordered basis {e; ® €1,61 ® €2, ,€] ® €y, 62 ® €1,€2 ®
’627"' 7e2®’én7"' 7em®’élaem®’é(27”' 7em®6n} Ome®Cn
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§3.6 Tensor Product of Vector Spaces

Suppose that X, Y, Z, W are vector spaces over a common scalar
field F. Then £(X,Z) and L(Y, W) are also vector spaces so that
L(X,Z)® L(Y, W) is a well-defined concept.
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§3.6 Tensor Product of Vector Spaces

Suppose that X, Y, Z, W are vector spaces over a common scalar
field F. Then £(X,Z) and L(Y, W) are also vector spaces so that
L(X,Z)® L(Y,W) is a well-defined concept. In the following, we
talk about an alternative definition of AQ Bif Ae L(X,Z) and
Be L(Y,W).

Definition

Let X, Y, Z, W be vector spaces over a common scalar field F, and
Ae L(X,Z), Be L(Y, W). The tensor product of A and B, denoted
by A® B, is an element in L(X® Y, Z® W) satisfying

(A® B)(x® y) = (Ax) ® (By) VxeXand yeY.
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§3.6 Tensor Product of Vector Spaces

Suppose that X, Y, Z, W are vector spaces over a common scalar
field F. Then £(X,Z) and L(Y, W) are also vector spaces so that
L(X,Z)® L(Y,W) is a well-defined concept. In the following, we
talk about an alternative definition of AQ Bif Ae L(X,Z) and
Be L(Y,W).

Definition

Let X, Y, Z, W be vector spaces over a common scalar field F, and
Ae L(X,Z), Be L(Y, W). The tensor product of A and B, denoted

by A® B, is an element in L(X® Y, Z® W) satisfying
(A® B)(x®y) = (Ax) ® (By) Vxe Xand ye Y.

Remark: To avoid confusion, instead of treating A®Q B as the tensor
product of A and B one can also treat AQ B as a “new operation”
between A and B (but with the same notation).
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§3.6 Tensor Product of Vector Spaces

PROPOSITION

Let A, B, C be linear maps on vector spaces X, Y, Z (over a common
scalar field F). Then AQ B)® C=A® (B® C).
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§3.6 Tensor Product of Vector Spaces

PROPOSITION

Let A, B, C be linear maps on vector spaces X, Y, Z (over a common
scalar field F). Then AQ B)® C=A® (B® C).

e Matrix representation of tensor product of linear maps
Suppose that X, Y, Z, W are finite dimensional vector spaces over a
common scalar field F, and {x1,- -, x,}, {¥1, -, ¥}, {z1,- -, Zm}
and {wy, -, wy} are basis of X,Y,Z W, respectively.
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§3.6 Tensor Product of Vector Spaces

PROPOSITION
Let A, B, C be linear maps on vector spaces X, Y, Z (over a common
scalar field F). Then AQ B)® C=A® (B® C).

e Matrix representation of tensor product of linear maps
Suppose that X, Y, Z, W are finite dimensional vector spaces over a
common scalar field F, and {x1,- -, x,}, {¥1, -, ¥}, {z1,- -, Zm}
and {wy, - ,wy} are basis of X,Y,Z W, respectively. Let A €
L(X,Z), Be L(Y,W), and the matrix representations of A and B
be [A] = [aj]1<i<m,1<j<n and [B] = [bjjli<ick1<j<t. respectively, so
that

m n

A(cixt + -+ + caxn) Z(

i=1 “r=1

and .

B(diy, + -+ duy,) = Z (i )

aircr) Zj
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§3.6 Tensor Product of Vector Spaces

Then
(A® B)((c1x1+ -+ + coXn) @ (dhy + -+ + diyy))
= [A(Clxl G ocegF Can)] ® [B(dl}ﬁ +o d/?yk’)]

> [Zm; (; aircr> z,-] ® sz; (é bjsds) MIJ':|
ii (22 airbjscr s)Z,® w;.

r=1s=1

Since the induced ordered basis of X® Y and Z&® W are given
respectively by

Bxgy ={xi®y1, ;X1 @Y, X2 @y, , X2 @Yy,
X @Y1, X ®Yyf

BZ®W2{21®W1,"' yZL W, Zo @ wy, -, Zo Q Wy, -,
Zn@wWi, L 2 @ Wik,
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§3.6 Tensor Product of Vector Spaces

the matrix representation of A® B satisfies

[A® B]

for all ¢c1,---

c1dp

ady
codq

codp
Cndl

Cn dﬂ

nfx1

Ching-hsiao Cheng

27:1 Zﬁ:l alrbkscrds
Z?:l Zi:l aQrblsCrds

27:1 Zizl agrbyscrds
Z::l Zi:l aml‘blscrds

Z::l Zﬁ:l aml’bkscrds

,Chand dy,--- ,dpin .

#cf A # MA5501*
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§3.6 Tensor Product of Vector Spaces

Let c1 = dj =1, where 1 < j </, and ¢, = ds = 0 for other r, s, we
find that the j-th column of [A® B] is given by

_ - by
a1 by .1J
: a1l :
alllbkj :bkj:
az1 by bllj al by
. : ast | .
A®BIG)= |, | = - |e
21 Dk;j | by | 5 b
. ml kj
amiby; ' by
amibkj Aml b
- - L AR
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§3.6 Tensor Product of Vector Spaces

so that the first £ columns of [A® B] are given by

aul5] a1
A®BI(:1: () = 321:[3] = | : |®[B]
aml[B] ami
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§3.6 Tensor Product of Vector Spaces

Let co = dj =1, where 1 < j </, and ¢, = ds = 0 for other r, s, we
find that the (¢ + j)-th column of [A® B] is given by

~ = b .
ai2by; ,1J
: ai2 E
alg.bkj :bkj:
#2217 b.l ’ 12 byj
o a .
A@BIG e+ =| 5 (=1 =] ]®]:
22 D j | by | s by
. m j
amab; .blj
amQIbkj Am2 b
- - L ki]
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

so that the (¢ 4 1)-th to 2/-th columns of [A® B] are given by

312[8] ai2
[A® B](:,(+1:20) = 322:[8] = ®[B].
am2[B} am2
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

so that the (¢ 4 1)-th to 2/-th columns of [A® B] are given by

312[8] ai2
[A® B](:,(+1:20) = 322:[8] = ®[B].
am2[B} am2

In general, we can find that the (p — 1)/ + j column of [A® B] by
letting ¢, = d; = 1 and ¢, = ds = 0 for other r, s and obtain that
the matrix representation of A® B is then given by

311[3] 312[3] s al,,[B]
ZET: I Bl AP
aml[B] amg[B] ooo amn[B]
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Let Ae M(m,n) and Be M(k, () The tensor product of A and B,
denoted by A® B, is an (mk) x (nf) matrix given by

anB apB --- a;,B

a1B apB -+ ay,B
A®B= . .

amlB amgB ©oo am,,B

Remark: In matlab®, the tensor product A® B of two matrices A
and B is given by
A® B =kron(A, B).
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§3.6 Tensor Product of Vector Spaces

e Tensor product of Hilbert spaces

Consider a finite number of (complex) Hilbert spaces Hy,--- ,H,
with respective Hermitian scalar products (-, )1, - -+, (-, p.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

e Tensor product of Hilbert spaces

Consider a finite number of (complex) Hilbert spaces Hy,--- ,H,
with respective Hermitian scalar products (-, )1, - - -, (-, ). Relying
upon the above definition, we can first define their algebraic tensor
product Hj ® --- ® H,. This is not a Hilbert space yet.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

e Tensor product of Hilbert spaces

Consider a finite number of (complex) Hilbert spaces Hy,--- ,H,
with respective Hermitian scalar products (-, )1, - - -, (-, ). Relying
upon the above definition, we can first define their algebraic tensor
product H; ® --- ® H,. This is not a Hilbert space yet. However
it is possible (not so easy) to prove that H; ® - - - ® H, admits an
Hermitian scalar product induced by the ones of each H;. This scalar
product ¢, -) is the unique right-linear and left-antilinear extension
of

(@ Qup,vi®---Qvyy =] [y vy if w,vyeH;. (4)
j=1
The (anti)linear extension is necessary because vi ® - - - ® v, is not

the generic element of H; ® - - - ® H,,, the generic element is a finite
linear combination of these elements!
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Definition
The Hilbertian tensor product of (complex) Hilbert spaces
(Hy, (-, 01), -+, (Hp, (-, >n) is the (complex) Hilbert space H; ®

--- ® H, given as the completion of the algebraic tensor product
H; ® --- ® H, with respect to the Hermitian scalar product {-,-)

which uniquely (anti)linearly extends

I ® QU viQ- - Qv =[[u, vy, if wj,veH;. (4)
j=1

V.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Definition
The Hilbertian tensor product of (complex) Hilbert spaces
(Hy, (-, 01), -+, (Hp, (-, >n) is the (complex) Hilbert space H; ®

--- ® H, given as the completion of the algebraic tensor product
H; ® --- ® H, with respect to the Hermitian scalar product {-,-)

which uniquely (anti)linearly extends

I ® QU viQ- - Qv =[[u, vy, if wj,veH;. (4)
j=1

V.

Remark: The Hilbert spaces Hj; in quantum computing are C? for
all 1 < j < n, so the tensor product spaces H; ® - -- ® H,, along
with the norm induced by the inner product defined by (4) is again
a Hilbert space.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

§3.6.2 Correspondence b/w tensor product & quantum circuits
The tensor product of quantum gates represents a unitary trans-
formation when these quantum gates are applied in parallel (at the
same time), while the ordinary product of quantum gates represents
a unitary transformation when these quantum gates are applied se-
quentially. Using the matrix representation of quantum gates, there
is a way to understand the overall effect of all quantum gates applied

in a system.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

§3.6.2 Correspondence b/w tensor product & quantum circuits
The tensor product of quantum gates represents a unitary trans-
formation when these quantum gates are applied in parallel (at the
same time), while the ordinary product of quantum gates represents
a unitary transformation when these quantum gates are applied se-
quentially. Using the matrix representation of quantum gates, there
is a way to understand the overall effect of all quantum gates applied
in a system. For example, the overall unitary transformation given

by the quantum circuit

—H—
—o{2]—

is (12 ® Z)CNOT(H ® 12).
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§3.6 Tensor Product of Vector Spaces

Using the matrix representation

[H@Ig]zl[l 1]@12: 1 [IQ 12:|

V2|1 -1 V2 |Ia Iy
- ) _
= 0 =0
1 1
I - R NG
_ 1 1 ’
5 0 -5 0
1 1
RV R
1 0 0 0
10 Z 0 0 -1 0 0
HQ@Z]_[O 1]®Z_[0 Z]_ 00 1 0
0 0 0 -1

as well as the matrix representation of CNOT, we find that
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

the matrix representation of the overall unitary transformation given
by the quantum circuit can be computed by

1 0 0 0]t oo 0][1/v/2 O 1/4/2 0
0 -1 0 0|01 00 0 1/v2 0 1//2
0 0 1 0off0o0oO0T1|[|1/vV2 0 -1/¥/2 0
0 0 0 —1J[0 0 1 0 0 1/v/2 0 —1/4/2
1 0 0 0 1/[ 0 1/v/2 0
{0 =10 o0 1/4/2 0 1/4/2
o0 1 0 1/v2 0 —1/4/2
0 0 0 1/[ 0 -1/v/2 0

[ 1/4/2 0 1/4/2 0
0 —1/4/2 0 —1/4/2
B 0 1/4/2 0  —1/4/2
—1/v/2 0 1/4/2 0
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

This matrix representation of the overall unitary transform immedi-

ately tells us how to produce the EPR pair %(|00>+ |11)): simply

apply this circuit to the state |10) since [|[10)] = [0 0 1 O}T and

1/4/2 0 1/V2 0 0 1/v/2
0 -1/v/2 0  —1/v2 0| 0
0 1/vV2 0 —1/v2 || 1] 0
~1/¥2 0 1/4/2 0 0 1/v/2
which corresponds to the EPR pair. Therefore,
L —if—r—
= the EPR pair

0 ———z]—

Figure 1: A way to construct the EPR pair
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

§3.6.3 More examples
In the following examples, for an n-qubit system we always use the
ordered basis B, = {[0),[1),[2),--,|2" — 1)}, where, by writting
k in terms of binary number (kiky - - kp)o; that is,

k=2""1k + 2" 2ky 4+ . + 2V k1 + 20k,
the k-th basis vector in B, is |k — 1).
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

§3.6.3 More examples
In the following examples, for an n-qubit system we always use the
ordered basis B, = {[0),[1),[2),--,|2" — 1)}, where, by writting
k in terms of binary number (kiky - - kp)o; that is,

k=2""1k + 2" 2ky 4+ . + 2V k1 + 20k,
the k-th basis vector in B, is |k — 1).

Example (Matrix representation of swap operation)

In an n-qubit system, we use SWAP; ; (here we assume i < j since
SWAP; ; = SWAP;; if i > j) to denote the swap operator that swaps
the value of the i~th and the j-th qubit; that is
SWAP; j|x1)® - ® |xn)
= @ ®Xi-)® X ®[Xit1) @
------ B|Xj-1® ) ®[X+1)® - ® |xp) .
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

We note that SWAP; ; is perfectly defined operator as long as i # j
and /,j < n. On the other hand, the matrix representation for
SWAP; ; is a 2" x 2" matrix which essentially depends on the num-

ber of qubits in a qubit system that SWAP gate acts on.
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

We note that SWAP; ; is perfectly defined operator as long as i # j
and /,j < n. On the other hand, the matrix representation for
SWAP; ; is a 2" x 2" matrix which essentially depends on the num-
ber of qubits in a qubit system that SWAP gate acts on. There-
fore, to denote the matrix representation of SWAP; ; one should use
something like [SWAP; j], to indicate the number n of qubits in the
system. In the following, for simplicity instead of [SWAP,-J-L we
still use SWAP; ; to denote the matrix representation of SWAP; ;
without explicitly indicating (but knowing) the number n of qubits

in the system under consideration.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

We first consider the swap operator on a 2-qubit system, denoted
by SWAP and defined by

SWAP|) ® |y) = [y) ®[x) .
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

We first consider the swap operator on a 2-qubit system, denoted
by SWAP and defined by

SWAP)Q |y) = |y)® |%).
Write |x) = ap|0) + a1|1) and |y) = Bo|0) + S1]|1). Then
1 ®1y) = (a0]0) + c1]1)) & (Bol0) + £1]1))
= a0f0|0)®10) + a0B1[0)® 1) + 18| ®[0) + cu f1[1) ® [1)
= a0fo(0) + aof1[1) + a15o[2) + a151|3)
and
1Y) ® %) = (6ol0) + B1]1)) ® (0|0 + a1 [1))
= apB0|0)®|0) + @150[0)® [1) + cpf1[1)®[0) + c1pa|) ® [1)
= a0fo(0) + a15o[1) + a18o[2) + a151|3)
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

so that
apBo aoBo
(k()ﬁl _ |a1Bo 2 2 __ 2 2 _
SWAP 150 = | aos,s Y ’OLQ‘ aF |041| = ‘Bol aF ‘51‘ =1.
(0%} “3] (11“8 1
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

so that
apBo aoBo
(k()ﬁl _ |a1Bo 2 2 __ 2 2 _
SWAP 150 = | aos,s Y ’OLQ‘ aF |041| = ‘Bol aF ‘51‘ =1.
(0%} “3] (11“8 1

Therefore, the matrix representation of SWAP (relative to the or-

dered basis B3) is a 4 x 4 matrix given by

100 0
o010
SWAP= | . |,
000 1

The quantum circuit symbol for SWAP is
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

Similarly, on a 3-qubit system, there are three swap operators:

SWAP1 1[0 ®|y)®|2) =y Q %) ®|2),

SWAP2 30 ®|y)®|2) =[x ® |2y,

SWAP; 30 Q1)) ®|2) = 2)®|y) ® [x).
Note that

SWAPLQ = SWAP ® 12 and SWAP2’3 = 12 ® SWAP

whose validity can be verifies by the quantum circuits:

‘X1> - N ‘X1> — X ‘X1> ‘X()>
o) —k— T o) —k— P = ) ——
[x3) |x3) I3y —H— |xe) —X—
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

By the result of tensor product of linear maps, the matrix represen-
tations of SWAP; 5 and SWAP; 3 (relative to the ordered basis B3)

can be computed by the two identities
Iy E
Ip 1
SWAP; 5 = SWAP ® I, = I =/ ,
D)
I 1

and

SWAP
SWAP, 3 = I, ® SWAP = [ SWAP} = )
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

To compute the matrix representation of SWAP 3, writing |x) =
ap|0) + aq|1), |yy = Bol0) + B1]1) and |z) = 40|0) + 71|1) we find
that
SWAP 30 ®|y)®|2)=[2® |y ®[x
= a0070[0) + a18070[1) + @0 B170(2) + 1 B170(3)
+aoBorl4) + a180m15) + aofin6) + a1 fin|T)

so that _ ; _ ;
a0 o0 aoBoo
oo Bov1 a1 80%0
aoB170 aoB170
aoBim| _ |aifivo
SWAP1’3 a1fovo|  |a@oBom
o1 Bon a1 o
18170 aofim
_011/31’71_ _alﬂl’}/l_
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

Therefore, the matrix representation of SWAP; 3 (relative to the
ordered basis B3) is given by

SWAP, 5 =

oo ococooR
CoOoOOoOrHOOOOo
coooo=e9
OO OO OOoOOo
(=N eNelelNo Nl o}
SESIENSESESNSEC)
(el eNeNol oo o}
— O OO0 OoOO0oCo
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of swap operation (cont.))

Therefore, the matrix representation of SWAP; 3 (relative to the
ordered basis B3) is given by

SWAP, 5 =

oo ococooR
OO OOOoOO
coooo=e9
OO OO OOoOOo
(=N eNelelNo Nl o}
@ = @ @ @ = =)
[eNeNoN Tl oNoNo)
— O OO0 OoOO0oCo

0 0 0

SWAP; 3 can also be computed using the identities

SWAP; 3 = SWAP; 5 - SWAP, 3 - SWAP, 5.

[x1) — 1)
[x2) — =[x
[x3)> < |X3> S
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Example (Matrix representation of CNOT)

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

The controlled-not gate is a 2-qubit gate defined by

Po®lyy if ) =10),

where X is the NOT gate.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT)

The controlled-not gate is a 2-qubit gate defined by
oy if | =10),
o (Xly)) if o =[1),
where X is the NOT gate. Write [x) = ap|0) + a1|1) and |y) =
B0|0) + B1]|1). Then CNOT maps

(@0|0) 4+ a1]1)) ® (Bo]0) + B1]1))
= apfo|0)®[0) + 2B10) ® 1) + 160[1)®|0) + a1 B1|1) ®[1)

CNOT : [x®|y) — {
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Example (Matrix representation of CNOT)

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

The controlled-not gate is a 2-qubit gate defined by
oy if | =10),
o (Xly)) if o =[1),
where X is the NOT gate. Write [x) = ap|0) + a1|1) and |y) =
B0|0) + B1]|1). Then CNOT maps

(@0|0) 4+ a1]1)) ® (Bo]0) + B1]1))
= apfo|0)®[0) + 2B10) ® 1) + 160[1)®|0) + a1 B1|1) ®[1)

CNOT : [x®|y) — {

to

ao|0)®y) + ar[HH e ([11) @ |y))
= |0 ® (50]0) + B1]1)) + a1[1)® (BolL) + 51]0))
= a0fo|0)®[0) + 2f1]0)® 1) + a1 6o|1)® |1) + Oél_ﬁ1|12® |0_>/
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Example (Matrix representation of CNOT)

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

The controlled-not gate is a 2-qubit gate defined by
oy if | =10),
o (Xly)) if o =[1),
where X is the NOT gate. Write [x) = ap|0) + a1|1) and |y) =
B0|0) + B1]|1). Then CNOT maps

(0]0) + 01 [1)) ® (Bol0) + Bu|1))
= a0f0/0)® [0 + apB1[0)® |1) + a1 Bo|1)®|0) + a1 f1| 1) ® 1)

CNOT : [x®|y) — {

to

0|0y +allhye(|1) @ |y)
= |0 ® (50]0) + B1]1)) + a1[1)® (BolL) + 51]0))
= apfo/|0)®[0) + @p51(0)®[1) + a1 6o|1)® |1) + 041_51\12@3 |0_>/
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Example (Matrix representation of CNOT)

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

The controlled-not gate is a 2-qubit gate defined by
oy if | =10),
o (Xly)) if o =[1),
where X is the NOT gate. Write [x) = ap|0) + a1|1) and |y) =
B0|0) + B1]|1). Then CNOT maps

(20]0) + 1 |1)) ® (Bol0) + B11))
=apfy 10) H+aofr 1) 4+a1fo [2) +a1f1 [3)

CNOT : [x®|y) — {

to

0|0y + arlhy® (|1) @ [y)
= |0 ® (Bo]0) + B1]1)) + c1[1)® (BolL) + 51]0))
=afo [0) +abfr |1) +oa1Bo [3) +041_/31 12)
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT (cont.))

so that
apBo apBo
oo apf
cNOT: | VN e | U
a1/ a1
()qﬁl @150

for all («vo, fo), (a1, B1) on the Bloch sphere.
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT (cont.))

so that
apBo apBo
oo apf
cNOT: | VN e | U
a1/ a1
()qﬁl @150

for all («vo, fo), (a1, B1) on the Bloch sphere. Therefore, the matrix

representation (relative to the ordered basis Bs) is a 4 x 4 matrix

given by
10 0 0
0100
CNOT = 00 0 1
0010
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Example (The TOFFOLI gate)

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

The TOFFOLI gate, also called the controlled-controlled-not gate, is
a 3-qubit gate defined by
oelyeXlz) if|x=ly=I[1),

CCNOT : [®]y)® |2) — { 0®|Y)®[2)  otherwise,

where X is the NOT gate. The matrix representation of the TOFFOLI
gate is a 8 x 8 matrix given by

1

CCNOT =

O OO OO OO
O O = O OO OO
— O O OO o oo
O R O OO O oo

SO O OO OO
S oo oo+ OOoO
S oo OO OO

OO O OO oo
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces
The quantum circuit symbols for CNOT and CCNOT:

—e—— control qubit
CNOT: «
—&p— target qubit

—e——  1st control qubit

CCNOT:{ —e— 2nd control qubit

—&p— target qubit

We always use e to denote a control qubit that activates the op-
eration on the target qubit when the value is 1. Another kind of
control qubit that activates the operation on the target qubit when
the value is 0 is denoted by the symbol o.
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§3.6 Tensor Product of Vector Spaces

For example, the 2-qubit quantum gate

ol { Bl i 1) =I1,
O (X)) if [x) =10),
is symbolized by

control qubit
1 target qubit
and the 3-qubit quantum gate

0®y)®(X]2) if ) =]0)and |y) = [1),
elyelz { ®|yy®|z)  otherwise,
will be symbolized by

—o0——  1st control qubit

——e——  2nd control qubit

—&p— target qubit
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; )

In an n-qubit system, we use CNOT; ; to denote the contorlled-not
gate whose controlled qubit is the i~th qubit while the target qubit
is the jth qubit; that is,
CNOT,-_J-(\X1>® x)®- - -® |Xn>)
_ ) ool (Xpp)@xr)e-@lx) if [xp = [1),
N X1)®: @ |Xn) if [xiy = 10),

where X is the NOT gate.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; )

In an n-qubit system, we use CNOT; ; to denote the contorlled-not
gate whose controlled qubit is the i~th qubit while the target qubit
is the jth qubit; that is,
CNOT; ;([x1)®|x2)® - ®|xn))
_ ) e e X[xp)® X1 ®---@lxn) i [xp = [1),
N X1)®: @ |Xn) if ;) = 0,
where X is the NOT gate. We note that CNOT; ; is perfectly de-
fined operator as long as i # j and /,j < n. On the other hand,
the matrix representation for CNOT; ; is a 2" x 2" matrix which
essentially depends on the number of qubits that CNOT gate acts

on.
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; )

In an n-qubit system, we use CNOT; ; to denote the contorlled-not
gate whose controlled qubit is the i~th qubit while the target qubit
is the jth qubit; that is,
CNOT; ;([x1)®|x2)® - ®|xn))
_ ) e e X[xp)® X1 ®---@lxn) i [xp = [1),
N X1)®: @ |Xn) if ;) = 0,
where X is the NOT gate. We note that CNOT; ; is perfectly de-
fined operator as long as i # j and /,j < n. On the other hand,
the matrix representation for CNOT; ; is a 2" x 2" matrix which
essentially depends on the number of qubits that CNOT gate acts
on. When talking about the matrix representation of CNOT; ;, we

always assume that it is a 2K x 2% matrix, where k = max{i, j}.
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

We first consider CNOT; , on an n-qubit system, where 1 </ < n.
The keys for computing the matrix representation of CNOT;, are
the two identities
CNOT;, =Ib ® CNOT,;_1 1
= blkdiag(CNOT;_1,,—1,CNOT_1 n—1),
CNOT; , = SWAP; 5 - CNOT,, - SWAP; 5.

The validity of the identities can be verified via the quantum circuits:

bo—— ko T/ —— |xi)
|X/> —— — ‘X,';1> e ‘X2> T xe
|xn) —B— [Xn—1) —ED— |xn) () [ Xny rant
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

We first show that for all ne N,

CN0T17,7+1 = blkdiag( 12,12, ce ,12 ) X,X, co ,X )) . (5)

= ~- = = ~- =

271 copies of Io 271 copies of X
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

We first show that for all ne N,

CN0T17,7+1 = blkdiag( 12,12, ce ,12 ) X,X, co ,X )) . (5)

= ~- = = ~-

—
271 copies of Io 271 copies of X

To see (5), we note that CNOT; 2 = CNOT = blkdiag(Is, X),
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

We first show that for all ne N,

CNOTL,,_H = blkdiag( 12,12, co ,12 y X,X, ce ,X )) . (5)

~-

~

~~

271 copies of Io 271 copies of X
To see (5), we note that CNOT; 5 = CNOT = blkdiag(I, X), and

CNOT; 3 = SWAP; 5 - CNOTy3 - SWAP, 5
= (SWAP ® 1) - (I ® CNOT) - (SWAP ®I,)

Io Io Ip
Iy X Iy
I Ip Io
12 X I2

= blkdiag(Is, Iz, X, X) .

Ching-hsiao Cheng



Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

Suppose that (5) holds for the case n = m. If n = m+ 1, by writing
Xom = blkdiag( X, X, - ,X )

S ~

~-
2m=1 copies of X

so that CNOTy i1 = blkdiag(lgm,Xgm),
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

Suppose that (5) holds for the case n = m. If n = m+ 1, by writing
Xom = blkdiag( X, X, - ,X )

N A
2m=1 copies of X
so that CNOT 41 = blkdiag(lgm,Xgm), we have
CNOT; .11 = SWAP, ;- CNOTy ;1 - SWAP ,
= (SWAP ® Iym) - (I ® CNOT 1) - (SWAP ® Im)
12m X2m :[2"7
Iy T o
Tom Xom Tom
= blkdiag(Igm, Igm, Xgm, Xgm) = blkdiag(12m+1 9 X2m+1) o

Therefore, (5) is established by induction.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

Having established that
CNOT nq1 = blkdiag( I, Io, -+ Iz, X, X, -+, X)),

S < ~

~~ ~~
27—1 copies of Iz 271 copies of X

CNOT,’7n+1 = blkdiag(CNOT,‘,Ln, CNOT,',L,,) y

we have
CNOT1,3 = blkdlag(lz, 12, X, X) y

CNOT, 5 = blkdiag(Iy, X, I, X) .
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

Having established that
CNOT nq1 = blkdiag( I, Io, -+ Iz, X, X, -+, X)),

S <

~~

—~

~~
27—1 copies of Iz 271 copies of X

CNOT,’7n+1 = blkdiag(CNOT,‘,Ln, CNOT,',L,,) y

we have
CNOT1,3 = blkdlag(lz, 12, X, X) y

CNOTy 3 = blkdiag(Is, X, Iz, X) .
The identities above further imply that
CNOT; 4 = blkdiag(Iy, I, I, I, X, X, X, X) ,
CNOT, 4 = blkdiag(Is, Iz, X, X, I, I, X, X) ,
CNOT3 4 = blkdiag(I, X, Iz, X, I, X, I, X) ,

and
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

CNOT, 5 = blkdiag(Is, Is, Io, Ip, Ip, Ip, Ip, I, X, X, X, X, X, X, X, X),
CN0T275 = blkdiag(CNOT1 4, CNOT1 4)

= blkdiag(Iz, Is, I», I, X, X, X, X, I, I, I, I, X, X, X, X),
CNOT3 5 = blkdiag(CNOT4 4, CNOT5 4)

= blkdiag(Is, I, X, X, Iy, I, X, X, I, Is, X, X, I, I, X, X),
CN0T475 = blkdiag(CNOTg 4, CNOT3 4)

= blkdiag(Iz, X, I, X, I», X, I, X, I, X, I, X, I, X, I, X).
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of CNOT; , (cont.))

CNOT; 5 = blkdiag(Iz, I, I, I, Iz, I, In, I, X, X, X, X, X, X, X, X),
CN0T275 = blkdiag(CNOT1 4, CNOT1 4)

= blkdiag(Ia, Iz, I2, 1o, X, X, X, X, I, I3, I3, I, X, X, X, X),
CNOT3 5 = blkdiag(CNOT3 4, CNOT2 4)

= blkdiag(Is, I2, X, X, I, 12, X, X, I, I, X, X, I, I, X, X)),
CN0T475 = blkdiag(CNOTg 4, CNOT3 4)

= blkdiag(Is, X, I, X, I, X, I, X, I, X, I, X, I, X, I, X).
In general, by defining IX, = blkdiag( Ip,--- I, X,--- | X )

S —

~- S~ 7

2k copies of Io 2¥ copies of X

CNOT,"n = blkdiag(IXn_;_l, co ,IXn_;_l ) o
S —

~~

2=1 copies of IX,_;_1
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Remark: Forn > 1, let [0;1,0,-2, e ,O‘ign] be the (27~"4-1)-th row
of the matrix H,,, where H,, is the unnormalized Walsh-Hadamard

matrix, then
CNOT; 1y = blkdiag(X(l_"’l)/2, SRE—CTNE .. ’X(1_0i2")/2) 7

where X0 = 1.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Remark: For n > 1, let [0;1,0,-2, e ,a,-gn] be the (27~"4-1)-th row
of the matrix H,,, where H,, is the unnormalized Walsh-Hadamard

matrix, then
CNOT; 1y = blkdiag(X(l_"’l)/2, SRE—CTNE .. ’X(1_0i2")/2) 7

where X = Iy. In other words, with f denoting the matrix-valued
function (1) =1y and f(—1) = X,

CNOT/7n+1 = l)lk(h&g(f(()’,'l), f(()’,'g), H f(O'iQn)) o
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Remark: For n > 1, let [0;1,0,-2, e ,a,-gn] be the (27~"4-1)-th row
of the matrix H,,, where H,, is the unnormalized Walsh-Hadamard

matrix, then
CNOT; 1y = blkdiag(X(l_"’l)/2, SRE—CTNE .. ’X(l_gi2")/2) 7

where X = Iy. In other words, with f denoting the matrix-valued
function (1) =1y and f(—1) = X,

CNOT/7n+1 = blkdiag(f((f,-l), f(()’,'g), H f(O'iQn)) o

The row vector [0,-1, O, ,O','Qn} defined above is called the sym-
bol of CNOT; 11 in this note.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Definition
An n-qubit quantum gate is called a multi-controlled gate if there

exists some qubits, called control qubits, such that each value of the
control qubits corresponds to a quantum gate acting on the rest of

qubits, the target qubits.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

Definition

An n-qubit quantum gate is called a multi-controlled gate if there
exists some qubits, called control qubits, such that each value of the
control qubits corresponds to a quantum gate acting on the rest of

qubits, the target qubits.

In other words, rather than just applying a gate when all control
bits are zero or one, a multi-controlled gate applies operation to the
target qubits can be different for each of the 2 possible classical
values of the control qubits.

Remark: The CCNOT gate can be viewed as a multi-controlled gate

since it applies identity gate to the target qubit when the control
qubits are |00), |01) and |10).
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

In the following examples, we consider the matrix representation of

some special multi-controlled gates.

Example (Multi-controlled gates)

Consider a multi-controlled gate given by

O ® Uly) if %) =10,

@ Vly) if |x)=[1).

where the control qubit |x) is a 1-qubit state, the target qubit |y) is
an n-qubit state, and U, V are both n-qubit gates.

Lo ®|y) = {
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

In the following examples, we consider the matrix representation of
some special multi-controlled gates.

Example (Multi-controlled gates)

Consider a multi-controlled gate given by

O ® Uly) if %) =10,

@ Vly) if |x)=[1).

where the control qubit |x) is a 1-qubit state, the target qubit |y) is

Lo ®|y) = {

an n-qubit state, and U, V are both n-qubit gates.
Write |x) = a|0) + a1|1), |y) = Bol0) + -+ + B2n_1]2" — 1), and
) =10 ®|y). Then
Ly = a0|0) @ [U(Bo|0) + - - - + Ban—1]2" — 1))]
+a1|1) ® [V(Bol0) + - - - + Ban_1|2" — 1))] .

—=— = =— =
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Example (Multi-controlled gates (cont.))

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Note that the matrix representation of |¢) is given by
Bo 17
Bo ao [
B1
_ |ao _ Ban—1 |
w=[e| =] %
Ban_1 aq [
Ban—1 ] |
so that [L] satisfies
T [ Bo 17 [ [ Bo ]
a | aolU] | ¢
. Ban—1
L]: = P = ~
I Po [ Bo ]
ol aV]|
L | Ban—1 ] L | Ban—1 | ]
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Multi-controlled gates (cont.))
To find the matrix representation of L, we let g = (1 = 1 for
some fixed ¢ while o; = 3; = 0 if i # 0 and j # { to obtain that the

¢-th column of [L] is given by

6.0 = o @ vt = [429)

om
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Example (Multi-controlled gates (cont.))

Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

To find the matrix representation of L, we let g = (1 = 1 for
some fixed ¢ while o; = 3; = 0 if i # 0 and j # { to obtain that the
¢-th column of [L] is given by

6.0 = o @ vt = [429)

2
and let oy = B3¢_1 = 1 for some fixed ¢ while a; = 8; =0 if i # 1
and j # { to obtain that

e +0 =[] evio =[],

. m
where 0,,, denotes the zero vectors in C?".
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Multi-controlled gates (cont.))

To find the matrix representation of L, we let g = (1 = 1 for
some fixed ¢ while o; = 3; = 0 if i # 0 and j # { to obtain that the
¢-th column of [L] is given by

1
6.0 = |o| @ U6 0= |
and let oy = B3¢_1 = 1 for some fixed ¢ while a; = 8; =0 if i # 1
and j # { to obtain that

0,

2

U(:,E)}

e +0 =[] evio =[],

where 0,,, denotes the zero vectors in C?". This shows that

L] = {g V| = bikdiag(U, V).
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Multi-controlled gates (cont.))

In general, if a multi-controlled (n+ 1)-qubit gate L is defined by
@ Uolyy if ) =10,

Lol =4 PEUW =1,

0@ Upnoalyy if ) = |27~ 1);
that is, the controlled qubit |x) is an m-qubit state and L(|x)®|y)) =
|x) ® Ukly) if |x) = |ky. Then the matrix representation of L is
[L] = blkdiag(Up, U1, - - - , Uam_1)
since by letting |[x) = |k — 1) and |y) = [ — 1) for some 1 < k < 27
and 1 < £ < 2" ™t \we have
LG, (k= 127+ £) = ek ® U5 ),

where {e1, ey, -+ ,eam} is the standard basis of C2”.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F,,(U))

Consider multi-controlled (n + 1)-qubit gate L given by
L(x1)®- - ® [%n) ® |Xn11))
X))@ ® |xn) ® (Up..o|xnt1)) if [x1)D® - ®|xny =[0)®---®|0),

X1 ® -+ @ [xn) ® (Ur.-1]x011)) if [x1)® - @ [xn) = [1)®---®[1).
where Uj,...j,'s are 2 x 2 unitary matrices for all jp,---,j; € {0,1}",
and the controlled qubits are the first n qubits.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F,,(U))

Consider multi-controlled (n + 1)-qubit gate L given by
L(x1)®- - ® [%n) ® |Xn11))
X))@ ® |xn) ® (Up..o|xnt1)) if [x1)D® - ®|xny =[0)®---®|0),

6@+ @ ey (Ut xasn)) i [x1)®- - @ o) = [1D®- - @ 1.
where Uj,...j,'s are 2 x 2 unitary matrices for all jp,---,j; € {0,1}",
and the controlled qubits are the first n qubits. By identifying
(J1 -+ Jn)2 with j or more precisely,

J=U1Jn)2=2""1 + 4 2n1 + i,
we write Uj,...;, as Uj and |ji)® - ®|jn) as |j) so that L can be

simply written as

L(10 ® [xn+1)) = 10 ® (Ujlxar1)) if \XZ: \_{'>- i
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/, ;(U) (cont.))

£ )

Suppose that Uj= | " 7 |, )0 =a0l0)+- -+ ax 1|27 - 1)
Uy Uy

and ‘Xn+1> = 50‘0> aF ,31’1>. Then

a()( ((]),30 ())61
(uy ),30 +ulD B
( (l) 0 + ull)ﬁl
( )50 + ugl)ﬁl

)
o )
aq )
aq )

(L0 ® [xat1))] =

a( (j>60+u(j>6l)
a( (j>60+u(j>61)

aign_ l(uu )50+u<12271)ﬁ1)
| or2n— (s By + us l)ﬁl)_
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/, ;(U) (cont.))

(J)

FORG
Suppose that U; = [ uzj) uﬁ) } X0 = al0)+ - Fagn_1|2" = 1)
21 22

and ‘Xn+1> = 50‘0> aF ,31’1>. Then

ao(u (<l>50 0)51)
) : ao(ul Bo + uy) B1)
o {g‘j o (u$P B +u1”61)
5 o (u >ﬁo+u;’ﬁl)
| ™ M —

a( (j>60+u(j>6l)
a( (j>60+u(j>61)

aign_ l(uu )50+u<12271)ﬁ1)
| or2n— L(us2 D By + us l)51)_
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/, ;(U) (cont.))

Therefore,
5 oD o _
i o o[
Uy Ugg 0 2
11 Uiz a1 Bo
FONe B
21 Uzo
[L(PO®xar1))] =

(2"-1) (2"-1)

Uy 12 Bo
(2"-1) (2"-1) Q2n—1
Uy Usg 1L B1 ]

The 27+1 x 271 matrix is the matrix representation of L.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U))

Consider multi-controlled (n+ 1)-qubit gate L given by
L(Ix0)® [x1)®- - ® |xn))
(Up-0|x0)) ®x1)® -+ ® |xny if [x1)®-+-®|xny = [0)R---®[0),

(Ui1]x0) @ X))@ ®[xn) if [x)®@ - Rlxn) = [D®---®1).
where Uj,...j,'s are 2 x 2 unitary matrices for all ji,--- ,j, € {0,1}",

and the control qubits are the last n qubits.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U))

Consider multi-controlled (n+ 1)-qubit gate L given by
L(Ix0)® [x1)®- - ® |xn))
(Up-0|x0)) ®x1)® -+ ® |xny if [x1)®-+-®|xny = [0)R---®[0),

(Ui1]x0) @ X))@ ®[xn) if [x)®@ - Rlxn) = [D®---®1).
where Uj,...j,'s are 2 x 2 unitary matrices for all ji,--- ,j, € {0,1}",

and the control qubits are the last n qubits. By identifying (i - - jn)2
with j or more precisely,

j=(1 g2 =2""ta 4+ + 21 +)n,
we write Uj,...;, as Uj and |ji)®---®|jn) as |j) so that L can be
simply written as

Lx0) ® %) = (Ullx)) @) if ) =1[)).
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U) (cont.))

[ ] )
Suppose that U; = , |x0) = a0l0) + a1|1) and |x) =

50|0> + -4 IBQn_1’2n = ].> Then

A 2

(ug?ao 4 ug%)m)ﬂo

(v a0 + ug5)01);

(u(zn_l)ao + u(2n_1)a1)ﬁx n_
[L(‘XO>®|X>)] = . FO! o o

(u31’ 0 + ”g;)al)ﬁo

J) S 8,

(
(uzy’ o + Uy o

(@@=

(“52;71)0‘0 + Uy

)041)52"71
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U) (cont.))

[ ] )
Suppose that U; = , |x0) = a0l0) + a1|1) and |x) =

50|0> + -4 IBQn_1’2n = ].> Then

A 2

(ugq)ao 4 ugg)m)ﬂo

[ [ Bo 1] (P a0 + uf a1)8;
(%)
[L]: :/32"71; . (S} Vao+ufy V)
Bo (U(g(i)ao +F ué[;)m)ﬁo
aq :
iy (uf) a0 + uf )8
W8y Vap + ufy Var)Bans
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U) (cont.))

Therefore,
r (0 0 1 r- _ -
U§1) o U§2) ) Bo
Uiy Uio B1
ap
(2"-1) (2"-1) Bon
Uy U P20 —1 ]
[L(|X0> ® |X>)] = o (0) - q
Usq Usg Bo
sy sy B
oy
| o)L L]
The 271 x 271 matrix is the matrix representation of L.
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F'(U) (cont.))

In particular, if U; is a rotation matrix of the form

U= Ry(28500) = |

(here we label U from 0 to 2" — 1 but label 6 from 1 to 2"), then

cos 01
cos 0>

sin 91
sin 0o

cos 011
S1n 9j+l

—sin 91

cos Ban

cos 0

sin Oan

—sin 9j+1
cos 041

— sin 05

cos 0>

A matrix of this form will play important role later.

|

— sin fan

cos Oan

Ching-hsiao Cheng
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;))

In this example we consider a special multi-controlled (n+ 1)-qubit
gate A; defined by

Al(lx0) ® -+ ® |Xn))
= [x0) ® - ®[x-1) ® (R2(0k) %)) @ [x541) ® - - - ® |Xn)

if (X0 Xj—1Xj+1 - Xn)2 = k, where R, is the rotation about z-axis

given by
e—i0/2 0
Rz(‘g) = [ 0 ei0/2
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;))

In this example we consider a special multi-controlled (n+ 1)-qubit
gate A; defined by

Al(lx0) ® -+ ® |Xn))
= [x0) ® - ®[x-1) ® (R2(0k) %)) @ [x541) ® - - - ® |Xn)

if (X0 Xj—1Xj+1 - Xn)2 = k, where R, is the rotation about z-axis

e—i0/2 0
o[ 8]

This is a multi-controlled gate with n control qubits and the target

given by

qubit is the |x;) qubit, and is sometimes denoted by F/},(R,) (since
the target qubit |x;) is the (j+1)-th qubit counting from the highest/
left-most qubit).
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Previous examples establish the case j = 0 and j = n, so we focus
on the case 1 < j < n. We first consider the case j = 1. In this
case, we note that
An—1=SWAP;, ;11 -A,- SWAP, 11,

where the operator SWAP,, 1 swaps the position of the n-th and
the (n + 1)-th qubit, and A, is the multi-controlled (n + 1)-qubit
gate introduced in previous example with Uy = R (6x) and the
target qubit is the (n + 1)-th qubit.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Previous examples establish the case j = 0 and j = n, so we focus
on the case 1 < j < n. We first consider the case j = 1. In this
case, we note that

An—1=SWAP;, ;11 -A,- SWAP, 11,

where the operator SWAP,, 1 swaps the position of the n-th and
the (n + 1)-th qubit, and A, is the multi-controlled (n + 1)-qubit
gate introduced in previous example with Uy = R (6x) and the
target qubit is the (n + 1)-th qubit. Previous example shows the

matrix representation of A, is given by

[An] = blkdiag(R,(61), Rz(62), - - ,Rz(62n))
= diag(e*i91/27 eif1/2 =if2/2 @i62/2 ... g=ifan/2 eiozn/Z)

I

v
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))
Note that

SWAP
SWAP

SWAP, ;11 = Ion-1 ® SWAP = _
SWAP

and
SWAP - diag(a, b, ¢, d) - SWAP
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))
Note that

SWAP
SWAP
SWAP, i1 = I5n 1 ® SWAP = .

SWAP

and
SWAP - diag(a, b, ¢, d) - SWAP

SRR [ R

=1 s ]Zdiag(a>c,b7d)~
d
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Example (Matrix representation of F/(R;) (cont.))

Therefore, using the fact that
An_1=SWAP, 1A, - SWAP, .1,

we find that

'e—[81/2 b
— 0o /2
e01/2
efgg/Q
—i03/2
[An-1] = i
e7i64/2
eiF);;/Q
ei04/2
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

We note that [A,_1] takes the form
[A”—l] = blkdlag(Ql, 027 ) 02"71) )

where for each 1 < k< 21,

. —i0ok—1/2 —i02k/2 _LiO2k_1/2 _iO2k/2
Qk:dlag(e B2u-1/2 g=i02k/2 o211/ ’e’Zk/)

for some 61, -- .60 € R.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

We note that [A,_1] takes the form
[An—1] = blkdiag(Q1, Qa, - - , Qan1),
where for each 1 < k < 2",
Q= diag(ef'@“flﬂ, e*ié’zk/?7 e’.02k71/2’ ei‘92k/2)

for some 61, -- .60 € R.

In the following, for simplicity we only write the sign and the sub-
index of the angle to express the matrix. For example, we write
[An] = diag(—1,+1,-2,42,--- ,—2" 42")
and
[Ap—1] = diag(—1,—-2,+1,4+2, -3, —4,4+3,+4, - -,
—(2"—1),-2" +(2" - 1),+2").
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Now we consider A,_5. Similar to the previous case, we have
An_o=SWAP, |, A, 1 -SWAP, | ,.
Note that
SWAP,_1 , = I;n > ® SWAP ® I,
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Now we consider A,_5. Similar to the previous case, we have
An_o=SWAP, |, A, 1 -SWAP, | ,.
Note that
SWAP,_; , = blkdiag(SWAP ® Iy, - -- , SWAP ® I,)
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Now we consider A,_5. Similar to the previous case, we have
An_o=SWAP, |, A, 1 -SWAP, | ,.
Note that
SWAP,_; , = blkdiag(SWAP ® Iy, - -- , SWAP ® I,)
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Now we consider A,_5. Similar to the previous case, we have
A,,,Q = SWAP,,,LH . A,,,l . SWAPn,Ln .
Note that
SWAP,_; , = blkdiag(SWAP ® I, - -- , SWAP ® I,)
o i}
L 2
I3
f 12
L 2
I2
and
(SWAP ® 1) - diag(a, b, ¢, d, e, f, g, h) - (SWAP ® I5)
— diag(a7 b7 e7 f; C7 d7 g7 h) *
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Therefore, [A,—2] is obtained by

(A, ]t RAZ R ABARE - 20 F- Bk =
e REHAREET ¥ BEHAE U
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

Therefore, [A,—2] is obtained by

A iR A FRE N BARL - 2o B
e REHAREET ¥ BEHAE U

thus using
[An—1] = diag(—1,—-2,+1,+2, -3, —4,+3, +4,
—5,—6,+5,+6,—7,—8,4+7,48,--+)

we find that
[An—2] = diag(—1,—2, -3, —4,+1,+2,+3, +4,
—5,—6,—7,—8,45,46,47,48,---).
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§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

We note that [A,_2| takes the form

blkdiag(Q1, Q2,- -+ , Qan—2),
where for each 1 < k< 22,

Qi = diag(—(4k — 3), —(4k — 2), —(4k — 1), —(4k),
+(4k — 3), +(4k — 2), +(4k — 1), +(4k))
— diag(e_’94k—d/2’ e_i94k72/2’ e_ie-’lkfl/Q, e_i94k/27

i04p_3/2 iO4p_5/2 i6, 2 i04,/2
e 04k 3/,6 4k 2/,6 4k 1/’e 4k/)

for some 61, -- .05 € R.
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Example (Matrix representation of F/(R;) (cont.))

In general, for each j we have

Aj_1 = SWAP; ;i1 - A - SWAP;
and the fact that SWAP; ;11 = I5j-1 ® SWAP ® I, implies that
[An—j—1] is obtained by

Me[Apjlet b A2 22 BARE -0 F- BEL
LB RSP S B E

so that
[An—j] = diag(—1,--- ,—24 41, .- ’4_217_(2]_;_ 1),-- , —24tL
+(21+1)7... 7_|_2.I'+17...)_

The identity above can be proved rigorously by induction.
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Chapter 3. Mathematical Backgrounds

§3.6 Tensor Product of Vector Spaces

An (n+1)-qubit gate L is called a multi-controlled rotation gate of

Definition

type F,(Ra) if there exist a unit vectors a € R? and real numbers
01, -+ ,0n such that

L(Jx0) ® -+ ® |xn))
=|x0)® -+ @ [x-1) ® (Ra(0k) X)) ® [Xj+1) ® - - - ® [xn)
if (X0 Xj—1Xj11--Xn)2 = k, where for unit vector a = (ay, ay, a,),

R, is a 1-qubit gate given by

cos % + iazsin ¢ (ay + iay) sin %

Ra(‘b) = 2
—(ay — iay) sin% cos g — iay, sin%

We also write R, as Ry or R, if a= (0,—1,0) or a= (0,0, —1).
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Chapter 3. Mathematical Backgrounds
§3.6 Tensor Product of Vector Spaces

Remark: One possible quantum circuit for a multi-controlled rota-
tion gate of type F/, (Ra), in term of 1-qubit quantum gate Ra(¢),

is given by

[Xn) —Ra(¢0) —{Ra(¢1)[—|Ra(d2)[—Ra(¢3)— - - - —|Ra(d2r—1)—

and quantum circuit for a multi-controlled rotation gate of type
F/'(Ra) can be constructed using SWAP gates and the quantum

circuit given above.
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Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Unitary decomposition is the process of translating an arbitrary uni-
tary gate into a specific (universal) set of single and two-qubit gates.
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Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Unitary decomposition is the process of translating an arbitrary uni-
tary gate into a specific (universal) set of single and two-qubit gates.
Unitary decomposition is necessary because it is not otherwise pos-
sible to execute an arbitrary quantum gate on either a simulator or
quantum accelerator.
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§3.7 Unitary Decomposition

Unitary decomposition is the process of translating an arbitrary uni-
tary gate into a specific (universal) set of single and two-qubit gates.
Unitary decomposition is necessary because it is not otherwise pos-
sible to execute an arbitrary quantum gate on either a simulator or
quantum accelerator.

In order to decompose all possible unitary matrices into quantum
gates, a universal gate set is selected: rotations around the Y and
Z axis by an arbitrary angle, the R,(#) and R,(f) gates, and the
controlled-not, the CNOT gate whose matrix forms are given by

CcoS — fsmg i8 G 00

2 e'2 0 01 0 O

Ry (0) = o | Re(O) [ ,.9},CN0T= 0 0 0 1
sin — cos§ 0 e? 00 1 0




Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

§3.7.1 1-qubit gate decomposition

We first focus on expressing 1 qubit gates (or 2 x 2 unitary matrices)
in terms of product of qubit gates from the set

{R'y(e)v Rz(e)v Ph(e) ’ S R},
where Ph is the global phase gate given by Ph(f) = diag(e®, e®).

For every 1-qubit gate (that is, 2 x 2 unitary matrix) U, there exist

real numbers 0, 0, & and i such that

U= Ph(6)R-(§)Ry(0)R(n)

) A 0 .0 .

B er5 0 e 3 0 COS 5 — Sin 5 e 'z 0

— i i& inl -
0 e 0 e2] |sin g cos g 0 e=
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§3.7 Unitary Decomposition

§3.7.1 1-qubit gate decomposition

We first focus on expressing 1 qubit gates (or 2 x 2 unitary matrices)
in terms of product of qubit gates from the set

{R'y(e)v Rz(e)v Ph(e) ’ S R},
where Ph is the global phase gate given by Ph(f) = diag(e®, e®).

For every 1-qubit gate (that is, 2 x 2 unitary matrix) U, there exist

real numbers 0, 0, & and i such that

U= Ph()R(§)Ry(0)R2(n) = R2(§)Ry(6)R(n)Ph())

) A 0 . 0 .
_ |:er6 0:| [6'2 0 :| COS§ —sm5 |:e:2 0 :|
- is i€ iz
0 e 0 e's sing cosg 0 €=
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§3.7 Unitary Decomposition

Let U= E. Z] be a 2 x 2 unitary matrix. Then there exists 0 € R

such that det(U) = 2@,
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Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Let U= E. Z] be a 2 x 2 unitary matrix. Then there exists 0 € R

such that det(U) = e%?. Define V= e ®U. Then Vs also a unitary
matrix; thus using the fact that VT = V="' and det(V) = 1 we find
that V takes the form
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§3.7 Unitary Decomposition

d
such that det(U) = e%?. Define V= e ®U. Then Vs also a unitary
matrix; thus using the fact that VT = V="' and det(V) = 1 we find
that V takes the form

V= {a B} :

6 «
This further implies that U takes the form

_ab_,'Oé —B
o= o= 7]

Let U= E. b] be a 2 x 2 unitary matrix. Then there exists 0 € R
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Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Let U= E. Z] be a 2 x 2 unitary matrix. Then there exists 0 € R

such that det(U) = e%?. Define V= e ®U. Then Vs also a unitary
matrix; thus using the fact that VT = V="' and det(V) = 1 we find
that V takes the form

V= {a B} :

6 «
This further implies that U takes the form

_ab_,'Oé —B
o=l o= 7]

The fact that |a|? + |32 = 1 allows us to set o = e cosg and

B=e" sing for some u, v and 0 € R. o
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Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

LetéE =v—pand n= —p—v. Then

R2(§Ry(0)R(n)
[ e i3 0 ] cos 5 —sing [ e ]
- ¢ 0 9 2
0 ! 4 v 0 e'2
L €2 sin 5 cos 5
[ 5 cos ¥ e '3 sin

L 2




Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

e Algorithm of 1-qubit gate decomposition:

Let U be a 1-qubit gate (or equivalently, 2 x 2 unitary matrix).
Step 1: Find 0 € R such that det(U) = e2?.

Step 2: Find u, v, 0 such that

—id

| D

. 6 . w
e’“cos§:ae and e"sin- = ce ™.

~—

Step 3: U=Ph(6)R, (v — )R, (O)R(—p — v
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§3.7 Unitary Decomposition

e Algorithm of 1-qubit gate decomposition:

Let U be a 1-qubit gate (or equivalently, 2 x 2 unitary matrix).
Step 1: Find 0 € R such that det(U) = e2?.

Step 2: Find u, v, 0 such that

—id

| D
|
3

. 0 .
e’“cos§:ae and e sin

Step 3: U=Ph(O)R,(v — )R, ()R (—p — v).

0 1

x=|] o] =Ph(-PRPRmE:(-])
_ e—iTr/2 0 e—iTr/4 0 0 —1 ei7r/4 0
— 0 e—i7r/2 0 eiﬂ'/4 1 0 0 e—i7'r/4 .
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Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

§3.7.2 Singular value decomposition (SVD)

Recall the spectral theorem from linear algebra given below:

Theorem (Spectral)

Let A be a Hermitian matrix; that is, A = A'. Then there exists

unitary matrix U and a real diagonal matrix D such that A = UDUT.

We note that the columns of U are eigenvectors of A and the diag-

onal elements of D are eigenvalues of A.
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§3.7 Unitary Decomposition
§3.7.2 Singular value decomposition (SVD)

Recall the spectral theorem from linear algebra given below:

Theorem (Spectral)

Let A be a Hermitian matrix; that is, A = A'. Then there exists

unitary matrix U and a real diagonal matrix D such that A = UDUT.

We note that the columns of U are eigenvectors of A and the diag-

onal elements of D are eigenvalues of A.

Remark: The spectral theorem extends to a more general class of
matrices, the normal matrices. One can show that A is normal (that
is, AAT = ATA) if and only if there exists a unitary matrix U and a
diagonal matrix D such that A = UDUT. Here the diagonal matrix

D can be complex.
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§3.7 Unitary Decomposition

Let A be a complex m x n matrix. Then ATA € C"™" and AAT e

(Cme
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§3.7 Unitary Decomposition

Let A be a complex m x n matrix. Then ATA € C"™" and AAT e
Cm™>m - Moreover,

Q@ ATA and AAT are both hermitian since
(ATA)T = AT(ANT = ATA and  (AAT)T = (AT)TAT = AAT.
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Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

Let A be a complex m x n matrix. Then ATA € C"™" and AAT e
Cm™>m - Moreover,

@ ATA and AAT are both hermitian since
(ATA)T = AT(ANT = ATA and  (AAT)T = (AT)TAT = AAT.
@ AfA and AAT are both positive semi-definite since
(x, ATAX) = (Ax, Ax) = |Ax[? >0 VxeC"
and

(x, AATx) = (ATx ATx) = |ATx|2 >0 vVxeC™.
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§3.7 Unitary Decomposition

Let A be a complex m x n matrix. Then ATA € C"™" and AAT e
Cm™>m - Moreover,

@ ATA and AAT are both hermitian since
(ATA)T = AT(ANT = ATA and  (AAT)T = (AT)TAT = AAT.
@ AfA and AAT are both positive semi-definite since
(x, ATAX) = (Ax, Ax) = |Ax[? >0 VxeC"
and
(x, AATx) = (ATx ATx) = |ATx|2 >0 vVxeC™.

Therefore, the Spectral Theorem implies that there exist A1 = Ay >

- = A = 0 and an orthonormal basis {vi, vo,- -, v,} of C" such

that
ATAve = \ve V1< k<n.
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§3.7 Unitary Decomposition

Let ok = v/ Ak, and r=#{1 < k< n| A\ > 0}; that is, ATA has r

non-zero eigenvalues.
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§3.7 Unitary Decomposition

Let ok = v/ Ak, and r=#{1 < k< n| A\ > 0}; that is, ATA has r
non-zero eigenvalues. For 1 < k < r, define

Q u#0foralll <k<r
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§3.7 Unitary Decomposition

Let ok = v/ Ak, and r=#{1 < k< n| A\ > 0}; that is, ATA has r
non-zero eigenvalues. For 1 < k < r, define

Q u, # 0 for all 1 < k< r. Moreover,
|Avj[1? = (Avj, Ay = (v, ATAv) = (v Ajvp) = X

thus the fact that ATA and A have the same null space implies

that {V,H, ‘e ,v,,} is an orthonormal basis of the null space
of A.
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§3.7 Unitary Decomposition

Let ok = v/ Ak, and r=#{1 < k< n| A\ > 0}; that is, ATA has r
non-zero eigenvalues. For 1 < k < r, define

Q u, # 0 for all 1 < k< r. Moreover,
|Av[* = (Av;, Ay = (v, ATAv) = (v, v = A5
thus the fact that ATA and A have the same null space implies

that {V,H, ‘e ,v,,} is an orthonormal basis of the null space
of A.
@ {u, - ,u,} is an orthonormal set since

1 1 by,
= —{(Ayv, A = — AfA = —
{ug, up) Uk(72< Vi, Avp) Uka£<vk, 7)) ka<vk, 7))
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§3.7 Unitary Decomposition

© {uy, - ,u,} are eigenvectors of AAT with corresponding eigen-
values A1, -+, A\, since for 1 < j<r,
1 1 1 ;
AATu; = AAT(—Av;) = —AATAY; = —A\y) = YAy,
7j @ G i
= )\J'UJ'.
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§3.7 Unitary Decomposition

© {uy, - ,u,} are eigenvectors of AAT with corresponding eigen-
values A1, -+, A\, since for 1 < j<r,
1 1 1 ;
AATu; = AAT(—Av;) = —AATAY; = —A\y) = YAy,
7j @ G i
= )\J'UJ'.

By the fact that
r = rank(ATA) = rank(A) = rank(AT) = rank(AAT)
the nullity (that is, the dimension of the null space) of AAT is

m — r; thus there exist an orthonormal set {u,y1, -, up} in

the null space of AAT.
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§3.7 Unitary Decomposition

© {uy, - ,u,} are eigenvectors of AAT with corresponding eigen-
values A1, -+, A\, since for 1 < j<r,
1 1 1 ;
AATu; = AAT(—Av;) = —AATAY; = —A\y) = YAy,
7j @ G i
= )\J'UJ'.

By the fact that
r = rank(ATA) = rank(A) = rank(A") = rank(AAT)

the nullity (that is, the dimension of the null space) of AAT is

m — r; thus there exist an orthonormal set {u,y1, -, up} in
the null space of AAT. Then

AATw = ofu;  V1I<j<m.

Since {U41,--- ,Um} are eigenvectors of AAT (corresponding
to eigenvalue 0), {uy, -+, un} is an orthonormal basis of C™.
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§3.7 Unitary Decomposition

Let U= [ulquf fum] and V= [vlfVQE fv,,],aswell as

o1

Then
AV=A[viiva: - vy = [Avi D Avg D - Avy)

= [01U1502UQ5 faru,EOE 0}
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§3.7 Unitary Decomposition

The numbers 01,09, - ,0, are called the singular values of A.
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§3.7 Unitary Decomposition

The numbers 01,09, - ,0, are called the singular values of A.
The fact that U and V are unitary shows the following

Let A be a complex m x n matrix. Then there exist unitary matrices

Ue C™*mM and Ve C™"™ as well as an m x n matrix X of the form

o1

where 01 = 09 > --- = 0, > 0, such that A= UX V1.
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§3.7 Unitary Decomposition

The numbers 01,09, - ,0, are called the singular values of A.
The fact that U and V are unitary shows the following

Let A be a complex m x n matrix. Then there exist unitary matrices
Ue C™ ™ and Ve C™" as well as an m x n matrix >, of the form

o1

where 01 = 09 > --- = 0, > 0, such that A= UX V1.
v

Remark: The decomposition A = UL VT in the theorem above is
called a singular value decomposition of A. We note that the

singular decomposition of A is not unique.
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§3.7 Unitary Decomposition

§3.7.3 CS decomposition

Theorem (Cosine-Sine decomposition)

For any 2 x 2 partitioning

C1 C2
O

of an n x n unitary matrix Q, there exist unitary matrices Uy, Us,
Vi, V5 such that

I ol
C S

ul 0@ @a|[Vi 0 o) —I
Utov = { 1 } _ c ,
© 0 UQT @1 Q2|0 VW Os I o

I of

where C and S are diagonal matrices taking the form
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§3.7 Unitary Decomposition

Theorem (Cosine-Sine decomposition (cont.))

where C and S are diagonal matrices taking the form
C=diag(y1,72,"" %), 1>mn=27>-27%>0,

S = diag(o1,09, -+ ,0%), 0<o1<09<---<o0s<1,

and satisfying C? + S2 =1, and Os, O are matrices of zeros, and
depending on @ and the partition, may have no row or no columns.
Some of the identity matrices may be nonexistent, and no two of

them need be equal. The four C and S matrices are square with the

same dimension, and may be nonexistent.
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§3.7 Unitary Decomposition

Theorem (Cosine-Sine decomposition (cont.))

where C and S are diagonal matrices taking the form
C=diag(y1,72,"" %), 1>mn=27>-27%>0,

S = diag(o1,09, -+ ,0%), 0<o1<09<---<o0s<1,

and satisfying C? + S2 =1, and Os, O are matrices of zeros, and
depending on @ and the partition, may have no row or no columns.
Some of the identity matrices may be nonexistent, and no two of

them need be equal. The four C and S matrices are square with the

same dimension, and may be nonexistent.

Remark: Since C? 4 S? =1, there exists 01, - - - ,0s such that v, =
cos By and o, = sin b for all 1 < k < s. This explains the name of
the “cosine-sine” decomposition.
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§3.7 Unitary Decomposition

First we note that

UlT 0][Qu Q2| (VI 0]  |UfQuvi UfQiaVe
0 UQT Qi Q| |0 Vo| — |UJQuVi U]QuVal

Choose unitary matrices U; and V; to give the usual singular value

decomposition of Qq1, resulting in Dq.
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§3.7 Unitary Decomposition

First we note that

UlJr 0]|Qu @a| (Vi 0]  |Ufeuvi UfQiaVe
[0 Uﬂ |:Q21 QQJ [0 VJ - [Ungv1 Ugozzvz]‘
Choose unitary matrices U; and V; to give the usual singular value
decomposition of @11, resulting in Dy;. Choose unitary matrices
U and V5 so that Dy = U2TQ21 Vi is lower triangular with non-
negative real entries on the diagonals ending in the bottom right
corners and Dy = UlT Q12 V> is upper triangular with non-positive

real entries on the diagonals ending in the bottom right corners.
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§3.7 Unitary Decomposition

First we note that

UlJr 0]|Qu @a| (Vi 0]  |Ufeuvi UfQiaVe

[0 Uﬂ |:Q21 QQJ [0 VJ - [Ungv1 Ugozzvz]‘
Choose unitary matrices U; and V; to give the usual singular value
decomposition of @11, resulting in Dy;. Choose unitary matrices
U and V5 so that Dy = U2TQ21 Vi is lower triangular with non-
negative real entries on the diagonals ending in the bottom right
corners and Dy = UlT Q12 V> is upper triangular with non-positive

real entries on the diagonals ending in the bottom right corners.

Define
D— |:U1T O] Qi Q2| [V O _ |:D11 DIQ] (7)
0 UQT Q21 sz O V2 D21 D22 ’

(]
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§3.7 Unitary Decomposition

Proof (cont.)

Then D is unitary; thus the fact that any column (or row) of D

has unit length implies that no singular value of D;; can exceed 1.
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§3.7 Unitary Decomposition

Proof (cont.)
Then D is unitary; thus the fact that any column (or row) of D

has unit length implies that no singular value of D;; can exceed 1.
Therefore, Dy takes the form

Tix k
Dll = Cs><s
Opxq

for some C taking the desired form,
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§3.7 Unitary Decomposition

Proof (cont.)
Then D is unitary; thus the fact that any column (or row) of D

has unit length implies that no singular value of D;; can exceed 1.
Therefore, Dy takes the form

Tix k
Dll = Cs><s
Opxq

for some C taking the desired form, and the orthogonality of columns
of D and the orthogonality of rows of D further show that Dy; and

D15 must take the form
Ol (c3—s—p) O(c;—s—q)xk
Do = —Ssxs , Do = Ssxs ;
_Ipxp Iqu

where p=rn —k—sand g=c¢, — k—s. o

Ching-hsiao Cheng B335 i A # MAS501*



Proof (cont.)

Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

The fact that each column and each row of D has unit length also

gives the form of Dyy so that

I o/
C -S
_ Oc -1
b= Os K L
S M N
I o/l

for some (r, —s—q) x (cg —s— p) matrix K, (n —s—gq) xs

matrix L, s X (¢ — s — p) matrix M and s x s matrix N.
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Proof (cont.)

Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

The fact that each column and each row of D has unit length also

gives the form of Dyy so that

I o/
C -S
_ Oc -1
b= Os K L
S M N
I o/l

for some (r, —s—q) x (cg —s— p) matrix K, (n —s—gq) xs
matrix L, s X (cg — s — p) matrix M and s x s matrix N. The
orthogonality of the second and the fourth blocks of columns shows
that SM = Ogy

singular.

cs—s—p); thus M = Ogy(c,—s—p) since S is non-
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§3.7 Unitary Decomposition

Proof (cont.)

The fact that each column and each row of D has unit length also

gives the form of Dyy so that

I o/
C -S
_ Oc —I
b= O K L
S M N
I ol

for some (r, —s—q) x (co —s— p) matrix K, (n —s—q) xs
matrix L, s X (cg — s — p) matrix M and s x s matrix N. The
orthogonality of the second and the fourth blocks of columns shows
that SM = Ogy(c,—s—p); thus M = Ogy(c,—s_p) since S is non-

singular. Similarly, the orthogonality of the second and the fourth

blocks of rows shows that L = O(,,_s_g)xs- o
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§3.7 Unitary Decomposition

Proof (cont.)
Next, from the fifth and the second blocks of rows, SC—NS = Ogys,
so N = C and we obtain that

I oJ
Finally, note that b —s—g=n+k—co=c+k—rn=c—s—p
so that K is a square matrix.
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§3.7 Unitary Decomposition

Proof (cont.)
Next, from the fifth and the second blocks of rows, SC—NS = Ogys,
so N = C and we obtain that

I ol
Finally, note that n —s—g=n+k—c=a+k—n=c—s—p
so that K is a square matrix. Together with the fact that DTD =
DDT =1, we find that KK = K'K = I so that K is unitary and
can be transformed to I without altering the rest of D by replacing
Uy with Us blkdiag(KT, Isxs, Igxgq) in (7). o
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§3.7 Unitary Decomposition

Remark: In quantum computing, for a 2" x 2" unitary matrix Q
(that is, Q is an n-qubit gate) we apply the CS decomposition for
thecase c; = =r = rp = 2" ! and we have

cos 04 —sin 64
|:Q11 QIZ:| . [Ul 0:| 08 Oyn—1 E — sin Ogn—1 {VI 0}
Qu Quz| | 0 Uz||sinés cos 61 0 VQJr ’
.sin92n71 cos Ogn—1
where 0 < 0] < fy < -+ < Ogn1 < g
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§3.7 Unitary Decomposition

Remark: In quantum computing, for a 2" x 2" unitary matrix Q
(that is, Q is an n-qubit gate) we apply the CS decomposition for
thecase c; = =r = rp = 2" ! and we have

cos 04 —sin 64
|:Q11 QIZ:| . [Ul 0 :| 08 Oyn—1 — sin Ogn—1 {VI 0 }
Q21 Qoo |10 Us | | sin 61 cos 61 0 \/QJr ’
h sin Oyn—1 ) cos Ogn—1
where 0 < 0 < 0 < -+ < Oy1 < g In terms of quantum

circuits, the case n = 3 can be illustrated as follows:

R,(20:) - R, (20) |- R, (265) - R, (200

s L # MAS501*
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§3.7 Unitary Decomposition

The 2-qubit gates U;, Us, VlT and V2T can be further decomposed.
For example,

Ui =

for some 0 < ¢1 < ¢2 < 7/2 and quantum gates with matrix
representations Vi1, Vio, Uy, Uis so that




Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

The 2-qubit gates U;, Us, VlT and V2T can be further decomposed.
For example,

Ui =

for some 0 < ¢1 < ¢2 < 7/2 and quantum gates with matrix
representations Vi1, Vio, Uy, Uis so that

Ui

Figure 2: The decomposition of the controlled-U gate

Therefore, the CS decomposition essentially provides a way to ex-
press an n-qubit gate as the product of multi-controlled gates.
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§3.7 Unitary Decomposition

Recall that any 1-qubit gate can be decomposed further as the prod-
uct of rotation gates R, R, and the phase gate Ph. If the quantum
gates Uj; and Ui in Figure 2 can be expressed as

U = Rz(&)Ry(m)R(91)Ph(d1), Uiz = R:(§2)Ry(n2)R,(Y2)Ph(d2),
the controlled-U gates in Figure 2 can be further decomposed into
| | | |

[ [ | [
—{ P(61) FH{ Re(01) o Ry(m) | Ra(€1) F{ Ph(82) [ Ral@2) | Ry () [ Ra2) |-

Ching-hsiao Cheng B335 i A # MAS501*
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§3.7 Unitary Decomposition

Recall that any 1-qubit gate can be decomposed further as the prod-
uct of rotation gates R, R, and the phase gate Ph. If the quantum
gates Uj; and Ui in Figure 2 can be expressed as

Ui = Rz(&)Ry(m)Rz(01)Ph(d1), Uiz = Rz(&)Ry(n2)Rz(92)Ph(42),
the controlled-U gates in Figure 2 can be further decomposed into
| | | |

[ [ | [
—{ P(61) FH{ Re(01) o Ry(m) | Ra(€1) F{ Ph(82) [ Ral@2) | Ry () [ Ra2) |-

Without any further modification, we can express an n-qubit gate
as the product of multi-controlled rotation gates, at an expense

of some not implementable phase gates.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Recall that any 1-qubit gate can be decomposed further as the prod-
uct of rotation gates R, R, and the phase gate Ph. If the quantum
gates Uj; and Ui in Figure 2 can be expressed as

U = Rz(&)Ry(m)R(91)Ph(d1), Uiz = R:(§2)Ry(n2)R,(Y2)Ph(d2),
the controlled-U gates in Figure 2 can be further decomposed into
| | | |

[ [ | [
—{ P(61) FH{ Re(01) o Ry(m) | Ra(€1) F{ Ph(82) [ Ral@2) | Ry () [ Ra2) |-

Without any further modification, we can express an n-qubit gate

as the product of multi-controlled rotation gates, at an expense
of some not implementable phase gates. In the next section,
we talk about how to “cancel out” these phase gates and make an
n-qubit gate indeed the product of multi-controlled rotation gates.
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§3.7 Unitary Decomposition

§3.7.4 Decomposition of arbitrary quantum gates
We note that the matrix [g 708} commutes with the matrix {g g}
for all 2"~1 x 2"—1 diagonal unitary matrix P; that is,

P 0||C —S . C —S|[P O . Jiae AlD1 iPon—1

{0 PHS (‘l_{s (:Ho P} VP = diag(e™, .-, e®a).
Therefore, if P is a diagonal unitary matrix,

Qu Q2| _ [U1 0||C =S vi o
Q21 Q22 0 U:|S CJ|oO V;

_Juy 0[P 0][PT 0][C =S][Vf o
L0 U2)[0 PJ[O PT[|S C|lO0 V]

#cf A # MA5501*
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§3.7 Unitary Decomposition

§3.7.4 Decomposition of arbitrary quantum gates
We note that the matrix [g 708} commutes with the matrix {g g}
for all 2"~1 x 2"—1 diagonal unitary matrix P; that is,

P 0||C —S . C —S|[P O . Jiae AlD1 iPon—1

{0 PHS (‘l_{s (:Ho P} VP = diag(e™, .-, e®a).
Therefore, if P is a diagonal unitary matrix,

Qu Q2| _ [U1 0||C =S vi o
Q21 Q22 0 U:|S CJ|oO V;

_[uy 0][P 0[C =S][PT 07[V] O
10 U:f|0 P|[S C|lo PO V]

#cf A # MA5501*
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§3.7 Unitary Decomposition

§3.7.4 Decomposition of arbitrary quantum gates

We note that the matrix {

C —S
S C

} commutes with the matrix [

P 0
0o P

for all 2"~1 x 2"—1 diagonal unitary matrix P; that is,

P 0
0P

o 2l

C -S
S C

|

P 0
0P

C -S
S C

Therefore, if P is a diagonal unitary matrix,

|

Qll Q12
QQI Q22

|

_[uy 0][cC
o _0 U2_ 1S
_[uy 0][P
- | 0 Uz] |0
_[u, 0][P
|0 Uqf|O

} Y [P= dia‘g(e"("’iﬁ... 7e/'(€62n—1>'
STV o]
cllo V]|
o]fCc =s][PT o VIT 0
P|[S C _() ,DT 0 VQT
Pl|S C 0 (VQP)T .

)

Ching-hsiao Cheng
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§3.7 Unitary Decomposition

§3.7.4 Decomposition of arbitrary quantum gates

C —S
S C

for all 2"~1 x 2"—1 diagonal unitary matrix P; that is,

P 0][C -S| _[cC -S][P 0 R
{0 PHS C}_{s CMO P} V P = diag(e'", .-, e®1).

We note that the matrix {

} commutes with the matrix {P 0}

0o P

Therefore, if P is a diagonal unitary matrix,

Qu Q2| _ Uy 0][C =S][V] 0]

Q21 Q22 10 Uz[S C||o0 V;_
_[uy 0][P 0[C =S][PT 07[V] O
~ L0 W]lo PJ|S C|l0 PT[{l0 V]
_[uy 0][P 0][C =S][(viP)T 0
~ |0 U0 P[|S C 0 (VaP)t|’

The diagonal unitary matrix P will be chosen to “cancel out the

phase gate” so that the matrix {%1 82} {g g} is a product of multi-

controlled rotation gates.
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§3.7 Unitary Decomposition

Let U be an n-qubit quantum gate. By previous remark
o4 8 11% A11% 2% 4)
0 Up 0 P Sn Gy 0 Uy
where P, is a 277! x 27~1 diagonal unitary matrix to be deter-
mined. The decomposition can be applied recursively to the sub-

matrices Uj’k until a 2 x 2 block-diagonal form is encountered.
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§3.7 Unitary Decomposition

Let U be an n-qubit quantum gate. By previous remark
o=[5 a5 alls 2T el
0 Up 0 P Sn Gy 0 Uy

where P, is a 277! x 27~1 diagonal unitary matrix to be deter-
mined. The decomposition can be applied recursively to the sub-
matrices Uj’k until a 2 x 2 block-diagonal form is encountered. For
example, we use the CS decomposition to write

U111 = U1211'D1211A%1U1212: U1]2 - U1221'D1221A?2U12227
so that

|: Ulll Ol :| — |:U1211'D1211A%1U1212 . 20 . . :|
0 U12 0 U121P121A12U122

— U1211 0 P121 1 0 A%l U1212 0
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§3.7 Unitary Decomposition

In general, for 1 < i< nand 1< ;<27 we use the CS decom-
position on each block of Uj_l to write

i—1 _ i i i i
Uj = Uyj_1Pyj_1A%-1 Uy,

where Uj; | and Uj; are block diagonal matrices consisting of 2’
blocks of 2™~/ x 2"~/ unitary matrices, PQ"J;l is a block diagonal
matrix of the form

'Déjfl = blkdiag(Q{, QL Qi QQiifl)

for some 277 x 27~/ diagonal unitary matrices @, - - -, (()2",-,l to be

determined.
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§3.7 Unitary Decomposition

In general, for 1 < i< nand 1< ;<27 we use the CS decom-
position on each block of Uj_l to write

i—1 _ i i i i
Uj = Uyj_1Pyj_1A%-1 Uy,

where Uj; | and Uj; are block diagonal matrices consisting of 2’
blocks of 2™~/ x 2"~/ unitary matrices, PQ"J;l is a block diagonal
matrix of the form

'Déjfl = blkdiag(Q{, QL Qi QQiifl)

for some 2" x gn—i diagonal unitary matrices Q{, (()2",-,l to be
determined. We note that in principle we need to know PQ"J-_1 first

i ; i i
before we can decompose Uj; further since Uy; depends on Py;_;.
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§3.7 Unitary Decomposition

J
sequence of decomposition

U= U} PATUy = U PEATUF P; A3U3 P3 A3UZ
= ULPEATUZ PEAZUS P A UL
= UPPPALUs P A US P ASUR PEATUS P ASUG P A UR P AR US

Define Pgij = P! and Aéj = AJ’:*I. We then have the following

n—1pn—1 An—1n—1 pn—1 pn—1 n—1 n—1 n—1 n—1
= U P1 Al Uy P AY "'U2n71_1’D2n71_1A2n71_1Uznfl
on— 1_
:( 1_[ Un IPn lAn I)Uin-
Here the upper index denotes the level of recursion, whereas the
lower index denotes the position of the matrix within the resulting

matrix product.
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In the decomposition sequence above,
@ U takes the form

U = blkdiag(Us, Uy, - -+ , Upn—1)

for some 2 x 2 unitary matrices Uy, --- , Ugn-1.
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§3.7 Unitary Decomposition

In the decomposition sequence above,
@ U takes the form

U = blkdiag(Us, Uy, - -+ , Upn—1)
for some 2 x 2 unitary matrices Uy, --- , Ugn-1.
@ For each je N, let v(}) indicate the unique integer satisfying
j=2"0"12k—1) for some ke N.

Then 1 1 n—(J)
n— n— -
Pj - sz(j)fl(zk_l) =Py 1™
A1 — An-1 — Arl)
J T Tlov(h-1(2k—1) T T2k—1

which imply that Pj”*1 and Aj’.’*1 appear first time in the (n —
~(J))-th recursion of decompositions and do not appear in any
previous recursion of decompositions.
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§3.7 Unitary Decomposition

Therefore, Pj”_1 takes the form

Pjnil _ blkdlag(Qla Ql7 cee an,,y(j)fl, Q2n7’Y(J')*1)

for some 227" diagonal unitary matrices Q- - - s Qonry(i)—1,

and AJ’-’_1 takes the form

¢ -S§ Cor, jH)—1 -S. n—~(j)—1
A l=blkdiag | | o |-, | 200 T,
2 Sl C’l 52"*"((]‘)*1 CQN*"J(J)*'I

where for 1 < k < 2"U)—1,

— Al e (X « Ak
Cx = diag(cos 0y, -+ ,cos0, ),
— Algs & k i Ak
Sk = diag(sin 6y, - - ,sinf, ;)
7T

for some 0 < 9f < Ok < --- < 9"w> <

Ching-hsiao Cheng
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§3.7 Unitary Decomposition

Therefore, Pj”_1 takes the form

Pjnil _ blkdlag(Qla Ql7 cee an,,y(j)fl, Q2n7’Y(J')*1)

for some 27“"x2”"” diagonal unitary matrices Q1 -, Qur ()1,

and AJ’-’_1 takes the form

¢ -S§ Cor, jH)—1 -S. n—~(j)—1
A l=blkdiag | | o |-, | 200 T,
2 Sl C’l 52"*"((]‘)*1 CQN*"J(J)*'I

where for 1 < k < 2"U)—1,

— Beaal s ALk « Ok

Cx = diag(cos 0y, -+ ,cos0, ),
— di: S (A i Ak

Sk = diag(sin 6y, - - ,sinf, ;)

s —
for some 0 < 9F < Ok <. < Qéﬁ,m < —. We note that A7"*
Y 2 J

is indeed a multi-controlled gate of type Fr i (Ry).
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§3.7 Unitary Decomposition

(3] Pj”_1 can be chosen according to Uj”_1 so that Uj”_le”_1
is a product of multi-controlled rotation gates (which will be
explained soon). On the other hand, for each 1 < j < 2"—1 the
block diagonal matrix Uj':ll depends on P[‘l forall1 < k<
thus we need to specify P!, PJ~! ... successively in order

to complete the decomposition.
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§3.7 Unitary Decomposition

(3] Pj”_1 can be chosen according to Uj”_1 so that Uj”_le”_1
is a product of multi-controlled rotation gates (which will be
explained soon). On the other hand, for each 1 < j < 2"—1 the
block diagonal matrix Uj':ll depends on P[‘l forall1 < k<
thus we need to specify P!, PJ~! ... successively in order

to complete the decomposition.

Remark: In matlab®, ~ can be implemented by
~(j) = min(find(de2bi(j) == 1)).
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§3.7 Unitary Decomposition

Now we determine P{'"'. Since U/'"' is a block diagonal matrix

consisting of 2"~ 1 blocks of 2 x 2 unitary matrices U1”1_1, S UI”Z_,,L;
that is,
Ut
Un71
—1 12
U= = _ )
—1
Upts
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§3.7 Unitary Decomposition

Now we determine P~ *. Since U/ ' is a block diagonal matrix

consisting of 27! blocks of 2 x 2 unitary matrices U ", - U12,, 1
that is,
urt
Un71
—1 12
upt = § ,
| Un2n11

for each 1 < j < 277! there exist §;, &), 0;,m; such that

Uit = Ra(§)Ry(0)R(1)Ph(5)) ;

thus U]'~" can be written as the following product

Rz(61) } |:Ry(91) } Rz(n1) ] [Ph(él) ]
Ra(€gn 1) Ry(030-1) Ra(mpn-1) Ph(by0-1)
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§3.7 Unitary Decomposition

We note that the last matrix is not implementable since it consists
of phase gates. The P matrix will be combined with this “phase

gates” so that the combination is multi-controlled rotation gate.
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§3.7 Unitary Decomposition

We note that the last matrix is not implementable since it consists

of phase gates. The P matrix will be combined with this “phase

gates” so that the combination is multi-controlled rotation gate.

For each 1 < j < 2™ 2 let o = —w Define Q; =
diag(e™, e"/) and f; = dgj — dgj—1. Then
Ph(0yj_1)Q; = diag(e~ /2, e~ Fi/2) |
Ph(05) Q; = diag(ei/2, ei/2)
so that
o i8i/2
Ph(0-1) Q; _ e Bi/2
Ph(dy)) Qi eiBi/2
oiBi/2
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§3.7 Unitary Decomposition

Therefore, by defining
Plnil = blkdlag(le Q].a QQ’ Q27 ) QQ"_lv QQ”—l)

we have
blkdiag(Ph(61), -+, Ph(dgn1)) P!
= diag(e~P1/2, e=1B1/2 ¢1B1/2 ¢B1/2,
e iB2/2 =iB2/2 oiB2/2 oif2/2 ...
. e Bon2/2 ¢=iByn-2/2 oiBon-2/2 giPyn-2/2)
which is a multi-controlled gate of type F7(R;) (with Ogj_1 = 0y;
for all 1 < j < 2m1).
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§3.7 Unitary Decomposition

Therefore, by defining

P! = blkdiag(Q1, Q1, Q2, @2, - -+ , Qan-1, Qon-1)
we have
blkdiag(Ph(61), -+, Ph(dn-1)) P!
_ (1iag(e*’731/2, e iB1/2 oiB1/2 oiB1/2,
e B2/2 giB2/2 gif2/2 oiB2/2 ...

. e*i132n72/2’ e*i/32n72/2’ eiﬂénfz/Q7 eiﬁznfz/Q)
which is a multi-controlled gate of type F7(R;) (with Ogj_1 = 0y;
for all 1 < j < 2"!). This shows that U/ 'P/! is a product of
multi-controlled rotation gates in which the rotation gates involved
are Ry, and R,.
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Suppose that Pl"_l, e Pj”:l1 are specified so that U2”_1, e UJ-”_1

are determined accordingly.
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§3.7 Unitary Decomposition

1

Suppose that Pl"_l, .-+, P"" are specified so that U2”_1, can , U

J
are determined accordingly. Since Uj"*1 is also a block diagonal
matrix consisting of 27! blocks of 2 x 2 unitary matrices Uj'rl,

oo, UL we can decompose Uj"_1 as

_]2”71’
Rz(61) ] ry(el) rz(m) ] [Ph(&) ]
Ra(€n1) Ry(001) Ra(gn1) Ph(8y0-1)

forsome &y, -+ ,&qn—1, 01, ,03n-1, M1, ,Mon—1 and q, - - -, dgn—1.
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§3.7 Unitary Decomposition

1

Suppose that Pl"_l, .-+, P"" are specified so that U2”_1, can , U

J
are determined accordingly. Since Uj"*1 is also a block diagonal
matrix consisting of 27! blocks of 2 x 2 unitary matrices Uj'rl,

oo, UL we can decompose Uj"_1 as

_]2”71’
Rz(&1) Ry(61) Rz(m) Ph(d1)
Rz(€an—1) Ry(05n-1) Rz(mn-1) Ph(d5n-1)
forsome &y, - &1, 01, ,Oqn—1, M1, -+ ,Mon—1 @and q, - -, Ogn—1.

We note that these ¢j's, 6;'s, n;'s and J;'s are in principle different

from those values used in the decomposition of U/™!, -- -, Uj”:ll.

Ching-hsiao Cheng > 3 8 A # MA5501*



Chapter 3. Mathematical Backgrounds

§3.7 Unitary Decomposition

Next we look for Pj”_l, a block diagonal matrix of the form
blkdiag(Q1, Q1, Q2, @2, , Qan—r(i)-1, Ronr(-1) ,

where each Qy is a diagonal matrix of size 27U) x 270U) 5o that

Uj"_le"_1 is the product of multi-controlled rotation gates.
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§3.7 Unitary Decomposition

Next we look for Pj”_l, a block diagonal matrix of the form

blkdiag(Q1, Q1, Q2, Q2, -+, Qonr(i—1, Qonn(i)-1) ,
where each Qy is a diagonal matrix of size 27U) x 270U) 5o that

an_le"_l is the product of multi-controlled rotation gates.

Foril<k<n—~(j)—1and1<?¢<2U) let

1
X —1)27(N £ = D) <5(k71)2wr(1)+[ff71] + 5(;(71)2%1)+21w<j>71+[4+71]) )

where [HTl] in the sub-index denotes the largest integer which is

L Beffine

14
not greater than a

Qx = diag(eiaz(k*l>"'<f>+1, Lo, ei%)
and

PJ.”*1 = blkdiag(Ql, Q1, @2, Q2+, Qo)1 anfw)*]) :
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§3.7 Unitary Decomposition

Then blkdiag(Ph(61), - -, Ph(63s-1))P/'~", with N denoting 271),
takes the form
diag(ef"’gl/z, 671'52/27 e e*’.»BN/27 ef/31/27 ef/32/27 e eiﬁN/27
e*fﬁ/\ur]/QT e*:‘3/\/+2/27 aa0 e*fﬁ'zw/Q, el"i3/\/+1/27 eﬁl\/+2/27 con ef52N/27
—iB 3

. ’e on 17N+1/2.‘ 67(2/1 1—N+2/2.‘ 500 eiiﬁ‘z”*]/zq

e"“‘gz”*LNH/Qq e(52n717,\,+2/2‘ s00 e"eiaz"*l/z)

for some By, ,Pon-1 € R.
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§3.7 Unitary Decomposition

Then blkdiag(Ph(61), - -, Ph(63s-1))P/'~", with N denoting 271),

takes the form

diag(ef"’gl/z, 671'52/27 e e*’.»BN/27 ef/31/27 ef/32/27 e eiﬁN/27

e*fﬁ/\ur]/QT e*:‘3/\/+2/27 aa0 e*fﬁ'zw/Q, el"i3/\/+1/27 eﬁl\/+2/27 con ef52N/27
—iBon—1_ 2 _—Bon—1_ 2 —iBon—1/2
.7e 2n N+1/’e 2n N+2/’...7e 2 ]/,
e"“°32ﬂ*17/\/+1/2q Pan—1_n2/2 ... . e’ﬁznfl/z)

for some (1, ,Bon-1 € R. This is a multi-controlled gate of

type F” )(RZ). Therefore, Uj”_le”_1 is the product of multi-

n—y(Jj
controlled gates in which the rotation gates involved are R, and R,.
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§3.7 Unitary Decomposition

Let U be an n-qubit gate (or equivalently, 27 x 2" unitary matrix).

Recall that .
G n—1 pn—1 pAn—1 n—1
u=( [T urpra Just
=
where Uj”_1 is a block diagonal of 2 x 2 matrix for all j, and AJ’: takes
the form
¢ —-S Cnf'yj—l -S n—~(j)—1
ATt =blkdiag [ | M, N D I I
J S G Son—vty-1 Con—vy—1

Ching-hsiao Cheng = D chlcd A # MAS501*



Chapter 3. Mathematical Backgrounds
§3.7 Unitary Decomposition

Let U be an n-qubit gate (or equivalently, 27 x 2" unitary matrix).

Recall that .
U:( l_[ Un 1Pn 1An 1>U2n17
j=1
where Uj”_1 is a block diagonal of 2 x 2 matrix for all j, and AJ’: takes
the form
G -S Cnf'yj—l ) n—vy()—1
ATt =blkdiag [ | M, N D I I
J S5 G Sor—v-1 Con—ry(h—1

From the argument above, we know that UJ.”_IPJ.”_1 is the product
of multi-controlled gates, while each AJ’7*1 is a multi-controlled gate
of type F W(J)(Ry)' Therefore, in order to implement the quantum
gate with matrix representation U using quantum circuits, it suffices
to consider how to implement a multi-controlled gate in which the

rotation gate involved is Ry or R..
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§3.7 Unitary Decomposition

Each 2™1 x 2+ ynitary matrix can be expressed as the product
of multi-controlled rotation gates of type F/(R,) and F](R;), k=
1,2, ,n+1.

Recall that the multi-controlled rotation gates of type F(Ra) are
(n+ 1)-qubit gates L satisfying

L(1x0)®- - -®xn)) = [x0)®" - - ®|xj-1)®(Ra(dx) X)®|Xj+1)®" - B x0)
if (X0 Xj—1Xj11--Xn)2 = k, where @ = (ay, ay, a,) is a unit vector

in R? and R, is a 1-qubit gate given by

cos & + iaz sin ¢ (ay + iay) sin ¢
Ra(¢) = ’ A P )
—(ay — iay) sin 5 Cosg —iagsing

We also write R, as Ry or R, if a= (0,—1,0) or a= (0,0, —1).
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§3.8 Implementation of Multi-Controlled Rotation Gates

In this section we are concerned with the implementation of multi-
controlled rotation gates of type F[,,(Ra) with unit vector a =
(0, ay, a;) using quantum circuits. The implementation of multi-
controlled gate of this type is the building block of the implemen-

tation of general quantum gates.
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§3.8 Implementation of Multi-Controlled Rotation Gates

In this section we are concerned with the implementation of multi-
controlled rotation gates of type F[,,(Ra) with unit vector a =
(0, ay, a;) using quantum circuits. The implementation of multi-
controlled gate of this type is the building block of the implemen-
tation of general quantum gates. We note that multi-controlled
rotation gate of type F/(Ra), where 1 < k < n, can be obtained by
applying several swap operations on multi-controlled rotation gate
of type F/’. | (Ra); thus arbitrary multi-controlled rotation gates can

also be implemented even though we only focus on the case of
Fri1(Ra).
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§3.8 Implementation of Multi-Controlled Rotation Gates

Recall that the matrix representation of multi-controlled rotation
gates of type F, | (Ra) takes the form

R = blkdiag(Ra(¢1), - , Ra(¢n)) with a=(0,ay,a,), (9)

where for a given unit vector a = (ay, a,, a;) and angle ¢, the rota-

tion matrix R;(¢) is given by (8) or equivalently,

Ra(¢) = Icos % +i(axox+ ayoy,+ a,0z) s1n§ ,

in which o4, 0, and o, are the Pauli matrices

0 1 0 —i 1 0
O‘X:X:|:1 0:|’ O'y:Y:|:I OI:|’ O-Z:Z:|:O _1:|

Therefore, it suffices to consider the implementation of a unitary

matrix of form (9).
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§3.8 Implementation of Multi-Controlled Rotation Gates

e Some properties of R,(¢):
O Ry(¢) = R0,1,0)(—¢) = Ri0,—1,0)/(¢) for all angle ¢.

Rz(¢) = R 1)( ¢) = R0,0,—1)(¢) for all angle ¢.
Ra(¢)" = Ra(—¢) for all unit vectors a € R? and angle ¢.
Ra(¢) is unitary for all unit vectors a € R? and angle ¢.
Ra(0)Ra(¢) = Ra(0 + ¢) for all unit vectors a € R and angles
9, o.
O XRa(¢)X = Ra(—¢) for all unit vectorss a = (0, a, a,) € R?
and angle ¢.

Such operator R,(¢) is called the rotation (of a qubit) about the
three-dimensional vector a with angle ¢ (on the Bloch sphere).
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§3.8 Implementation of Multi-Controlled Rotation Gates

We use the following example to illustrate the idea of how a quantum

gate of the form in (9) is implemented using quantum circuits.

Example (4-qubit gate decomposition)

Let a = (0,a,,a,) be a unit vector in R3. Consider the multi-
controlled 4-qubit gate given by

0 ®1y) = [ ® (Ralaxt)ly))  forall 0 < k<7

whose matrix representation is given by

blkdiag(Ra(c), Ra(a2), -+, Ra(ag)) -
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Goal: Find Ci, G, -+, G € {CNOT;4,CNOT24,CNOT34} and
Ri, -+, R of the form R; = blkdiag( Ra(6)), Ra(6)), - , Ra(6)))

.

~~ =

8 copies of Ra(6;)
(which is the matrix representation of Iy ® Io ® Iy ® Ra(6;)) so that

blkdiag(Ra(1), -+ , Ra(ag)) = GRsGrRr -+ GReGiRy .
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Goal: Find Ci, G, -+, G € {CNOT;4,CNOT24,CNOT34} and
Ri, -+, R of the form R; = blkdiag( Ra(6)), Ra(6)), - , Ra(6)))

—

S ~~

8 copies of Ra(6;)

(which is the matrix representation of Iy ® Io ® Iy ® Ra(6;)) so that
blkdiag(Ra(oq), ce Ra(ag)) = C8R8 C7R7 s C2R2 C1 R1 0
Recall that CNOT; 4 denotes the controlled-not gate whose control
qubit is the i~th qubit while the target qubit is the 4-th qubit, and

the matrix representation of CNOT; 4 are given by
CN0T174 = blkdiag(Ig, IQ, 12, IQ, X, X, X, X) 0
CN0T274 = blkdiag(lg, IQ, X, X, 12, 12, X, X) 9
CN0T374 = blkdlag(lg, X, 12, X, 12, X, 12, X) .

= =
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Define R’k by
Ri= GsCr-- CeRkCiCrp1- -+ Cs -
Since G;C; =I5 and C;C = CCj for all 1 < j, k < 8, we find that
RsRr - Ry
= (GgRe () (s CrR7 C7 Cg) (Cg C7 CRs Co C7 C) - - -
oo (G000 CRE o0 Ch)
= (GR)(CGRCr) (GG R G Cr) - -+ (G- - CLR1 G- - GR)
= (GRs)(CrRr)(CeReCo) -+ (Co - - CLR1 Gy - - - C)

= (GRs)(GrR7)(CeRe) - - - (GLR1)(CGr - -+ )
so that

CeRsCrRy--- ClR = RgRy - Ry - (GG -+ Gg) .

= =
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

By the fact that XR,(0)X = R,(—0) for all 6 € R, for all
1,02, -+, Pz € R we have we have

CNOT, 4 - blkdiag(Ra(#1), Ra(¢2), -+ , Ra(¢s)) - CNOTy 4

= blkdiag(Ra(1),Ra(#2),Ra($3), Ra($4), Ra(—¢5), Ra(—6), Ra(—¢7), Ra(—5)),
CNOT. 4 - blkdiag(Ra(¢1), Ra(b2), - - , Ra(s)) - CNOT2 4

= blkdiag(Ra($1),Ra(¢2),Ra(—$3),Ra(—b4),Ra(¢s), Ra(é6),Ra(—$7),Ra(—05)),
CNOT3 4 - blkdiag(Ra(41), Ra(¢2), - - , Ra(¢s)) - CNOT34

=blkdiag (Ra(¢1),Ra(—02),Ra($3),Ra(—1),Ra(5),Ra(—¢6),Rale7),Ra(—35)).

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

By the fact that XR,(0)X R:(—0) for all § € R, for all
1,02, -+, Pz € R we have we have

CNOT, 4 - blkdiag(Ra(¢1), Ra(¢2), - - Ra(¢8)) .CNOT.,
= blkdiag(Ra($1),Ra(#2), Ra(#3), Ra(#4),Ra(—}5),Ra(—6),Ra(—¢7),Ra(—bs)),
CNOT, 4 - blkdiag(Ra($1), Ra(¢2), -+ , Ra(¢s)) - CNOT2 4
= blkdiag(Ra(¢1),Ra($2),Ra(—$3),Ra(—$1), Ra(e5), Ra(B6), Ra(—b7),Ra(—b5))

s
CNOT3 4 - blkdiag(Ra(qSl), Ra(ga), -+, (¢8)) CNOT374
— blkdiag(Ra(é1),R )

2(—$2),Ra(®3),Ra(— 1), Ra(®s5),Ra(—6), Ral 7)7Ra(*®8))-
Therefore, F\’k must take the form

blkdiag(Ra(blek)? Ra(bkggk), cee Ra(bkgﬁk)) s

where by; = +1 and by; is determined by Cj,--- , Cs.

Ching-hsiao Cheng

£+ 3B il & MAB501%



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
In fact, if r; is the symbol of C;, then

b, = [bklabk27"'vbk8] =k o kP R IR

where .# denotes the Hadamard product.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
In fact, if r; is the symbol of C;, then
b= [bu, bz, bkg | = ricx -+ xrp x

where .x denotes the Hadamard product. We recall that the sym-
bols of CNOT is connected the 8 x 8 Hadamard matrix

1 1 1 1 1 1 1
=1 1 -1 1 =l 1 -1
1 =il =l 1 1 =1 =l

-1 -1 1 1 -1 -1 1
i IS (R (R |

1 1 =1 =1 1 =1 1
1 -1 -1 -1 -1 1 1

|1 -1 -1 1 -1 1 1 -1 |

If the k-th row of M is denoted by Sx 1, then the symbols for
CNOT34, CNOTo 4 and CNOT174 are S1, So and Sy, respectively.

e e e e e e
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Note that the identity R,(0)Ra(¢) = Ra(6 + ¢) implies that
RsRy - - Ry = blkdiag (Ra(bs16s), Ra(bsa0s), - - , Ra(bssbs))

‘blkdiag(Ra(b7107), Ra(br267), - - - , Ra(b7s07))
cee blkdiag(Ra(bHHl), Ra(b12604),- -, Ra(blgel))
= blkdiag(Ra(bs10s + br167 + - + b1161),
Ra(bs20g + brablz 4 - - - + b1261),- -+,

Ra(bssfs + brgls + - - - + bigby)) .

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Note that the identity R,(0)Ra(¢) = Ra(6 + ¢) implies that
RsRy - - Ry = blkdiag (Ra(bs16s), Ra(bsa0s), - - , Ra(bssbs))

‘blkdiag(Ra(b7107), Ra(br267), - - - , Ra(b7s07))
cee blkdiag(Ra(bHHl), Ra(b12604),- -, Ra(blgﬁl))
= blkdiag(Ra(bs10s + br167 + - + b1161),
Ra(bs20g + brablz 4 - - - + b1261),- -+,
Ra(bssfs + brsbs + - - - + bigb1)) .
This computation motivates us to choose ri,--- ,rg € {51,52,54}
such that by given by by = ry . - - - % r; 2 rg satisfies
Q@ by = Sy (if so, then CiCy--- C3 = Iig which implies that
CsRsCrRr--- CLRy = RgRy - -+ Ry).
@ The collection {by, by, - - -, bg} is linearly independent.

v
T
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

If we are able to find such r,--- ,rg, then we choose 61,--- ,0g
satisfying

bll b21 e b?l bSl 91 (631

b12 b22 e b72 b82 92 Q2

big bag -+ brs  bsg Os as

whose solvability is guaranteed by property 2 above.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

If we are able to find such r,--- ,rg, then we choose 61,--- ,0g
satisfying

bll b21 e b?l bSl 91 (631

b12 b22 e b72 b82 92 Q2

big bag -+ brs  bsg Os as

whose solvability is guaranteed by property 2 above. Such 60;'s will
then verify that
CsRsCrRy--- CiRy = RgRy - Ry
= blkdiag(Ra(al)a Ra(az),-- -, Ra(O‘S))

and our goal is achieved.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

Finally, let us explain how to find r,r, - - K€ {51,52, 54} satis-
fying the two properties above. First we note that

[ ones(1,8) =Sy T

S
S

51 Sk 52
S4

51 Wk 54

Sy % Sy

51 5 52 .k 54

Therefore, all rows of M can be generated by S;, S and Sy using
the Hadamard product .x and we have

Si-*sj:5i+j Vi./je{l,?,ll} and 51.*52.*54:57.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

This allows us to write
Sp=SP xS xS2 if 0< 0= (lal1ly)s <7,
where 5,9 =5y for k=1,2,4.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

This allows us to write
Sp=Sk xS xS if 0<l=(blil)<T,
where 5,9 = Sy for k = 1,2,4. By the fact that S; .* S; = Sy and
Si.xSj=S5;.x S for 5, Sj € {51, Ss, 54},
S §j= SPO0 L SION L SEDR i = (iyirig)a,j= (jajijo)2

where @ is the addition in Zs.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

This allows us to write

Sp=SP xS xS2 if 0< 0= (lal1ly)s <7,
where 5,9 = Sy for k = 1,2,4. By the fact that S; .* S; = Sy and
S,' K Sj = SJ K S,' for 5,', Sj € {51, 52, 54},

S S = SO L SION LSRR i i< (iirig)2,j = (jajio)2
where @ is the addition in Zg. Writing Ss,¢,4,), instead of S, if
f= (fzflfo)g, we have

S(iQiliO)Q '*S(jzhj())z = S(k2k1k0)2 |f l(,_]@ € {07 1} and kg = Ig @_]@ 0

v
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

This allows us to write
Sp=SP xS xS2 if 0< 0= (lal1ly)s <7,

where 5,9 = Sy for k = 1,2,4. By the fact that S; .* S; = Sy and
S,' K Sj = SJ K S,' for 5,', Sj € {51, 52, 54},

Si x5 = 51")@’0.*551@“ .*54’2@2 if = (i2irio)2,j = (jojijo)2,

where @ is the addition in Zg. Writing Ss,¢,4,), instead of S, if
f= (fzflfo)g, we have

Stiaivio)s * S(jajijo)e = S(kekiko)s I e, e € {0,1} and kp = iy @ j -

v

Example: 53 . S5 = S11), -* S(101), = S(110), = S6. Note that
S3 % 55 # Sg.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

By identifying S(s,0,40), as (f2,f1,00), we find that the group
({So, S1,- -+, S7}, .* ) is isomorphic to the group (Zy x Zg X Z3,®),
where @ on Zgy X Zg X Zso is given by

(i2, i1, i0) @ (J2,J2,Jo) = (i2 @ jo, i1 @ j1, o D Jo), e, je € {0,1};

V.

“Definition”: A group is a set equipped with an operation that
combines any two elements to form a third element while being as-
sociative as well as having an identity element and inverse elements.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

By identifying S(s,0,40), as (f2,f1,00), we find that the group
({So, S1,- -+, S7}, .* ) is isomorphic to the group (Zy x Zg X Z3,®),
where @ on Zgy X Zg X Zso is given by

(i2, i1, i0) @ (J2,J2,Jo) = (i2 @ jo, i1 @ j1, o D Jo), e, je € {0,1};

Definition: A group is a set G equipped with an operation * such that
l.axbe GVabe G, 2. (axb)xc=ax(bxc)Va,bceG
3.dJee Goaxe=exa=aforall ae G;

4. Vae Gdbe Goaaxb=bxa=ce
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

By identifying S(s,0,40), as (f2,f1,00), we find that the group
({So, S1,- -+, S7}, .* ) is isomorphic to the group (Zy x Zg X Z3,®),
where @ on Zgy X Zg X Zso is given by

(i2, i1, i0) @ (J2,J2,Jo) = (i2 @ jo, i1 @ j1, o D Jo), e, je € {0,1};

that is, there exists a bijection ¢ : {Sp,- - ,S7} — Zg X Za x Zo
given by ©(S(k,k ko)s) = (K2, k1, ko) such that

99(5(/2/11'0)2 5 5(]2]1]0)2) = 99(5(/21'11'0)2) ® @(S(J'zjljo)z) :

4

Definition: A group is a set G equipped with an operation * such that
l.axbe GVabe G, 2. (axb)xc=ax(bxc)Va,bceG
3.dJee Goaxe=exa=aforall ae G;

4. Vae Gdbe Goaaxb=bxa=ce
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Recall that
O r; are symbols of C; € {CNOT; 4,CNOT24,CNOT34}; thus
rj € {S1,52,54} which implies that r; = S, ), for some

Xj,¥j»zj € {0,1} with the property that one and only one of

Xj, ¥j, Zj is 1.

Q@ by=rcx--- xrgforall 1 < k<8, and we look for r; such
that by = Sp and {by, - - - , bs} are linearly independent (so that
{bh'" 7b8} — {507... 757})_

Since

(Xk> Y Zi)®- - -D(x8, Y8, 28) = (Xk D" - -8, Yk®:- - -Dys, ZkD- - -D2g) ,
we find that p(by) and @ (b 1), the correspondence of by and by

in Zg X Zo X Zs, differs by only one slot/bit.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
Therefore, we need to arrange Sy, - - -, S7 in an order such that ad-
jacent (S;) differs by one slot/bit.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

Therefore, we need to arrange Sy, - - -, S7 in an order such that ad-
jacent (S;) differs by one slot/bit. This motivates the idea of
the reflected binary code (also called Gray code) which is a scheme
for listing all n-bit binary numbers so that successive numbers dif-

fer in exactly one bit.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

Therefore, we need to arrange Sy, - - -, S7 in an order such that ad-
jacent (S;) differs by one slot/bit. This motivates the idea of
the reflected binary code (also called Gray code) which is a scheme
for listing all n-bit binary numbers so that successive numbers dif-
fer in exactly one bit. The 3-qubit reflected Gray code is given by
[0,1,3,2,6,7,5,4]. We list these numbers in terms of binary rep-
resentation in the following table and one can see that adjacent

numbers differ by one bit.

j=Geijo)2 | O] 1 | 3] 2]6 51 4 ] 0
J2 0 0 0 0 1 1 1 1 0
il 0 0 1 1 1 0 0 0
Jo 0|11 0 100
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))
From the table above, by, bs, ---, bg correspond to (0,0,0),
(0,0,1), -+, (1,0,0) in Zy x Zs x Zs.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

From the table above, by, bs, ---, bg correspond to (0,0,0),
(0,0,1), ---, (1,0,0) in Zg x Zg x Z3. How do we find rj? Note
that bx = r % byyq; thus

k= rix by e by = b x b V1I<j<7, rg=bs.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

From the table above, by, bs, ---, bg correspond to (0,0,0),
(0,0,1), ---, (1,0,0) in Zg x Zg x Z3. How do we find rj? Note
that bx = r % byyq; thus

re=rgx b x b =bg by V1I<j<T, rg=bg.
Therefore, r; corresponds to the element (0,0,0)® (0,0, 1) in Zg X
Zs x Za, ray corresponds to the element (0,0,1) ® (0,1,1) in Zy x
Zo X Zo, and etc. This implies that rr = S; and rn = S5, and so

on.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

From the table above, by, bs, ---, bg correspond to (0,0,0),
(0,0,1), ---, (1,0,0) in Zg x Zg x Z3. How do we find rj? Note
that bx = r % byyq; thus

k= rix by e by = b x b V1I<j<7, rg=bs.

Therefore, r; corresponds to the element (0,0,0)® (0,0, 1) in Zg X
Zs x Za, ray corresponds to the element (0,0,1) ® (0,1,1) in Zy x
Zo X Zo, and etc. This implies that rr = S; and rn = S5, and so
on. Note that the addition in fact indicates the bit where by and
by differ (which is shown as boldface colored 0 or 1 in the table).
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

From the table above, by, bs, ---, bg correspond to (0,0,0),
(0,0,1), ---, (1,0,0) in Zg x Zg x Z3. How do we find rj? Note
that bx = r % byyq; thus

k= rix by e by = b x b V1I<j<7, rg=bs.

Therefore, r; corresponds to the element (0,0,0)® (0,0, 1) in Zg X
Zs x Za, ray corresponds to the element (0,0,1) ® (0,1,1) in Zy x
Zo X Zo, and etc. This implies that rr = S; and rn = S5, and so
on. Note that the addition in fact indicates the bit where by and
by differ (which is shown as boldface colored 0 or 1 in the table).
Moreover, the position of the different bit is in fact the position of
the controlled qubit in the CNOT gate (for example, the bit where
b, and b, differs locates in the 3rd qubit; thus r = CNOT3 4).

= =
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

Therefore, a choice of C;, Gy, -+, Cg can be
C1 = CNOT3,4, C2 = CN0T274, C3 = CN0T374, C4 = CNOT174,
C5 = CNOT3,47 C6 = CNOTQA7 C7 = CNOT1747 Cg = CNOTlA,
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§3.8 Implementation of Multi-Controlled Rotation Gates

Example (4-qubit gate decomposition (cont.))

Therefore, a choice of C;, Gy, -+, Cg can be
C; = CNOT34, C; = CNOTo 4, C3 = CNOT3 4, C; = CNOT, 4,
Cs = CNOT34, G5 = CNOTo 4, C; = CNOT, 4, G = CNOT, 4,
and recall that Ry, Ro,--- , R are given by
Rk = blkdiag(Ra(0k), - - , Ra(6x)) -
Such Cy's and Ry's fulfill our goal
blkdiag(Ra(a1), Ra(a2), -+, Ra(as)) = GRsGRr - - GRyGiRy

v
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Example (4-qubit gate decomposition (cont.))

Therefore, a choice of C;, Gy, -+, Cg can be
C; = CNOT34, C; = CNOTo 4, C3 = CNOT3 4, C; = CNOT, 4,
Cs = CNOT34, G5 = CNOTo 4, C; = CNOT, 4, G = CNOT, 4,
and recall that Ry, Ro,--- , R are given by
Rk = blkdiag(Ra(0k), - - , Ra(6x)) -
Such Cy's and Ry's fulfill our goal
blkdiag(Ra(a1), Ra(a2), -+, Ra(as)) = GRsGRr - - GRyGiRy

v

We summarize the discussion in the previous example and state the
general procedure of the decomposition of multi-controlled (n+ 1)-
qubit gate (with first n-qubit as control qubits) as follows.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Let a= (0, ay, a,) be a unit vector in R and N = 2".
@ The goal is to write the matrix representation of a multi-controlled
gate in the form

blkdiag(Ra(al), Ra(ag), e, Ra(OéN)) = CNR/\/C/\/,l R/\/,] oo C1 R*[,

where Cyx € {CN0T17,,+1,CNOT2,,7+1,~- ,CNOT,,7,,+1} and
R, = blkdiag(Ra(Hk), e ,Ra(Hk)) forall 1 < k< N
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§3.8 Implementation of Multi-Controlled Rotation Gates

Let a= (0, ay, a,) be a unit vector in R and N = 2".

@ The goal is to write the matrix representation of a multi-controlled

gate in the form
blkdiag(Ra(al), Ra(ag), e, Ra(OéN)) = CNR/\/C/\/,l R/\/,] oo C1 R*[,

where Cyx € {CN0T17,,+1,CNOT2,,7+1,~- ,CNOT,,7,,+1} and
R, = blkdiag(Ra(Hk), e ,Ra(Hk)) forall 1 < k< N

@ Using the property that C;C; = Iy and C;Cx = CiC; for all
1 < j, k < N, the right-hand side of the decomposition sequence

above can be rewritten as
CnRNCN-1Rn_1-+- CLRi = RyRy_1---Ri - (GG -+ Cy),

where R)k = (CNCNfl cee Ck)Rk(Cka+1 coe C/\/).
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§3.8 Implementation of Multi-Controlled Rotation Gates

© The effect of C--- Cy on Ry leads to the result
Ri = blkdiag(Ra(bki6k), Ra(bra 0), -, Ra(bin0k)) ,
where by = [by1, bk, - - - , bkn] is given by
b, = [bkl./ bro, -, ka} =rgx o xry_q.xry, (10)

where r; are symbol of C;.
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§3.8 Implementation of Multi-Controlled Rotation Gates

© The effect of C--- Cy on Ry leads to the result
Ri = blkdiag(Ra(bklek), Ra(bi2 0), - - -, Ra(bin Hk)) ,
where by = [by1, bk, - - - , bkn] is given by
b= [bua, bz, - bin] = rex -+ w ey xry,  (10)
where r; are symbol of C;.

Q Let Sk denote the (k+ 1)-row of the N x N Hadamard matrix
M. We choose ry,--- , ry properly from {SQk ‘ 0< k< n-— 1}
so that the corresponding by satisfies

(i) by = ones(1, N);

(ii) the collection {by, by, -- , by} is linearly independent.
Note that the collection {by, by, - - - , by} is linearly independent
means that {by, by, - - , by} is a permutation of rows of M.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Once we have these by's, we then solve

b1 b - bm 01 o1

b12 b22 Tt bN2 92 (65}

bin ban - bwn 0 as
to obtain 64, ---, Op.
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§3.8 Implementation of Multi-Controlled Rotation Gates

Once we have these by's, we then solve

bll b21 o le 01 aq
b12 b22 toe bNZ 02 a2
bin bony -+ by Os as
to obtain 64, ---, Op.
© Let {x1,x2,--- ,xn} be a reflected binary code (with x; = 0

for the list of numbers {0,1,--- ,N—1}, and f: {1,--- N} —
{1,--- n} be defined by

f(j) is the location where the bit expression of x; and xj;1
differ (xp1 = 0)

A choice of Ci, Co,---,Cy and by, by, - - - , by are given by
Cj=CNOT¢(j) ny1, bj= the binary expression of x;.

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

Remark: A way to obtain a reflected binary code for the numbers
{0,1,2,---,2" — 1} is given as follows: B3k R 4o E £ 0 B 45,
REM/AL R EL

B, R A

P L BAY - Bl oAz aira

%
EAFF - IR H o BEF g mAL 2L o

A Gray code for the case n = 3 is given by

000 — 001 — 011 — 010 — 110 — 111 — 101 — 100.
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§3.8 Implementation of Multi-Controlled Rotation Gates

e Algorithm of multi-control rotation gates decomposition:
Suppose that we are given matrix

R = blkdiag(Ra(cv1), -+ - , Ra(an))

for some unit vector a = (0, a, a,), where N = 2".
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§3.8 Implementation of Multi-Controlled Rotation Gates

e Algorithm of multi-control rotation gates decomposition:
Suppose that we are given matrix

R = blkdiag(Ra(cv1), -+ - , Ra(an))
for some unit vector a = (0, a, a,), where N = 2".

Q Let {x1,x9, -, xn}, where x; = 0, be a reflected binary code
(Gray code) for the list of numbers {0,1,--- N —1}. Define
xnt41=0and f: {1,--- N} - {1,---n} by

f(}j) is the location where the bit expression of x; and xj;1 differ

which can be implemented in matlab® by
f(j) =find(double(xor(flip(de2bi(x;, n)), flip(de2bi(xj+1, n)))) ==1)

Set C;=CNOT¢(j) g for 1 << N

j)?
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§3.8 Implementation of Multi-Controlled Rotation Gates

@ Define a 2" x 2" matrix B = [bj] by
by = (~1)¢=*,
where the exponent (i — 1) e (x;) is the bitwise dot product

of (i— 1) and x; (which can be implemented in matlab® by
de2bi(i — 1, n) = de2bi(x;, n)"). Solve

(91 a1

02 Q2
Bl | =

9/\1 N

Ching-hsiao Cheng B335 i A # MAS501*



Chapter 3. Mathematical Backgrounds

§3.8 Implementation of Multi-Controlled Rotation Gates

@ Define a 2" x 2" matrix B = [bj] by
by = (~1)¢=*,
where the exponent (i — 1) e (x;) is the bitwise dot product

of (i— 1) and x; (which can be implemented in matlab® by
de2bi(i — 1, n) = de2bi(x;, n)"). Solve

91 a1
(2 a2
Bl . |=
9/\1 N
© Define Ry = blkdiag( Ra(0k), -+ , Ra(0k) ) which can be imple-

N copies of Ra(6x)
mented in matlab® by R, = kron(eye(N), R,(6y)). Then R =

CnRNCn—1Rn—1--- C1Ry.
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