(Matlab) Assignment 3

Problem 1. In this problem you are asked to write a function "csd" whose input Q is an $2^{n} \times 2^{n}$ unitary matrix (n could be arbitrary) and outputs are three unitary matrices U, A, V of the same size:

$$
[U, A, V]=\operatorname{csd}(Q)
$$

where U, V take the form

$$
U=\operatorname{blkdiag}\left(U_{1}, U_{2}\right), \quad V=\operatorname{blkdiag}\left(V_{1}, V_{2}\right), \quad U_{1}, U_{2}, V_{1}, V_{2} \in \mathbb{C}^{2^{n-1} \times 2^{n-1}}
$$

and A takes the form

$$
A=\left[\begin{array}{cc}
C & -S \\
S & C
\end{array}\right], \quad C=\operatorname{diag}\left(\cos \theta_{1}, \cos \theta_{2}, \cdots, \cos \theta_{2^{n-1}}\right), S=\operatorname{diag}\left(\sin \theta_{1}, \sin \theta_{2}, \cdots, \sin \theta_{2^{n-1}}\right)
$$

with $0 \leqslant \theta_{1} \leqslant \theta_{2} \leqslant \cdots \leqslant \theta_{2^{n-1}} \leqslant \frac{\pi}{2}$ so that $Q=U A V^{\dagger}$. Note that you might want to use the matlab ${ }^{\circledR}$ built-in functions "flip" and "qr".

