Problem 1. For matrices $A = [a_{k\ell}]$ and $B = [b_{k\ell}]$ of the same size $m \times n$, define the Hadamard product of A and B, denoted by $A \odot B$, as an $m \times n$ matrix whose (k, ℓ) -entry is give by $a_{k\ell}b_{k\ell}$; that is,

$$C = A \odot B, \quad C = [c_{k\ell}], \quad c_{k\ell} = a_{k\ell} b_{k\ell}. \tag{0.1}$$

In matlab[®], the Hadamard product of A and B can be computed by $A \odot B = A \cdot *B$. In the following, we will always use $\cdot *$ to denote the Hadamard product.

Let H_n be the **unnormalized** Hadamard matrix whose (k, ℓ) -entry is given by $(-1)^{(k-1) \cdot \bullet (\ell-1)}$, and \mathbf{r}_j be the (j+1)-th row of H_n . Define $\varphi : \{0,1\}^n \to \{\mathbf{r}_0, \mathbf{r}_1, \cdots, \mathbf{r}_{2^n-1}\}$ by

$$\varphi(j_1, j_2, \cdots, j_n) = \mathbf{r}_j$$
 if $j = (j_1 j_2 \cdots j_n)_2$.

For example, for the case n=2 the map φ is given by

Show that $\varphi: (\{0,1\}^n, \oplus) \to (\{r_0, r_1, \cdots, r_{2^n-1}\}, .*)$ is a group isomorphism, where \oplus is the elementwise addition in \mathbb{Z}_2 ; that is,

$$(x_1, x_2, \dots, x_n) \oplus (y_1, y_2, \dots, y_n) = (x_1 \oplus y_1, x_2 \oplus y_2, \dots, x_n \oplus y_n).$$

In other words, show that $\varphi: \{0,1\}^n \to \{r_0,r_1,\cdots,r_{2^n-1}\}$ defined above is a bijection and

$$\varphi((k_1, \dots, k_n) \oplus (\ell_1, \dots, \ell_n)) = \mathbf{r}_k \cdot \mathbf{r}_\ell \qquad \forall k = (k_1 k_2 \dots k_n)_2 \text{ and } \ell = (\ell_1 \ell_2 \dots \ell_n)_2.$$
 (\diamond)

For example, in the example above (\star) implies that

$$\varphi((0,1)\oplus(1,1))=\varphi(1,0)=\boldsymbol{r}_2$$

while

$$\varphi(0,1).*\varphi(1,1) = \mathbf{r}_1.*\mathbf{r}_3 = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}.*\begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix} = \mathbf{r}_2$$
 so that $\varphi((0,1) \oplus (1,1)) = \varphi(0,1).*\varphi(1,1)$.

在此次作業中,證明可以選擇直接(手寫)證明(數學系學生尤其鼓勵這樣做),或是選擇使用 $matlab^{\mathbb{B}}$ 程式執行證明。選擇使用 $matlab^{\mathbb{B}}$ 程式證明的學生,在程式中要呈現「給定一自然數 n 則可以驗證在 H_n 上有上述性質(讓電腦跑完所有可能性看看 (\diamond) 是否恆成立)」。