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Chapter 5. Conjugate Gradient Methods

Introduction
Our interest in conjugate gradient methods is twofold. First, they
are among the most useful techniques for solving large linear sys-
tems of equations. Second, they can be adapted to solve nonlinear
optimization problems. The remarkable properties of both linear
and nonlinear conjugate gradient methods will be described in this
chapter.
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Introduction
The linear conjugate gradient method was proposed by Hestenes and
Stiefel in the 1950s as an iterative method for solving linear sys-
tems with positive definite coefficient matrices. It is an alternative
to Gaussian elimination that is well suited for solving large problems.
The performance of the linear conjugate gradient method is deter-
mined by the distribution of the eigenvalues of the coefficient matrix.
By transforming, or preconditioning, the linear system, we can make
this distribution more favorable and improve the convergence of the
method significantly. Preconditioning plays a crucial role in the de-
sign of practical conjugate gradient strategies. Our treatment of the
linear conjugate gradient method will highlight those properties of
the method that are important in optimization.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

Introduction
The first nonlinear conjugate gradient method was introduced by
Fletcher and Reeves in the 1960s. It is one of the earliest known
techniques for solving large-scale nonlinear optimization problems.
Over the years, many variants of this original scheme have been
proposed, and some are widely used in practice. The key features
of these algorithms are that they require no matrix storage and are
faster than the steepest descent method.
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§5.1 The Linear Conjugate Gradient Method
The conjugate gradient method is an iterative method for solving a
linear system of equations

Ax = b , (1)
where A is an nˆn symmetric positive definite matrix. The problem
(1) can be stated equivalently as the following minimization problem:

minφ(x) = 1

2
xTAx ´ bTx ; (2)

that is, both (1) and (2) have the same unique solution. This equiv-
alence will allow us to interpret the conjugate gradient method either
as an algorithm for solving linear systems or as a technique for min-
imizing convex quadratic functions.
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§5.1 The Linear Conjugate Gradient Method
For future reference, we note that the gradient of φ equals the
residual of the linear system; that is,

(∇φ)(x) = Ax ´ b = r (x) , (3)

so in particular at x = xk we have

rk = Axk ´ b . (4)
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§5.1 The Linear Conjugate Gradient Method
‚ Conjugate Direction Methods
One of the remarkable properties of the conjugate gradient method
is its ability to generate, in a very economical fashion, a set of vec-
tors with a property known as conjugacy. A set of nonzero vectors
tp0, p1, ¨ ¨ ¨ , pℓu is said to be conjugate with respect to the symmet-
ric positive definite matrix A if

pT
i Apj = 0 for all i ‰ j. (5)

It is easy to show that any set of vectors satisfying this property is
also linearly independent (for a geometrical illustration of conjugate
directions see Section 9.4).
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§5.1 The Linear Conjugate Gradient Method
The importance of conjugacy lies in the fact that we can minimize
φ(¨) in n steps by successively minimizing it along the individual
directions in a conjugate set. To verify this claim, we consider the
following conjugate direction method (the distinction between the
conjugate gradient method and the conjugate direction method will
become clear as we proceed). Given a starting point x0 P Rn and
a set of conjugate directions tp0, p1, ¨ ¨ ¨ , pn´1u, let us generate the
sequence txku by setting

xk+1 = xk + αkpk , (6)
where αk is the one-dimensional minimizer of the quadratic function
φ(¨) along xk + αpk, given explicitly by

αk = ´
rT
k pk

pT
k Apk

. (7)
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§5.1 The Linear Conjugate Gradient Method
Theorem
For any x0 P Rn the sequence txku generated by the conjugate
direction algorithm (6), (7) converges to the solution x˚ of the linear
system (1) in at most n steps.

Proof.
Since the directions tpiu are linearly independent, they must span
the whole space Rn. Hence, we can write the difference between x0
and the solution x˚ in the following way:

x˚´ x0 = σ0p0 + σ1p1 + ¨ ¨ ¨ + σn´1pn´1

for some choice of scalars σk. By premultiplying this expression by
pT

k A and using the conjugacy property (5), we obtain

σk =
pT

k A(x˚´ x0)

pT
k Apk

. (8)
˝
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§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
We now establish the result by showing that these coefficients σk
coincide with the step lengths αk generated by the formula (7). If
xk is generated by algorithm (6), (7), then we have

xk = x0 + α0p0 + α1p1 + ¨ ¨ ¨ + αk´1pk´1 .

By premultiplying this expression by pT
k A and using the conjugacy

property, we have that
pT

k A(xk ´ x0) = 0 ,

and therefore

pT
k A(x˚´ x0) = pT

k A(x˚´ xk) = pT
k (b ´ Axk) = ´pT

k rk .

By comparing this relationwith (7) and (8), we find that σk = αk,
giving the result. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
There is a simple interpretation of the properties of conjugate di-
rections. If the matrix A in (2) is diagonal, the contours of the
function φ(¨) are ellipses whose axes are aligned with the coordinate
directions, as illustrated in Figure 1 (in the next slide). We can find
the minimizer of this function by performing one-dimensional mini-
mizations along the coordinate directions e1, e2, ¨ ¨ ¨ , en in turn.

When A is not diagonal, its contours are still elliptical, but they
are usually no longer aligned with the coordinate directions. The
strategy of successive minimization along these directions in turn
no longer leads to the solution in n iterations (or even in a finite
number of iterations). This phenomenon is illustrated in the two-
dimensional example of Figure 2.
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§5.1 The Linear Conjugate Gradient Method

Figure 1: Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.
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§5.1 The Linear Conjugate Gradient Method

Figure 2: Successive minimization along coordinate axes does not find the
solution in n iterations, for a general convex quadratic.
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§5.1 The Linear Conjugate Gradient Method
We can, however, recover the nice behavior of Figure 1 if we trans-
form the problem to make A diagonal and then minimize along the
coordinate directions. Suppose we transform the problem by defin-
ing new variables px as

px = S´1x , (9)
where, with tp0, p1, ¨ ¨ ¨ , pn´1u denoting a set of conjugate directions
with respect to A, S is the nˆn matrix given by S =

[
p0

...p1
... ¨ ¨ ¨

...pn´1

]
.

The quadratic φ defined by (2) now becomes

pφ(px) = φ(S px) = 1

2
pxT(STAS)px ´ (STb)T

px .

By the conjugacy property (5), the matrix STAS is diagonal, so we
can find the minimizing value of pφ by performing n one-dimensional
minimizations along the coordinate directions of px.
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§5.1 The Linear Conjugate Gradient Method
Because of the relation (9), the i-th coordinate direction in px-space
corresponds to the direction pi in x-space. Hence, the coordinate
search strategy applied to pφ is equivalent to the conjugate direction
algorithm (6), (7). We then conclude that the conjugate direction
algorithm terminates in at most n steps.

Returning to Figure 1, we note another interesting property: When
the Hessian matrix is diagonal, each coordinate minimization cor-
rectly determines one of the components of the solution x˚. In
other words, after k one-dimensional minimizations, the quadratic
has been minimized on the subspace spanned by e1, e2, ¨ ¨ ¨ , ek. The
following theorem proves this important result for the general case
in which the Hessian of the quadratic is not necessarily diagonal.
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§5.1 The Linear Conjugate Gradient Method
From now on, we use the notation spantp0, p1, ¨ ¨ ¨ , pku to denote
the set of all linear combinations of the vectors p0, p1, ¨ ¨ ¨ , pk.
In proving the result we will make use of the following expression,
which is easily verified from the relations (4) and (6):

rk+1 = rk + αkApk . (10)

Theorem
Let x0 P Rn be any starting point and suppose that the sequence
txku is generated by the conjugate direction algorithm (6), (7). Then

rT
k pi = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1 , (11)

and xk is the minimizer of φ(x) = 1

2
xTAx ´ bTx over the set

␣

x
ˇ

ˇ x = x0 + spantp0, p1, ¨ ¨ ¨ , pk´1u
(

. (12)
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§5.1 The Linear Conjugate Gradient Method
Proof.
We begin by showing that a point px minimizes φ over the set
(12) if and only if r(px)Tpi = 0, for each i = 0, 1, ¨ ¨ ¨ , k ´ 1.
Let us define h(σ) = φ(x0 + σ0p0 + ¨ ¨ ¨ + σk´1pk´1), where
σ = (σ0, σ1, ¨ ¨ ¨ , σk´1)

T. Since h(¨) is a strictly convex quadratic,
it has a unique minimizer σ˚ that satisfies

Bh
Bσi

(σ˚) = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1 .

By the chain rule, this equation implies that

(∇φ)(x0+σ˚
0p0+ ¨ ¨ ¨+σ˚

k´1pk´1)
Tpi = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1 .

By recalling the definition (3), we have for the minimizer px = x0 +
σ˚
0p0 + σ˚

1p1 + ¨ ¨ ¨ + σ˚
k´1pk´1 on the set (12) that r(px)Tpi = 0, as

claimed. ˝
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§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
We now use induction to show that xk satisfies (11). For the case
k = 1, we have from the fact that x1 = x0+α0p0 minimizes φ along
p0 that rT

1 p0 = 0. Let us now make the induction hypothesis that
rT
k´1pi = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 2. By (10), we have

rk = rk´1 + αk´1Apk´1 ,
so that

pT
k´1rk = pT

k´1rk´1 + αk´1pT
k´1Apk´1 = 0 ,

by the definition of αk´1. For i = 0, 1, ¨ ¨ ¨ , k ´ 2, we have
pT

i rk = pT
i rk´1 + αk´1pT

i Apk´1 = 0 ,

where pT
i rk´1 = 0 by the induction hypothesis and pT

i Apk´1 = 0

by the conjugacy of pi’s. We have shown that rT
k pi = 0, for i =

0, 1, ¨ ¨ ¨ , k ´ 1, so the proof is complete. ˝
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§5.1 The Linear Conjugate Gradient Method
The fact that the current residual rk is orthogonal to all previous
search directions, as expressed in (11), is a property that will be
used extensively in this chapter.

The discussion so far has been general, in that it applies to a conju-
gate direction method (6), (7) based on any choice of the conjugate
direction set tp0, p1, ¨ ¨ ¨ , pn´1u. There are many ways to choose the
set of conjugate directions. For instance, the eigenvectors v1, v2,
¨ ¨ ¨ , vn of A are mutually orthogonal as well as conjugate with re-
spect to A, so these could be used as the vectors tp0, p1, ¨ ¨ ¨ , pn´1u.
For large-scale applications, however, computation of the complete
set of eigenvectors requires an excessive amount of computation.
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§5.1 The Linear Conjugate Gradient Method
An alternative approach is to modify the Gram-Schmidt orthogo-
nalization process to produce a set of conjugate directions rather
than a set of orthogonal directions (this modification is easy to pro-
duce, since the properties of conjugacy and orthogonality are closely
related in spirit). However, the Gram-Schmidt approach is also ex-
pensive, since it requires us to store the entire direction set.
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§5.1 The Linear Conjugate Gradient Method
‚ Basic Properties of the Conjugate Gradient Method
The conjugate gradient method is a conjugate direction method with
a very special property: In generating its set of conjugate vectors,
it can compute a new vector pk by using only the previous vector
pk´1. It does not need to know all the previous elements p0, p1,
¨ ¨ ¨ , pk´2 of the conjugate set; pk is automatically conjugate to these
vectors. This remarkable property implies that the method requires
little storage and computation.

In the conjugate gradient method, each direction pk is chosen to
be a linear combination of the negative residual ´rk (which, by (3),
is the steepest descent direction for the function φ at xk) and the
previous direction pk´1.
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§5.1 The Linear Conjugate Gradient Method
We write

pk = ´rk + βkpk´1 , (13)

where the scalar βk is to be determined by the requirement that pk´1

and pk must be conjugate with respect to A. By premultiplying (13)
by pT

k´1A and imposing the condition pT
k´1Apk = 0, we find that

βk =
rT
k Apk´1

pT
k´1Apk´1

.

We choose the first search direction p0 to be the steepest descent
direction at the initial point x0. As in the general conjugate direction
method, we perform successive one-dimensional minimizations along
each of the search directions.
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k´1Apk = 0, we find that

βk =
rT
k Apk´1

pT
k´1Apk´1

.

We choose the first search direction p0 to be the steepest descent
direction at the initial point x0. As in the general conjugate direction
method, we perform successive one-dimensional minimizations along
each of the search directions.
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Algorithm 5.1 (CG - Preliminary version)

Given x0;
Set r0 Ð Ax0 ´ b, p0 Ð ´r0, k Ð 0;
while rk ‰ 0

αk Ð ´
rT
k pk

pT
k Apk

; (14a)

xk+1 Ð xk + αkpk ; (14b)
rk+1 Ð Axk+1 ´ b ; (14c)

βk+1 Ð
rT
k+1Apk

pT
k Apk

; (14d)

pk+1 Ð ´rk+1 + βk+1pk ; (14e)
k Ð k + 1 ; (14f)

end (while)
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
This version is useful for studying the essential properties of the
conjugate gradient method, but we present a more efficient version
later. We show first that the directions p0, p1, ¨ ¨ ¨ , pn´1 are indeed
conjugate, which by the previous theorem implies termination in n
steps. The theorem in the next slide establishes this property and
two other important properties. First, the residuals ri are mutually
orthogonal. Second, each search direction pk and residual rk is con-
tained in the Krylov subspace of degree k for r0, defined as

K(r0; k) = span
␣

r0,Ar0, ¨ ¨ ¨ ,Akr0
(

. (15)
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Theorem
Suppose that the k-th iterate generated by the conjugate gradient
method is not the solution point x˚. Then

pT
k Api = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1. (16)
rT
k ri = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1, (17)

spantr0, r1, ¨ ¨ ¨ , rku = spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, (18)
spantp0, p1, ¨ ¨ ¨ , pku = spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, (19)

Therefore, the sequence txku converges to x˚ in at most n steps.

Proof.
The proof is by induction. The expressions (18) and (19) hold triv-
ially for k = 0, while (16) holds by construction for k = 1. Assuming
now that these three expressions are true for some k (the induction
hypothesis), we show that they continue to hold for k + 1. ˝

pT
k Api = 0, fori = 0, 1, ¨ ¨ ¨ , k ´ 1. (16)

rT
k ri = 0, fori = 0, 1, ¨ ¨ ¨ , k ´ 1, (17)

spantr0, r1, ¨ ¨ ¨ , rku = spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, (18)

spantp0, p1, ¨ ¨ ¨ , pku = spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, (19)
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
To prove (18), we show first “Ď” that the set on the left-hand
side is contained in the set on the right-hand side. Because
of the induction hypothesis, we have from (18) and (19) that
rk P spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, pk P spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, while
by multiplying the second of these expressions by A, we obtain

Apk P spantAr0, ¨ ¨ ¨ ,Ak+1r0u . (20)

By the identity rk+1 = rk + αkApk, we find that
rk+1 P spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u .

By combining this expression with the induction hypothesis for (18),
we conclude that

spantr0, r1, ¨ ¨ ¨ , rk, rk+1u Ď spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u . ˝

Apk P spantAr0, ¨ ¨ ¨ ,Ak+1r0u . (20)
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§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
To prove (18), we show first “Ď” that the set on the left-hand
side is contained in the set on the right-hand side. Because
of the induction hypothesis, we have from (18) and (19) that
rk P spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, pk P spantr0,Ar0, ¨ ¨ ¨ ,Akr0u, while
by multiplying the second of these expressions by A, we obtain

Apk P spantAr0, ¨ ¨ ¨ ,Ak+1r0u . (20)

By the identity rk+1 = rk + αkApk, we find that
rk+1 P spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u .

By combining this expression with the induction hypothesis for (18),
we conclude that

spantr0, r1, ¨ ¨ ¨ , rk, rk+1u Ď spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u . ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
To prove that the reverse inclusion “Ě” holds as well, we use the
induction hypothesis on (19) to deduce that

Ak+1r0 = A(Akr0) P spantAp0,Ap1, ¨ ¨ ¨ ,Apku .

Since by the identity rk+1 = rk +αkApk we have Api =
ri+1 ´ ri

αi
for

i = 0, 1, ¨ ¨ ¨ , k, it follows that
Ak+1r0 P spantr0, r1, ¨ ¨ ¨ , rk+1u .

By combining this expression with the induction hypothesis for (18),
we find that

spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u Ď spantr0, r1, ¨ ¨ ¨ , rk, rk+1u .

Therefore, the relation (18) continues to hold when k is replaced by
k + 1, as claimed. ˝
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
We show that (19) continues to hold when k is replaced by k+1 by
the following argument:

spantp0, p1, ¨ ¨ ¨ , pk, pk+1u

= spantp0, p1, ¨ ¨ ¨ , pk, rk+1u by (14e): pk+1 = ´rk+1 + βk+1pk

= spantr0,Ar0, ¨ ¨ ¨ ,Akr0,rk+1u by induction hypothesis for (19)
= spantr0, r1, ¨ ¨ ¨ , rk, rk+1u by (18)
= spantr0,Ar0, ¨ ¨ ¨ ,Ak+1r0u by (18) for k + 1. ˝
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
Next, we prove the conjugacy condition (16) with k replaced by
k + 1. By multiplying (14e) by Api, i = 0, 1, ¨ ¨ ¨ , k, we obtain

pT
k+1Api = ´rT

k+1Api +βk+1pT
k Api . (21)

By the definition (14d) of βk
(
βk+1 =

rT
k+1Apk

pT
k Apk

)
, the right-hand

side of (21) vanishes when i = k; thus pT
k+1Apk = 0. For i ď k ´ 1

we need to collect a number of observations. Note first that our
induction hypothesis for (16) implies that the directions p0, p1, ¨ ¨ ¨ ,
pk are conjugate, so we can apply the previous theorem to deduce
that

rT
k+1pi = 0 for i = 0, 1, ¨ ¨ ¨ , k . (22)̋
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
Second, by repeatedly applying (19), we find that for i =

0, 1, ¨ ¨ ¨ , k ´ 1, the following inclusion holds:

Api P Aspantr0,Ar0, ¨ ¨ ¨ ,Air0u = spantAr0,A2r0, ¨ ¨ ¨ ,Ai+1r0u

Ď spantp0, p1, ¨ ¨ ¨ , pi+1u . (23)

By combining (22) and (23), we deduce that

rT
k+1Api = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1 ,

so the first term in the right-hand side of (21) vanishes for i =

0, 1, ¨ ¨ ¨ , k ´ 1. Because of the induction hypothesis for (16), the
second term vanishes as well, and we conclude that pT

k+1Api = 0,
i = 0, 1, ¨ ¨ ¨ , k. Hence, the induction argument holds for (16) also.
˝
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
It follows that the direction set generated by the conjugate gradient
method is indeed a conjugate direction set, so the algorithm termi-
nates in at most n iterations.

Finally, we prove (17) by a non-inductive argument. Because the
direction set is conjugate, we have from (11) that rT

k pi = 0 for all
i = 0, 1, ¨ ¨ ¨ , k ´ 1 and any k = 1, 2, ¨ ¨ ¨ , n ´ 1. By rearranging
(14e), we find that

ri = ´pi + βipi´1 ,

so that ri P spantpi, pi´1u for all i = 1, ¨ ¨ ¨ , k ´1. We conclude that
rT
k ri = 0 for all i = 1, ¨ ¨ ¨ , k ´ 1. To complete the proof, we note

that rT
k r0 = ´rT

k p0 = 0, by definition of p0 in Algorithm 5.1 and by
(11). ˝
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
The proof of this theorem relies on the fact that the first direction
p0 is the steepest descent direction ´r0; in fact, the result does
not hold for other choices of p0. Since the gradients rk are mutu-
ally orthogonal, the term “conjugate gradient method” is actually
a misnomer. It is the search directions, not the gradients, that are
conjugate with respect to A.
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
‚ A Practical Form of the Conjugate Gradient Method
Recall Algorithm 5.1 (CG - Preliminary version)

Given x0;
Set r0 Ð Ax0 ´ b, p0 Ð ´r0, k Ð 0;
while rk ‰ 0

αk Ð ´
rT
k pk

pT
k Apk

; (14a)

xk+1 Ð xk + αkpk ; (14b)
rk+1 Ð Axk+1 ´ b ; (14c)

βk+1 Ð
rT
k+1Apk

pT
k Apk

; (14d)

pk+1 Ð ´rk+1 + βk+1pk ; (14e)
k Ð k + 1 ; (14f)

end (while)
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
We can derive a slightly more economical form of the conjugate
gradient method by using the established results. First, we can use
(14e) and (11) (rT

k pi = 0 for 0 ď i ď k ´ 1) to replace the formula
(14a) for αk by

αk =
rT
k rk

pT
k Apk

.

Second, we have from (10) that αkApk = rk+1 ´ rk, so by applying
(14e) and (11) once again we can simplify the formula for βk+1 to

βk+1 =
rT
k+1rk+1

rT
k rk

.

By using these formulae together with (10), we obtain the following
standard form of the conjugate gradient method.
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Algorithm 5.2 (CG)

Given x0;
Set r0 Ð Ax0 ´ b, p0 Ð ´r0, k Ð 0;
while rk ‰ 0

αk Ð
rT
k rk

pT
k Apk

; (24a)

xk+1 Ð xk + αkpk ; (24b)
rk+1 Ð rk + αkApk ; (24c)

βk+1 Ð
rT
k+1rk+1

rT
k rk

; (24d)

pk+1 Ð ´rk+1 + βk+1pk ; (24e)
k Ð k + 1 ; (24f)

end (while)
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
At any given point in Algorithm 5.2 we never need to know the
vectors x, r, and p for more than the last two iterations. Accord-
ingly, implementations of this algorithm overwrite old values of these
vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix-vector prod-
uct Apk, calculation of the inner products pT

k Apk and rT
k+1rk+1, and

calculation of three vector sums. The inner product and vector sum
operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix-vector product is, of course,
dependent on the problem. The CG method is recommended only
for large problems; otherwise, Gaussian elimination or other factor-
ization algorithms such as the singular value decomposition are to
be preferred, since they are less sensitive to rounding errors.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
At any given point in Algorithm 5.2 we never need to know the
vectors x, r, and p for more than the last two iterations. Accord-
ingly, implementations of this algorithm overwrite old values of these
vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix-vector prod-
uct Apk, calculation of the inner products pT

k Apk and rT
k+1rk+1, and

calculation of three vector sums. The inner product and vector sum
operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix-vector product is, of course,
dependent on the problem. The CG method is recommended only
for large problems; otherwise, Gaussian elimination or other factor-
ization algorithms such as the singular value decomposition are to
be preferred, since they are less sensitive to rounding errors.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
At any given point in Algorithm 5.2 we never need to know the
vectors x, r, and p for more than the last two iterations. Accord-
ingly, implementations of this algorithm overwrite old values of these
vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix-vector prod-
uct Apk, calculation of the inner products pT

k Apk and rT
k+1rk+1, and

calculation of three vector sums. The inner product and vector sum
operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix-vector product is, of course,
dependent on the problem. The CG method is recommended only
for large problems; otherwise, Gaussian elimination or other factor-
ization algorithms such as the singular value decomposition are to
be preferred, since they are less sensitive to rounding errors.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
At any given point in Algorithm 5.2 we never need to know the
vectors x, r, and p for more than the last two iterations. Accord-
ingly, implementations of this algorithm overwrite old values of these
vectors to save on storage. The major computational tasks to be
performed at each step are computation of the matrix-vector prod-
uct Apk, calculation of the inner products pT

k Apk and rT
k+1rk+1, and

calculation of three vector sums. The inner product and vector sum
operations can be performed in a small multiple of n floating-point
operations, while the cost of the matrix-vector product is, of course,
dependent on the problem. The CG method is recommended only
for large problems; otherwise, Gaussian elimination or other factor-
ization algorithms such as the singular value decomposition are to
be preferred, since they are less sensitive to rounding errors.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
For large problems, the CG method has the advantage that it does
not alter the coefficient matrix and (in contrast to factorization
techniques) does not produce fill in the arrays holding the matrix.
Another key property is that the CG method sometimes approaches
the solution quickly, as we discuss next.
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
‚ Rate of Convergence
We have seen that in exact arithmetic the conjugate gradient method
will terminate at the solution in at most n iterations. What is more
remarkable is that when the distribution of the eigenvalues of A has
certain favorable features, the algorithm will identify the solution in
many fewer than n iterations. To explain this property, we begin by
viewing the expanding subspace minimization property proved in the
previous theorem in a slightly different way, using it to show that
Algorithm 5.2 is optimal in a certain important sense. From (24b)
and (19), we have that

xk+1 = x0 + α0p0 + ¨ ¨ ¨ + αkpk
= x0 + γ0r0 + γ1Ar0 + ¨ ¨ ¨ + γkAkr0 , (25)

for some constants γi.
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many fewer than n iterations. To explain this property, we begin by
viewing the expanding subspace minimization property proved in the
previous theorem in a slightly different way, using it to show that
Algorithm 5.2 is optimal in a certain important sense. From (24b)
and (19), we have that

xk+1 = x0 + α0p0 + ¨ ¨ ¨ + αkpk
= x0 + γ0r0 + γ1Ar0 + ¨ ¨ ¨ + γkAkr0 , (25)

for some constants γi.
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§5.1 The Linear Conjugate Gradient Method
We now define p˚

k(¨) to be a polynomial of degree k with coefficients
γ0, γ1, ¨ ¨ ¨ , γk. Like any polynomial, p˚

k can take either a scalar or a
square matrix as its argument. For the matrix argument A, we have

p˚
k(A) = γ0I + γ1A + ¨ ¨ ¨ + γkAk ,

which allows us to express (25) as follows:
xk+1 = x0 + p˚

k(A)r0 . (26)

We now show that among all possible methods whose first k steps are
restricted to the Krylov subspace K(r0; k) ” span

␣

r0,Ar0, ¨ ¨ ¨ ,Akr0
(

,
Algorithm 5.2 does the best job of minimizing the distance to the so-
lution after k steps, when this distance is measured by the weighted
norm measure } ¨ }A defined by

}z}2A = zTAz . (27)
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§5.1 The Linear Conjugate Gradient Method
Using this norm and the definition of φ, and the fact that x˚ mini-
mizes φ, it is easy to show that

1

2
}x ´ x˚}2A =

1

2
(x ´ x˚)

TA(x ´ x˚)= φ(x) ´ φ(x˚) . (28)

One of previous theorems states that xk+1 minimizes φ, and hence
}x´x˚}2A, over the set x0+spantp0, p1, ¨ ¨ ¨ , pku, which by (19) is the
same as x0+spantr0,Ar0, ¨ ¨ ¨ ,Akr0u. It follows from (5.26) that the
polynomial p˚

k solves the following problem in which the minimum
is taken over the space of all possible polynomials of degree k :

min
Pk

›

›x0 + Pk(A)r0 ´ x˚

›

›

A. (29)

We exploit this optimality property repeatedly in the remainder of
the section. Since r0 = Ax0 ´ b = Ax0 ´ Ax˚ = A(x0 ´ x˚),

xk+1 ´ x˚ = x0 + p˚
k(A)r0 ´ x˚ =

[
I + p˚

k(A)A
]
(x0 ´ x˚) . (30)
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§5.1 The Linear Conjugate Gradient Method
Let 0 ă λ1 ď λ2 ď ¨ ¨ ¨ ď λn be the eigenvalues of A, and let v1, v2,
¨ ¨ ¨ , vn be the corresponding orthonormal eigenvectors, so that

A =
n
ÿ

i=1

λivivT
i .

Since the eigenvectors span the whole space Rn, we can write

x0 ´ x˚ =
n
ÿ

i=1

ξivi , (31)

for some coefficients ξi. It is easy to show that any eigenvector of
A is also an eigenvector of Pk(A) for any polynomial Pk. For our
particular matrix A and its eigenvalues λi and eigenvectors vi,

Pk(A)vi = Pk(λi)vi for i = 1, 2, ¨ ¨ ¨ , n .

By substituting (31) into (30) we have

xk+1 ´ x˚ =
n
ÿ

i=1

[
1 + λip˚

k(λi)
]
ξivi .
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§5.1 The Linear Conjugate Gradient Method
By using the fact that }z}2A = zTAz =

n
ř

i=1
λi (vT

i z)2, we have

}xk+1 ´ x˚}2A =
n
ÿ

i=1

λi
[
1 + λip˚

k(λi)
]2
ξ2i . (32)

Since the polynomial p˚
k generated by the CG method is optimal

with respect to this norm, we have

}xk+1 ´ x˚}2A = min
Pk

n
ÿ

i=1

λi
[
1 + λiPk(λi)

]2
ξ2i .

By extracting the largest of the terms
[
1 + λiPk(λi)

]2 from this
expression, we obtain that

}xk+1 ´ x˚}2A ď min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2( n
ÿ

j=1

λj ξ
2
j

)
= min

Pk
max
1ďiďn

[
1 + λiPk(λi)

]2
}x0 ´ x˚}2A , (33)

where we have used the fact that }x0 ´ x˚}2A =
n
ř

j=1
λj ξ2j .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
By using the fact that }z}2A = zTAz =

n
ř

i=1
λi (vT

i z)2, we have

}xk+1 ´ x˚}2A =
n
ÿ

i=1

λi
[
1 + λip˚

k(λi)
]2
ξ2i . (32)

Since the polynomial p˚
k generated by the CG method is optimal

with respect to this norm, we have

}xk+1 ´ x˚}2A = min
Pk

n
ÿ

i=1

λi
[
1 + λiPk(λi)

]2
ξ2i .

By extracting the largest of the terms
[
1 + λiPk(λi)

]2 from this
expression, we obtain that

}xk+1 ´ x˚}2A ď min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2( n
ÿ

j=1

λj ξ
2
j

)
= min

Pk
max
1ďiďn

[
1 + λiPk(λi)

]2
}x0 ´ x˚}2A , (33)

where we have used the fact that }x0 ´ x˚}2A =
n
ř

j=1
λj ξ2j .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
By using the fact that }z}2A = zTAz =

n
ř

i=1
λi (vT

i z)2, we have

}xk+1 ´ x˚}2A =
n
ÿ

i=1

λi
[
1 + λip˚

k(λi)
]2
ξ2i . (32)

Since the polynomial p˚
k generated by the CG method is optimal

with respect to this norm, we have

}xk+1 ´ x˚}2A = min
Pk

n
ÿ

i=1

λi
[
1 + λiPk(λi)

]2
ξ2i .

By extracting the largest of the terms
[
1 + λiPk(λi)

]2 from this
expression, we obtain that

}xk+1 ´ x˚}2A ď min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2( n
ÿ

j=1

λj ξ
2
j

)
= min

Pk
max
1ďiďn

[
1 + λiPk(λi)

]2
}x0 ´ x˚}2A , (33)

where we have used the fact that }x0 ´ x˚}2A =
n
ř

j=1
λj ξ2j .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
The expression (33) allows us to quantify the convergence rate of
the CG method by estimating the non-negative scalar quantity

min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2
. (34)

In other words, we search for a polynomial Pk that makes this expres-
sion as small as possible. In some practical cases, we can find this
polynomial explicitly and draw some interesting conclusions about
the properties of the CG method. The following result is an exam-
ple.
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Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Theorem
If A has only r distinct eigenvalues, then the CG iteration will ter-
minate at the solution in at most r iterations.
Proof.
Suppose that the eigenvalues λ1, λ2, ¨ ¨ ¨ , λn take on the r distinct
values τ1 ă τ2 ă ¨ ¨ ¨ ă τr. We define a polynomial Qr(λ) by

Qr(λ) =
(´1)r

τ1τ2 ¨ ¨ ¨ τr
(λ ´ τ1)(λ ´ τ2) ¨ ¨ ¨ (λ ´ τr) .

Since Qr(λi) = 0 for i = 1, 2, ¨ ¨ ¨ , n and Qr(0) = 1, we deduce that
Qr(λ) ´ 1 is a polynomial of degree r with a root at λ = 0, so the
function sPr´1 defined by

sPr´1(λ) =
Qr(λ) ´ 1

λ

is a polynomial of degree r ´ 1. ˝
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§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
By setting k = r ´ 1 in

min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2
, (34)

we have
0 ď min

Pr´1

max
1ďiďn

[
1 + λiPr´1(λi)

]2
ď max

1ďiďn

[
1 + λi sPr´1(λi)

]2
= max

1ďiďn
Q2

r (λi) = 0 .

Hence, the constant in (34) is zero for the value k = r ´ 1, so we
have by substituting into (33) that }xr ´ x˚}2A = 0, and therefore
xr = x˚, as claimed. ˝

By using similar reasoning (choosing a particular Q), Luenberger
[195] establishes the estimate in the next slide, which gives a useful
characterization of the behavior of the CG method.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
Proof (cont’d).
By setting k = r ´ 1 in

min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2
, (34)

we have
0 ď min

Pr´1

max
1ďiďn

[
1 + λiPr´1(λi)

]2
ď max

1ďiďn

[
1 + λi sPr´1(λi)

]2
= max

1ďiďn
Q2

r (λi) = 0 .

Hence, the constant in (34) is zero for the value k = r ´ 1, so we
have by substituting into (33) that }xr ´ x˚}2A = 0, and therefore
xr = x˚, as claimed. ˝

By using similar reasoning (choosing a particular Q), Luenberger
[195] establishes the estimate in the next slide, which gives a useful
characterization of the behavior of the CG method.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*
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§5.1 The Linear Conjugate Gradient Method
Theorem
If A has eigenvalues λ1 ď λ2 ď ¨ ¨ ¨ ď λn, we have that

}xk+1 ´ x˚}2A ď

(
λn´k ´ λ1

λn´k + λ1

)2
}x0 ´ x˚}2A . (35)

Without giving details of the proof, we describe how this result is
obtained from

}xk+1 ´ x˚}2A ď min
Pk

max
1ďiďn

[
1 + λiPk(λi)

]2
}x0 ´ x˚}2A . (33)

One selects a polynomial sPk of degree k such that the polyno-
mial Qk+1(λ) = 1 + λsPk(λ) has roots at the k largest eigenval-
ues λn, λn´1, ¨ ¨ ¨ , λn´k+1, as well as at the midpoint between λ1

and λn´k. It can be shown that the maximum value attained by
Qk+1 on the remaining eigenvalues λ1, λ2, ¨ ¨ ¨ , λn´k is precisely
(λn´k ´ λ1)/(λn´k + λ1).
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§5.1 The Linear Conjugate Gradient Method
We now illustrate how estimate (35) can be used to predict the
behavior of the CG method on specific problems. Suppose we have
the situation plotted in Figure 3, where the eigenvalues of A consist
of m large values and n ´ m smaller eigenvalues clustered around 1.

Figure 3: Two clusters of eigenvalues.

If we let k = m in (35) and define ε = λn´m ´ λ1, we have
}xm+1 ´ x˚}A « ε}x0 ´ x˚}A .

For a small value of ε, we conclude that the CG iterates will provide
a good estimate of the solution after only m + 1 steps.
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§5.1 The Linear Conjugate Gradient Method
Figure 4 (in the next slide) shows the behavior of CG on a problem
of this type, which has five large eigenvalues with all the smaller
eigenvalues clustered between 0.95 and 1.05, and compares this be-
havior with that of CG on a problem in which the eigenvalues satisfy
some random distribution. In both cases, we plot the log of φ after
each iteration. For the problem with clustered eigenvalues, estimate
(35) predicts a sharp decrease in the error measure at iteration 6.
Note, however, that this decrease was achieved one iteration earlier,
illustrating the fact that estimate (35) gives only an upper bound,
and that the rate of convergence can be faster. By contrast, we
observe in Figure 4 that for the problem with randomly distributed
eigenvalues (dashed line), the convergence rate is slower and more
uniform.
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Figure 4: Performance of the conjugate gradient method on (a) a problem
in which five of the eigenvalues are large and the remainder are clustered
near 1, and (b) a matrix with uniformly distributed eigenvalues.
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Figure 4 illustrates another interesting feature: After one more itera-
tion (a total of seven) on the problem with clustered eigenvalues, the
error measure drops sharply. An extension of the arguments leading
to one of previous theorems explains this behavior: it is almost true
to say that the matrix A has just six distinct eigenvalues: the five
large eigenvalues and 1. Then we would expect the error measure
to be zero after six iterations. Because the eigenvalues near 1 are
slightly spread out, however, the error does not become very small
until iteration 7.
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§5.1 The Linear Conjugate Gradient Method
To state this claim more precisely, it is generally true that if the
eigenvalues occur in r distinct clusters, the CG iterates will ap-
proximately solve the problem in about r steps (see [136]). This
result can be proved by constructing a polynomial sPr´1 such that
(1 + λsPr´1(λ)) has zeros inside each of the clusters. This polyno-
mial may not vanish at the eigenvalues λi, i = 1, 2, ¨ ¨ ¨ , n, but its
value will be small at these points, so the constant defined in (34)
will be small for k ě r ´ 1. We illustrate this behavior in Figure
5, which shows the performance of CG on a matrix of dimension
n = 14 that has four clusters of eigenvalues: single eigenvalues at
140 and 120, a cluster of 10 eigenvalues very close to 10, with the
remaining eigenvalues clustered between 0.95 and 1.05. After four
iterations, the error has decreased significantly. After six iterations,
the solution is identified to good accuracy.
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Figure 5: Performance of the conjugate gradient method on a matrix in
which the eigenvalues occur in four distinct clusters.
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Another, more approximate, convergence expression for CG is based
on the Euclidean condition number of A, which is defined by

κ(A) = }A}2}A´1}2 = λn/λ1 .

It can be shown that

}xk ´ x˚}A ď 2

(
a

κ(A) ´ 1
a

κ(A) + 1

)k
}x0 ´ x˚}A . (36)

This bound often gives a large overestimate of the error, but it can
be useful in cases where the only information we have about A is
estimates of the extreme eigenvalues λ1 and λn. This bound should
be compared with that of the steepest descent method given by

}xk+1 ´ x˚}2Q ď

(
λn ´ λ1

λn + λ1

)2
}xk ´ x˚}2Q

in Chapter 3, which is identical in form but which depends on the
condition number κ(A), and not on its square root

a

κ(A).
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‚ Preconditioning
We can accelerate the conjugate gradient method by transforming
the linear system to improve the eigenvalue distribution of A. The
key to this process, which is known as preconditioning, is a change
of variables from x to px via a non-singular matrix C; that is,

px = Cx . (37)
The quadratic φ defined by (2) is transformed accordingly to

pφ(px) = 1

2
pxT(C T́AC´1)px ´ (C T́b)Tpx . (38)

If we use Algorithm 5.2 to minimize pφ or, equivalently, to solve the
linear system (C T́AC´1)px = C T́b, then the convergence rate will
depend on the eigenvalues of the matrix C T́AC´1 rather than those
of A.
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Therefore, we aim to choose C such that the eigenvalues of C T́AC´1

are more favorable for the convergence theory discussed above. We
can try to choose C such that the condition number of pA ” C T́AC´1

is much smaller than the original condition number of A, for instance,
so that the constant in

}pxk ´ px˚}
pA ď 2

(
a

κ( pA) ´ 1
a

κ( pA) + 1

)k
}px0 ´ px˚}

pA . (36’)

is smaller. We could also try to choose C such that the eigenvalues
of C T́AC´1 are clustered, which by the discussion of the previous
section ensures that the number of iterates needed to find a good
approximate solution is not much larger than the number of clusters.
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It is not necessary to carry out the transformation (37) explicitly.
Rather, we can apply Algorithm 5.2 to the problem

pφ(px) = 1

2
pxT(C T́AC´1)px ´ (C T́b)Tpx (38)

in terms of the variables px, and then invert the transformations to
re-express all the equations in terms of x. This process of derivation
results in Algorithm 5.3 (Preconditioned Conjugate Gradient), which
we now define. It happens that Algorithm 5.3 does not make use
of C explicitly, but rather the matrix M = C TC, which is symmetric
and positive definite by construction.
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Algorithm 5.3 (Preconditioned CG)

Given x0, preconditioner M;
Set r0 Ð Ax0 ´ b, solve My0 = r0 for y0;
Set p0 = ´y0, k Ð 0;
while rk ‰ 0

αk Ð
rT
k yk

pT
k Apk

; (39a)

xk+1 Ð xk + αkpk ; (39b)
rk+1 Ð rk + αkApk ; (39c)

Solve Myk+1 = rk+1; (39d)

βk+1 Ð
rT
k+1yk+1

rT
k yk

; (39e)

pk+1 Ð ´yk+1 + βk+1pk ; (39f)
k Ð k + 1 ; (39g)

end (while)
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If we set M = I in Algorithm 5.3, we recover the standard CG
method, Algorithm 5.2. The properties of Algorithm 5.2 generalize
to this case in interesting ways. In particular, the orthogonality
property (17) of the successive residuals becomes

rT
i M´1rj = 0 @ i ‰ j . (40)

In terms of computational effort, the main difference between the
preconditioned and unpreconditioned CG methods is the need to
solve systems of the form My = r (step (39d)).
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‚ Practical Preconditioners
No single preconditioning strategy is “best” for all conceivable types
of matrices: The tradeoff between various objectives – effectiveness
of M, inexpensive computation and storage of M, inexpensive so-
lution of My = r – varies from problem to problem. Often, the
preconditioner is defined in such a way that the system My = r
amounts to a simplified version of the original system Ax = b. As in
many other areas of optimization and numerical analysis, knowledge
about the structure and origin of a problem is the key to devising
effective techniques for solving the problem.
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General-purpose preconditioners have also been proposed, but their
success varies greatly from problem to problem. The most im-
portant strategies of this type include symmetric successive over-
relaxation (SSOR), incomplete Cholesky, and banded precondition-
ers (see [272], [136], and [72] for discussions of these techniques).
Incomplete Cholesky is probably the most effective in general. The
basic idea is simple: We follow the Cholesky procedure, but instead
of computing the exact Cholesky factor L that satisfies A = LLT,
we compute an approximate factor sL that is sparser than L (Usually,
we require sL to be no denser, or not much denser, than the lower
triangle of the original matrix A).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
General-purpose preconditioners have also been proposed, but their
success varies greatly from problem to problem. The most im-
portant strategies of this type include symmetric successive over-
relaxation (SSOR), incomplete Cholesky, and banded precondition-
ers (see [272], [136], and [72] for discussions of these techniques).
Incomplete Cholesky is probably the most effective in general. The
basic idea is simple: We follow the Cholesky procedure, but instead
of computing the exact Cholesky factor L that satisfies A = LLT,
we compute an approximate factor sL that is sparser than L (Usually,
we require sL to be no denser, or not much denser, than the lower
triangle of the original matrix A).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.1 The Linear Conjugate Gradient Method
We then have A « sLsLT, and by choosing C = sLT, we obtain M =

sLsLT and C T́AC´1 = sL´1AsL T́
« I, so the eigenvalue distribution

of C T́AC´1 is favorable. We do not compute M explicitly, but
rather store the factor sL and solve the system My = r by performing
two triangular substitutions with sL. Because the sparsity of sL is
similar to that of A, the cost of solving My = r is similar to the cost
of computing the matrix-vector product Ap.
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There are several possible pitfalls in the incomplete Cholesky ap-
proach. One is that the resulting matrix may not be (sufficiently)
positive definite, and in this case one may need to increase the values
of the diagonal elements to ensure that a value for sL can be found.
Numerical instability or breakdown can occur during the incomplete
factorization because of the sparsity conditions we impose on the
factor sL. This difficulty can be remedied by allowing additional fill-
in in sL, but the denser factor will be more expensive to compute and
to apply at each iteration.
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§5.2 Nonlinear Conjugate Gradient Methods
We have noted that the CG method, Algorithm 5.2, can be viewed
as a minimization algorithm for the convex quadratic function φ

defined by
φ(x) = 1

2
xTAx ´ bTx . (2)

It is natural to ask whether we can adapt the approach to minimize
general convex functions, or even general nonlinear functions f . In
fact, as we show in this section, nonlinear variants of the conjugate
gradient are well studied and have proved to be quite successful in
practice.
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§5.2 Nonlinear Conjugate Gradient Methods
‚ The Fletcher-Reeves Method
Fletcher and Reeves [107] showed how to extend the conjugate gra-
dient method to nonlinear functions by making two simple changes
in Algorithm 5.2. First, in place of the formula

αk =
rT
k rk

pT
k Apk

(24a)

for the step length αk (which minimizes φ along the search direction
pk), we need to perform a line search that identifies an approximate
minimum of the nonlinear function f along pk. Second, the residual
r, which is simply the gradient of φ in Algorithm 5.2, must be re-
placed by the gradient of the nonlinear objective f . These changes
give rise to the following algorithm for nonlinear optimization.
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Algorithm 5.4 (FR)

Given x0;
Evaluate f0 = f (x0), ∇f0 = (∇f )(x0);
Set p0 Ð ´∇f0, k Ð 0;
while ∇fk ‰ 0

Compute αk and set xk+1 = xk + αkpk;
Evaluate ∇fk+1;

βFR
k+1 Ð

∇f T
k+1∇fk+1

∇f T
k ∇fk

; (41a)

pk+1 Ð ´∇fk+1 + βFR
k+1pk; (41b)

k Ð k + 1; (41c)
end (while)
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If we choose f to be a strongly convex quadratic and αk to be
the exact minimizer, this algorithm reduces to the linear conjugate
gradient method, Algorithm 5.2. Algorithm 5.4 is appealing for large
nonlinear optimization problems because each iteration requires only
evaluation of the objective function and its gradient. No matrix
operations are required for the step computation, and just a few
vectors of storage are required.

To make the specification of Algorithm 5.4 complete, we need to be
more precise about the choice of line search parameter αk. Because
of the second term in (41b), the search direction pk may fail to be
a descent direction unless αk satisfies certain conditions.
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By taking the inner product of (41b) (with k replacing k + 1) with
the gradient vector ∇fk, we obtain

∇f T
k pk = ´}∇fk}2 + βFR

k ∇f T
k pk´1 . (42)

If the line search is exact, so that xk is a local minimizer of f along
the direction pk´1, we have that ∇f T

k pk´1 = 0. In this case we have
from (42) that ∇f T

k pk ă 0, so that pk is indeed a descent direction.
If the line search is not exact, however, the second term in (42) may
dominate the first term, and we may have ∇f T

k pk ą 0, implying
that pk is actually a direction of ascent.
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Fortunately, we can avoid this situation by requiring the step length
αk to satisfy the strong Wolfe conditions, which we restate here:

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (43a)

ˇ

ˇ∇f (xk + αkpk)
Tpk

ˇ

ˇ ď ´c2∇f T
k pk , (43b)

where 0 ă c1 ă c2 ă
1

2
. Note that we impose c2 ă

1

2
here, in

place of the looser condition c2 ă 1 that was used in the earlier
statement. By applying the lemma stated two slides later, we can
show that condition (43b) implies that ∇f T

k pk ă 0 (so that pk is a
descent direction), and we conclude that any line search procedure
that yields an αk satisfying (43) will ensure that all directions pk are
descent directions for the function f .

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk, (43a)

ˇ

ˇ(∇f )(xk + αkpk)
Tpk

ˇ

ˇ ď ´c2∇f T
k pk, (43b)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
Fortunately, we can avoid this situation by requiring the step length
αk to satisfy the strong Wolfe conditions, which we restate here:

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk , (43a)

ˇ

ˇ∇f (xk + αkpk)
Tpk

ˇ

ˇ ď ´c2∇f T
k pk , (43b)

where 0 ă c1 ă c2 ă
1

2
. Note that we impose c2 ă

1

2
here, in

place of the looser condition c2 ă 1 that was used in the earlier
statement. By applying the lemma stated two slides later, we can
show that condition (43b) implies that ∇f T

k pk ă 0 (so that pk is a
descent direction), and we conclude that any line search procedure
that yields an αk satisfying (43) will ensure that all directions pk are
descent directions for the function f .

f (xk + αkpk) ď f (xk) + c1αk∇f T
k pk, (43a)

ˇ

ˇ(∇f )(xk + αkpk)
Tpk

ˇ

ˇ ď ´c2∇f T
k pk, (43b)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
In fact, for algorithms similar to Algorithm 5.4 but updating pk by

pk+1 Ð ´∇fk+1 + βk+1pk; (41b’)
with some sequence βk satisfying |βk| ď βFR

k for all k P N, we will
always have ∇f T

k pk ă 0 for all k P N.
Algorithm 5.4’

Given x0, evaluate f0 = f (x0)), ∇f0 = (∇f )(x0));
Set p0 = ´∇f0, k Ð 0;
while ∇fk ‰ 0

Compute αk and set xk+1 = xk + αkpk;
Evaluate ∇fk+1;
Update βk+1 (using∇fk+1,∇fk) with |βk+1|ďβFR

k+1; (41a’)
pk+1 Ð ´∇fk+1 + βk+1pk; (41b’)

k Ð k + 1; (41c)
end (while)
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
Lemma
Suppose that Algorithm 5.4 ’ is implemented with a step length αk
satisfying the strong Wolfe conditions (43b) with 0 ă c2 ă 1/2 and
βk satisfying |βk| ď βFR

k for all k P N. Then the method generates
descent directions pk that satisfy the following inequalities:

´
1

1 ´ c2
ď

∇f T
k pk

}∇fk}2
ď

2c2 ´ 1

1 ´ c2
for all k P N Y t0u. (44)

Proof.
Note first that the function t(ξ) = (2ξ´1)/(1´ξ) is monotonically
increasing on the interval [0, 1/2]. Since c2 P (0, 1/2), we have

´ 1 = t(0) ă
2c2 ´ 1

1 ´ c2
ă t(1/2) = 0 . (45)

The descent condition ∇f T
k pk ă 0 holds once we establish (44). ˝
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§5.2 Nonlinear Conjugate Gradient Methods
Proof (cont’d).
The proof is by induction. For k = 0, the middle term in (44) is ´1,
so by using (45), we see that both inequalities in (44) are satisfied.
Next, assume that (44) holds for some k ě 1. From

pk+1 Ð ´∇fk+1 + βk+1pk; (41b’)
we have

∇f T
k+1pk+1

}∇fk+1}2
= ´1 + βk+1

∇f T
k+1pk

}∇fk+1}2
. (46)

Using the condition |βk| ď βFR
k for all k P N and the line search

condition (43b), (46) shows that
ˇ

ˇ

ˇ

∇f T
k+1pk+1

}∇fk+1}2
+ 1

ˇ

ˇ

ˇ
= |βk+1|

|∇f T
k+1pk|

}∇fk+1}2
ď βFR

k+1

|∇f T
k+1pk|

}∇fk+1}2

=
|∇f T

k+1pk|

}∇fk}2
ď ´c2

∇f T
k pk

}∇fk}2
. ˝
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§5.2 Nonlinear Conjugate Gradient Methods
Proof (cont’d).

Substituting for the term ∇f T
k pk

}∇fk}2
from the left-hand-side of the in-

duction hypothesis

´
1

1 ´ c2
ď

∇f T
k pk

}∇fk}2
ď

2c2 ´ 1

1 ´ c2
, (44)

we obtain
ˇ

ˇ

ˇ

∇f T
k+1pk+1

}∇fk+1}2
+ 1

ˇ

ˇ

ˇ
ď

c2
1 ´ c2

,

which shows that

´1 ´
c2

1 ´ c2
ď

∇f T
k+1pk+1

}∇fk+1}2
ď ´1 +

c2
1 ´ c2

.

Therefore, (44) holds for k + 1 as well. ˝
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§5.2 Nonlinear Conjugate Gradient Methods
This result used only the second strong Wolfe condition (43b); the
first Wolfe condition (43a) will be needed in the next section to
establish global convergence. The bounds on

´
1

1 ´ c2
ď

∇f T
k pk

}∇fk}2
ď

2c2 ´ 1

1 ´ c2
for all k P N Y t0u. (44)

impose a limit on how fast the norms of the steps }pk} can grow,
and they will play a crucial role in the convergence analysis given
below.
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
The established lemma can also be used to explain a weakness of the
Fletcher-Reeves method. We will argue that if the method generates
a bad direction and a tiny step, then the next direction and next step
are also likely to be poor. As in Chapter 3, we let θk denote the
angle between pk and the steepest descent direction ´∇fk, defined
by

cos θk = ´
∇f T

k pk
}∇fk}}pk}

. (47)

Suppose that pk is a poor search direction, in the sense that it makes
an angle of nearly 90˝ with ´∇fk; that is, cos θk « 0. By multiplying
both sides of (44) by }∇fk}/}pk} and using (47), we obtain

1 ´ 2c2
1 ´ c2

}∇fk}

}pk}
ď cos θk ď

1

1 ´ c2
}∇fk}

}pk}
for all k = 0, 1, ¨ ¨ ¨ . (48)
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§5.2 Nonlinear Conjugate Gradient Methods
From these inequalities, we deduce that

cos θk « 0 if and only if }∇fk} ! }pk}.
Since pk is almost orthogonal to the gradient, it is likely that the
step from xk to xk+1(= xk + αkpk) is tiny; that is, xk+1 « xk. If so,
we have ∇fk+1 « ∇fk, and therefore by Definition (41a),

βFR
k+1 ”

∇f T
k+1∇fk+1

∇f T
k ∇fk

« 1 . (49)

Using this approximation together with }∇fk+1} « }∇fk} ! }pk} in
pk+1 Ð ´∇fk+1 + βFR

k+1pk , (41b)
we conclude that pk+1 « pk, so the new search direction will improve
little (if at all) on the previous one. It follows that if the condition
cos θk « 0 holds at some iteration k and if the subsequent step is
small, a long sequence of unproductive iterates will follow.
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
‚ The Polak-Ribière Method and Variants
There are many variants of the Fletcher-Reeves method that differ
from each other mainly in the choice of the parameter βk. An impor-
tant variant, proposed by Polak and Ribière, defines this parameter
as follows:

βPR
k+1 =

∇f T
k+1(∇fk+1 ´ ∇fk)

}∇fk}2
. (50)

We refer to the algorithm in which (50) replaces (41a) as Algorithm
PR. It is identical to Algorithm FR when f is a strongly convex
quadratic function and the line search is exact, since by (17) the
gradients are mutually orthogonal, and so βPR

k+1 = βFR
k+1. When

applied to general nonlinear functions with inexact line searches,
however, the behavior of the two algorithms differs markedly.
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
The Polak-Ribière method behaves quite differently from the Fletcher-
Reeves one. If, as in the previous case, the search direction pk sat-
isfies cos θk « 0 for some k, and if the subsequent step is small, it
follows by substituting ∇fk « ∇fk+1 into

βPR
k+1 =

∇f T
k+1(∇fk+1 ´ ∇fk)

}∇fk}2
(50)

that βPR
k+1 « 0. From the formula

pk+1 Ð ´∇fk+1 + βPR
k+1pk , (41b’)

we find that the new search direction pk+1 will be close to the steep-
est descent direction ´∇fk+1, and cos θk+1 will be close to 1. There-
fore, Algorithm PR essentially performs a restart after it encounters
a bad direction.
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
The undesirable behavior of the Fletcher-Reeves method predicted
by the arguments given above can be observed in practice. For exam-
ple, the paper [123] describes a problem with n = 100 in which cos θk

is of order 10´2 for hundreds of iterations and the steps }xk ´ xk´1}

are of order 10´2. Algorithm FR requires thousands of iterations to
solve this problem, while Algorithm PR requires just 37 iterations.
In this example, the Fletcher-Reeves method performs much better
if it is periodically restarted along the steepest descent direction,
since each restart terminates the cycle of bad steps. In general, Al-
gorithm FR should not be implemented without some kind of restart
strategy.
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§5.2 Nonlinear Conjugate Gradient Methods
Numerical experience also indicates that Algorithm PR tends to
be the more robust and efficient of the two. A surprising fact about
Algorithm PR is that the strong Wolfe conditions (43) do not guar-
antee that pk is always a descent direction. If we define the β

parameter as
β+

k+1 = max
␣

βPR
k+1, 0

(

, (51)

giving rise to an algorithm we call Algorithm PR+, then a simple
adaptation of the strong Wolfe conditions ensures that the descent
property holds.
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
There are many other choices for βk+1 that coincide with the Fletcher-
Reeves formula βFR

k+1 in the case where the objective is quadratic and
the line search is exact. The Hestenes-Stiefel formula, which defines

βHS
k+1 =

∇f T
k+1(∇fk+1 ´ ∇fk)

(∇fk+1 ´ ∇fk)Tpk
, (52)

gives rise to an algorithm (called Algorithm HS) that is similar to Al-
gorithm PR, both in terms of its theoretical convergence properties
and in its practical performance. Formula (52) can be derived by
demanding that consecutive search directions be conjugate with re-
spect to the average Hessian over the line segment [xk, xk+1], which
is defined as

sGk =
ż 1

0

[
(∇2f )(xk + ταkpk)

]
dτ .
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Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
Recalling from Taylor’s theorem that ∇fk+1 = ∇fk + αk sGkpk, we
see that for any direction of the form pk+1 = ´∇fk+1+βk+1pk, the
condition pT

k+1
sGkpk = 0 requires βk+1 to be given by (52): since

αk ‰ 0 (for otherwise pk is not a descent direction),

0 = pT
k+1

sGkpk =
[
´∇fk+1 + βk+1pk

]T
α´1

k (∇fk+1 ´ ∇fk)

ñ βk+1(∇fk+1 ´ ∇fk)Tpk = ∇f T
k+1(∇fk+1 ´ ∇fk)

ñ βk+1 =
∇f T

k+1(∇fk+1 ´ ∇fk)
(∇fk+1 ´ ∇fk)Tpk

” βHS
k+1 .
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§5.2 Nonlinear Conjugate Gradient Methods
Later, we see that it is possible to guarantee global convergence
for any parameter βk satisfying the bound

|βk| ď βFR
k , (53)

for all k ě 2. This fact suggests the following modification of the
PR method, which has performed well on some applications. For all
k ě 2 let

βk =

$

’

&

’

%

´βFR
k if βPR

k ă ´βFR
k ,

βPR
k if |βPR

k | ď βFR
k ,

βFR
k if βPR

k ą βFR
k .

(54)

The algorithm based on this strategy will be denoted by FR-PR.
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§5.2 Nonlinear Conjugate Gradient Methods
Other variants of the CG method have recently been proposed. Two
choices for βk+1 that possess attractive theoretical and computa-
tional properties are

βk+1 =
}∇fk+1}2

(∇fk+1 ´ ∇fk)Tpk
(55)

and

βk+1 =
(
pyk ´ 2pk

}pyk}2

pyT
k pk

)T∇fk+1

pyT
k pk

with pyk = ∇fk+1 ´ ∇fk . (56)

These two choices guarantee that pk is a descent direction, pro-
vided the step length αk satisfies the Wolfe conditions. The CG
algorithms based on (55) or (56) appear to be competitive with the
Polak-Ribière method, and the global convergence can be estab-
lished without introducing any modification to a line search based
on the Wolfe conditions.
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§5.2 Nonlinear Conjugate Gradient Methods
‚ Quadratic Termination and Restarts
Implementations of nonlinear conjugate gradient methods usually
preserve their close connections with the linear conjugate gradient
method. Usually, a quadratic (or cubic) interpolation along the
search direction pk is incorporated into the line search procedure;
see Chapter 3. This feature guarantees that when f is a strictly
convex quadratic, the step length αk is chosen to be the exact
one-dimensional minimizer, so that the nonlinear conjugate gradi-
ent method reduces to the linear method, Algorithm 5.2.
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§5.2 Nonlinear Conjugate Gradient Methods
Another modification that is often used in nonlinear conjugate gra-
dient procedures is to restart the iteration at every n steps by
setting βk = 0 in (41a); that is, by taking a steepest descent step.
Restarting serves to periodically refresh the algorithm, erasing old
information that may not be beneficial. We can even prove a strong
theoretical result about restarting: It leads to n-step quadratic con-
vergence; that is,

}xk+n ´ x˚} = O(}xk ´ x˚}2) . (57)
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§5.2 Nonlinear Conjugate Gradient Methods
After a little thought, this result is not so surprising. Consider a
function f that is strongly convex quadratic in a neighborhood of the
solution, but is non-quadratic everywhere else. Assuming that the
algorithm is converging to the solution in question, the iterates will
eventually enter the quadratic region. At some point, the algorithm
will be restarted in that region, and from that point onward, its
behavior will simply be that of the linear conjugate gradient method,
Algorithm 5.2. In particular, finite termination will occur within n
steps of the restart. The restart is important, because the finite-
termination property and other appealing properties of Algorithm
5.2 hold only when its initial search direction p0 is equal to the
negative gradient.
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behavior will simply be that of the linear conjugate gradient method,
Algorithm 5.2. In particular, finite termination will occur within n
steps of the restart. The restart is important, because the finite-
termination property and other appealing properties of Algorithm
5.2 hold only when its initial search direction p0 is equal to the
negative gradient.
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§5.2 Nonlinear Conjugate Gradient Methods
Even if the function f is not exactly quadratic in the region of a
solution, Taylor’s theorem implies that it can still be approximated
quite closely by a quadratic, provided that it is smooth. Therefore,
while we would not expect termination in n steps after the restart,
it is not surprising that substantial progress is made toward the
solution, as indicated by the expression

}xk+n ´ x˚} = O(}xk ´ x˚}2) . (57)

Though the result (57) is interesting from a theoretical viewpoint,
it may not be relevant in a practical context, because nonlinear
conjugate gradient methods can be recommended only for solving
problems with large n. Restarts may never occur in such problems
because an approximate solution may be located in fewer than n
steps.
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§5.2 Nonlinear Conjugate Gradient Methods
Hence, nonlinear CG method are sometimes implemented without
restarts, or else they include strategies for restarting that are based
on considerations other than iteration counts. The most popular
restart strategy makes use of the observation

rT
k ri = 0 for i = 0, 1, ¨ ¨ ¨ , k ´ 1, (17)

which is that the gradients are mutually orthogonal when f is a
quadratic function. A restart is performed whenever two consecutive
gradients are far from orthogonal, as measured by the test

|∇f T
k ∇fk´1|

}∇fk}2
ě ν , (58)

where a typical value for the parameter ν is 0.1.
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§5.2 Nonlinear Conjugate Gradient Methods
We could also think of formula

β+
k+1 = max

␣

βPR
k+1, 0

(

(51)

as a restarting strategy, because pk+1 will revert to the steepest
descent direction whenever βPR

k is negative. In contrast to (58),
these restarts are rather infrequent because βPR

k is positive most of
the time.
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§5.2 Nonlinear Conjugate Gradient Methods
The same argument can be applied to Algorithms PR+ and HS. For
the FR-PR variant, defined by

βk =

$

’

&

’

%

´βFR
k if βPR

k ă ´βFR
k ,

βPR
k if |βPR

k | ď βFR
k ,

βFR
k if βPR

k ą βFR
k ,

(54)

we have noted already that βFR
k+1 « 1, and βPR

k+1 « 0. The formula
(54) thus sets βk+1 = βPR

k+1, as desired. Thus, the modification (54)
seems to avoid the inefficiencies of the FR method, while falling
back on this method for global convergence.
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§5.2 Nonlinear Conjugate Gradient Methods
‚ Global Convergence
Unlike the linear conjugate gradient method, whose convergence
properties are well understood and which is known to be optimal as
described above, nonlinear conjugate gradient methods possess sur-
prising, sometimes bizarre, convergence properties. We now present
a few of the main results known for the Fletcher-Reeves and Polak-
Ribière methods using practical line searches.
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§5.2 Nonlinear Conjugate Gradient Methods
For the purposes of this section, we make the following (nonrestric-
tive) assumptions on the objective function.
Assumptions 5.1.

1 The level set S =
␣

x
ˇ

ˇ f (x) ď f (x0))
(

is bounded;
2 In some open neighborhood N of S, the objective function f

is Lipschitz continuously differentiable; that is, ∇f is Lipschitz
continuous on N or

›

›(∇f )(x) ´ (∇f )(y)
›

› ď L}x ´ y} @ x, y P N .

These assumptions imply that there is a constant sγ such that

}(∇f )(x)} ď sγ for all x P S.
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§5.2 Nonlinear Conjugate Gradient Methods
Our main analytical tool in this section is Zoutendijk’s theorem. It
states, that under Assumptions 5.1, any line search iteration of the
form xk+1 = xk + αkpk, where pk is a descent direction and αk

satisfies the Wolfe conditions (43) gives the limit
8
ÿ

k=0

cos2 θk}∇fk}2 ă 8 .

We can use this result to prove global convergence for algorithms
that are periodically restarted by setting βk = 0. If k1, k2, and
so on denote the iterations on which restarts occur, we have from
Zoutendijk’s condition that

ÿ

k=k1,k2,¨¨¨

}∇fk}2 ă 8 . (59)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
If we allow no more than sn iterations between restarts, the sequence
tkju8

j=1 is infinite, and from (59) we have that lim
jÑ8

}∇fkj} = 0. That
is, a subsequence of gradients approaches zero, or equivalently,

lim inf
kÑ8

}∇fk} = 0 . (60)

This result applies equally to restarted versions of all the algorithms
discussed in this chapter.

It is more interesting, however, to study the global convergence of
unrestarted conjugate gradient methods, because for large prob-
lems (say n ě 1000) we expect to find a solution in many fewer
than n iterations – the first point at which a regular restart would
take place. Our study of large sequences of unrestarted conjugate
gradient iterations reveals some surprising patterns in their behavior.
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§5.2 Nonlinear Conjugate Gradient Methods
We can build on Zoutendijk’s theorem and the lemma showing that

´
1

1 ´ c2
ď

∇f T
k pk

}∇fk}2
ď

2c2 ´ 1

1 ´ c2
for all k P N Y t0u. (44)

to prove a global convergence result for the Fletcher-Reeves method.
While we cannot show that the limit of the sequence of gradients
t∇fku is zero, the following result shows that this sequence is not
bounded away from zero.
Theorem
Suppose that Assumptions 5.1 holds, and that Algorithm 5.4 ’ is
implemented with a line search that satisfies the strong Wolfe con-
ditions (43), with 0 ă c1 ă c2 ă

1

2
. Then

lim inf
kÑ8

}∇fk} = 0 . (60)
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§5.2 Nonlinear Conjugate Gradient Methods
Proof.
The proof is by contradiction. It assumes that the opposite of (60)
holds; that is, there exist γ ą 0 such that

}∇fk} ě γ for all k P N Y t0u .

By substituting the left inequality of
1 ´ 2c2
1 ´ c2

}∇fk}

}pk}
ď cos θk ď

1

1 ´ c2
}∇fk}

}pk}
for all k P N Y t0u (48)

into Zoutendijk’s condition, we obtain

γ4
8
ÿ

k=0

1

}pk}2
ď

8
ÿ

k=0

}∇fk}4

}pk}2
ď

(
1´c2
1´2c2

)2 8
ÿ

k=0

cos2θk}∇fk}2 ă8 . (62)

Using (43b) and (44), we obtain that

|∇f T
k pk´1| ď ´c2∇f T

k´1pk´1 ď
c2

1 ´ c2
}∇fk´1}2 .

˝

}∇fk} ě γ for all k ě N . (61)

8
ÿ

k=0

}∇fk}4

}pk}2
ă 8 . (62)

|∇f T
k pk´1| ď ´c2∇f T

k´1pk´1 ď
c2

1 ´ c2
}∇fk´1}2 . (63)
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§5.2 Nonlinear Conjugate Gradient Methods
Proof (cont’d).
Thus, from (41b) and recalling the definition (41a) of βFR

k , by defin-
ing c3 =

1 + c2
1 ´ c2

ě 1 we obtain

}pk}2 ď }∇fk}2 + 2βFR
k |∇f T

k pk´1| + (βFR
k )2}pk´1}2

ď }∇fk}2 +
2c2

1 ´ c2
βFR

k }∇fk´1}2 + (βFR
k )2}pk´1}2

= c3}∇fk}2 +
}∇fk}4

}∇fk´1}4
}pk´1}2 .

Applying this relation repeatedly,

}pk}2 ď c3}∇fk}2 +
}∇fk}4

}∇fk´1}4

[
c3}∇fk´1}2 +

}∇fk´1}4

}∇fk´2}4
}pk´2}2

]
= c3

}∇fk}4

}∇fk}2
+ c3

}∇fk}4

}∇fk´1}2
+

}∇fk}4

}∇fk´2}4
}pk´2}2 ˝
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}∇fk´1}4
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Applying this relation repeatedly,

}pk}2 ď c3
}∇fk}4

}∇fk}2
+ c3

}∇fk}4

}∇fk´1}2
+

}∇fk}4

}∇fk´2}4
}pk´2}2

ď c3
}∇fk}4

}∇fk}2
+ c3

}∇fk}4

}∇fk´1}2
+ c3

}∇fk}4

}∇fk´2}2
+

}∇fk}4

}∇fk´3}4
}pk´3}2

ď ¨ ¨ ¨ ¨ ¨ ¨ ď c3}∇fk}4
k
ÿ

j=0

}∇fj}´2 , (64)

where the fact that p0 =´∇f0 is used to conclude the inequality. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 5. Conjugate Gradient Methods

§5.2 Nonlinear Conjugate Gradient Methods
Proof (cont’d).
Using the bounds

}∇fk} ě γ for all k P N Y t0u and }(∇f )(x)} ď sγ for all x P S
in (64), we obtain

}pk}2 ď c3
sγ4

γ2
(k + 1) for all k P N Y t0u

which implies that
8
ÿ

k=0

1

}pk}2
ě

γ2

c3sγ4

8
ÿ

k=0

1

k + 1
= 8 ,

a contradiction to (62). ˝

In general, if there exist constants c4, c5 ą 0 such that

cos θk ě c4
}∇fk}

}pk}
and }∇fk}

}pk}
ě c5 ą 0 for all k = 1, 2, ¨ ¨ ¨ ,

it follows from Zoutendijk’s condition that lim
kÑ8

}∇fk} = 0.
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§5.2 Nonlinear Conjugate Gradient Methods
In fact, the result

lim
kÑ8

}∇fk} = 0

can be established for the Polak-Ribière method under the assump-
tion that f is strongly convex and that an exact line search is used.
For general (non-convex) functions, however, it is not possible to
prove a result

(
lim inf

kÑ8
}∇fk} = 0

)
like the previous theorem for Algo-

rithm PR. This fact is unexpected, since the Polak-Ribière method
performs better in practice than the Fletcher-Reeves method. The
following surprising result shows that the Polak-Ribière method can
cycle infinitely without approaching a solution point, even if an ideal
line search is used. (By “ideal” we mean that line search returns a
value αk that is the first positive stationary point for the function
t(α) = f (xk + αpk).)
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performs better in practice than the Fletcher-Reeves method. The
following surprising result shows that the Polak-Ribière method can
cycle infinitely without approaching a solution point, even if an ideal
line search is used. (By “ideal” we mean that line search returns a
value αk that is the first positive stationary point for the function
t(α) = f (xk + αpk).)
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§5.2 Nonlinear Conjugate Gradient Methods
Theorem
Consider the Polak-Ribière method (50) with an ideal line search.
There exists a twice continuously differentiable objective function
f : R3 Ñ R and a starting point x0 P R3 such that the sequence of
gradients t}∇fk}u is bounded away from zero.

The proof of this result, given in [253], is quite complex. It demon-
strates the existence of the desired objective function without actu-
ally constructing this function explicitly. The result is interesting,
since the step length assumed in the proof – the first stationary
point – may be accepted by any of the practical line search algo-
rithms currently in use.
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§5.2 Nonlinear Conjugate Gradient Methods
The proof of this theorem requires that some consecutive search di-
rections become almost negatives of each other. In the case of ideal
line searches, this happens only if βk ă 0, so the analysis suggests
Algorithm PR+, in which we reset βk to zero whenever it becomes
negative. We mentioned earlier that a line search strategy based
on a slight modification of the Wolfe conditions guarantees that all
search directions generated by Algorithm PR+ are descent direc-
tions. Using these facts, it is possible to a prove global convergence
result for Algorithm PR+.
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§5.2 Nonlinear Conjugate Gradient Methods
‚ Numerical Performance
Table 6 (in the next page) illustrates the performance of Algorithms
FR, PR, and PR+ without restarts. For these tests, the parameters
in the strong Wolfe conditions (43) were chosen to be c1 = 10´4

and c2 = 0.1. The iterations were terminated when

}∇fk}8 ă 10´5(1 + |fk|) .

If this condition was not satisfied after 10,000 iterations, we declare
failure (indicated by a ˚ in the table). The final column, headed
“mod,＂indicates the number of iterations of Algorithm PR+ for

which the adjustment (51) was needed to ensure that βPR
k ě 0.
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§5.2 Nonlinear Conjugate Gradient Methods

Figure 6: Iterations and function/gradient evaluations required by three
nonlinear conjugate gradient methods on a set of test problems; see [123]

Note that the Polak-Ribière algorithm, or its variation PR+, are
not always more efficient than Algorithm FR, and it has the slight
disadvantage of requiring one more vector of storage.
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