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Chapter 4. Trust Region Methods

Introduction
Line search methods and trust-region methods both generate steps
with the help of a quadratic model of the objective function, but
they use this model in different ways. Line search methods use it to
generate a search direction, and then focus their efforts on finding
a suitable step length α along this direction. Trust-region methods
define a region around the current iterate within which they trust the
model to be an adequate representation of the objective function,
and then choose the step to be the approximate minimizer of the
model in this region. In effect, they choose the direction and length
of the step simultaneously. If a step is not acceptable, they reduce
the size of the region and find a new minimizer. In general, the
direction of the step changes whenever the size of the trust region
is altered.
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The size of the trust region is critical to the effectiveness of each
step. If the region is too small, the algorithm misses an opportu-
nity to take a substantial step that will move it much closer to the
minimizer of the objective function. If too large, the minimizer of
the model may be far from the minimizer of the objective function
in the region, so we may have to reduce the size of the region and
try again.
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In practical algorithms, we choose the size of the region according to
the performance of the algorithm during previous iterations. If the
model is consistently reliable, producing good steps and accurately
predicting the behavior of the objective function along these steps,
the size of the trust region may be increased to allow longer, more
ambitious, steps to be taken. A failed step is an indication that our
model is an inadequate representation of the objective function over
the current trust region. After such a step, we reduce the size of
the region and try again.
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Figure 1 (in the next slide) illustrates the trust-region approach on
a function f of two variables in which the current point xk and the
minimizer x˚ lie at opposite ends of a curved valley. The quadratic
model function mk, whose elliptical contours are shown as dashed
lines, is constructed from function and derivative information at xk

and possibly also on information accumulated from previous itera-
tions and steps. A line search method based on this model searches
along the step to the minimizer of mk (shown), but this direction
will yield at most a small reduction in f, even if the optimal step
length is used. The trust-region method steps to the minimizer of
mk within the dotted circle (shown), yielding a more significant re-
duction in f and better progress toward the solution.
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Figure 1: Trust-region and line search steps.
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Introduction
In this chapter, we will assume that the model function mk that is
used at each iterate xk is quadratic. Moreover, mk is based on the
Taylor-series expansion of f around xk, which is

f (xk + p) = fk + gT
k p +

1

2
pT(∇2f )(xk + tp)p , (1)

where fk = f (xk) and gk = (∇f )(xk), and t is some scalar in the
interval (0, 1). By using an approximation Bk to the Hessian in the
second-order term, mk is defined as follows:

mk(p) = fk + gT
k p +

1

2
pTBk p , (2)

where Bk is some symmetric matrix. The difference between mk(p)
and f (xk + p) is O(}p}2), which is small when }p} is small.
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When Bk is equal to the true Hessian (∇2f )(xk), the approximation
error in the model function mk is O(}p}3), so this model is especially
accurate when }p} is small. This choice Bk ” (∇2f )(xk) leads to
the trust-region Newton method, and will be discussed further in
Section 4.4. In other sections of this chapter, we emphasize the
generality of the trust-region approach by assuming little about Bk

except symmetry and uniform boundedness.
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To obtain each step, we seek a solution of the sub-problem

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }p} ď ∆k , (3)

where ∆k ą 0 is the trust-region radius. The trust-region approach
requires us to solve a sequence of sub-problems (3) in which the ob-
jective function and constraint (which can be written as pTp ď ∆2

k)
are both quadratic. When Bk is positive definite and }B´1

k gk} ď ∆k,
the solution of (3) is easy to identify – it is simply the unconstrained
minimum pB

k = ´B´1
k gk of the quadratic mk(p). In this case, we

call pB
k the full step. The solution of (3) is not so obvious in other

cases, but it can usually be found without too much computational
expense. In any case, as described below, we need only an approxi-
mate solution to obtain convergence and good practical behavior.
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Introduction
‚ Outline of the Trust-Region Approach
One of the key ingredients in a trust-region algorithm is the strategy
for choosing the trust-region radius ∆k at each iteration. We base
this choice on the agreement between the model function mk and
the objective function f at previous iterations. Given a step pk we
define the ratio

ρk =
f (xk) ´ f (xk + pk)

mk(0) ´ mk(pk)
; (4)

the numerator is called the actual reduction, and the denominator
is the predicted reduction (that is, the reduction in f predicted by
the model function).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

Introduction
‚ Outline of the Trust-Region Approach
One of the key ingredients in a trust-region algorithm is the strategy
for choosing the trust-region radius ∆k at each iteration. We base
this choice on the agreement between the model function mk and
the objective function f at previous iterations. Given a step pk we
define the ratio

ρk =
f (xk) ´ f (xk + pk)

mk(0) ´ mk(pk)
; (4)

the numerator is called the actual reduction, and the denominator
is the predicted reduction (that is, the reduction in f predicted by
the model function).

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

Introduction
Note that since the step pk is obtained by minimizing the model
mk over a region that includes p = 0, the predicted reduction will
always be non-negative. Hence, if ρk is negative, the new objective
value f (xk + pk) is greater than the current value f (xk), so the step
must be rejected.

On the other hand, if ρk is close to 1, there is good agreement
between the model mk and the function f over this step, so it is safe
to expand the trust region for the next iteration. If ρk is positive
but significantly smaller than 1, we do not alter the trust region,
but if it is close to zero or negative, we shrink the trust region by
reducing ∆k at the next iteration.
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Algorithm 4.1 (Trust Region).
Given p∆ ą 0, ∆0 P (0, p∆), and η P [0, 1/4);
for k = 0, 1, 2, ¨ ¨ ¨

Obtain pk by (approximately) solving (3) & evaluate ρk from (4);
if ρk ă 1/4

∆k+1 =
1

4
∆k;

else
if ρk ą 3/4 and }pk} = ∆k

∆k+1 = min(2∆k, p∆);
else

∆k+1 = ∆k;
if ρk ą η

xk+1 = xk + pk;
else

xk+1 = xk;
end (for)
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Here p∆ is an overall bound on the step lengths. Note that the
radius is increased only if }pk} actually reaches the boundary of the
trust region. If the step stays strictly inside the region, we infer that
the current value of ∆k is not interfering with the progress of the
algorithm, so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on
solving the trust-region sub-problem (3). In discussing this matter,
we sometimes drop the subscript k and restate the problem as

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

A first step to characterizing exact solutions of (5) is given by the
following theorem which shows that the solution p˚ of (5) satisfies

(B + λI)p˚ = ´g (6a)
for some λ ě 0.

(B + λI)p˚ = ´g , (6a)

λ(∆ ´ }p˚}) = 0 , (6b)

(B + λI) is positive semi-definite. (6c)
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Theorem
The vector p˚ is a global solution of the trust-region problem

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

if and only if p˚ is feasible and there is a scalar λ ě 0 such that the
following conditions are satisfied:

(B + λI)p˚ = ´g , (6a)
λ(∆ ´ }p˚}) = 0 , (6b)

(B + λI) is positive semi-definite. (6c)

Remark: The non-negativity of λ and (6b) are part of the KKT
conditions for the constrained optimization problem (5).

We will delay the proof of this result until Section 4.3.
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The condition (6b) is a complementarity condition that states that
at least one of the non-negative quantities λ and (∆´}p˚}) must be
zero. Hence, when the solution lies strictly inside the trust region (as
it does when ∆ = ∆1 in Figure 2 in the next slide), we must have
λ = 0 and so Bp˚ = ´g with B positive semi-definite, from (6a)
and (6c), respectively. In the other cases ∆ = ∆2 and ∆ = ∆3, we
have }p˚} = ∆, and so λ is allowed to take a positive value. Note
from (6a) that

λp˚ = ´Bp˚ ´ g = ´∇m(p˚) .

Thus, when λ ą 0, the solution p˚ is collinear with the negative
gradient of m and normal to its contours. These properties can be
seen in Figure 2.
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Figure 2: Solution of trust-region sub-problem for different radii ∆1, ∆2,
∆3.
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In Section 4.1, we describe two strategies for finding approximate
solutions of the sub-problem (3), which achieve at least as much
reduction in mk as the reduction achieved by the so-called Cauchy
point. This point is simply the minimizer of mk along the steep-
est descent direction ´gk subject to the trust-region bound. The
first approximate strategy is the dogleg method, which is appropri-
ate when the model Hessian Bk is positive definite. The second
strategy, known as two-dimensional subspace minimization, can be
applied when Bk is indefinite, though it requires an estimate of the
most negative eigenvalue of this matrix. A third strategy, described
in Section 7.1, uses an approach based on the conjugate gradient
method to minimize mk, and can therefore be applied when B is
large and sparse.
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Section 4.3 is devoted to a strategy in which an iterative method is
used to identify the value of λ for which

(B + λI)p˚ = ´g (6a)

is satisfied by the solution of the sub-problem. We prove global con-
vergence results in Section 4.2. Section 4.4 discusses the trust-region
Newton method, in which the Hessian Bk of the model function is
equal to the Hessian (∇2f )(xk) of the objective function. The key
result of this section is that, when the trust-region Newton algorithm
converges to a point x˚ satisfying second-order sufficient conditions,
it converges superlinearly.
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§4.1 Algorithms Based on the Cauchy Point
‚ The Cauchy Point
As we saw in Chapter 3, line search methods can be globally con-
vergent even when the optimal step length is not used at each it-
eration. In fact, the step length αk need only satisfy fairly loose
criteria (such as Wolfe or Goldstein conditions). A similar situation
applies in trust-region methods. Although in principle we seek the
optimal solution of the sub-problem (3), it is enough for purposes
of global convergence to find an approximate solution pk that lies
within the trust region and gives a sufficient reduction in the model.
The sufficient reduction can be quantified in terms of the Cauchy
point, which we denote by pC

k and define in terms of the following
simple procedure.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
Algorithm 4.2 (Cauchy Point Calculation).
Find the vector pS

k that solves a linear version of (3); that is,

pS
k = arg min

pPRn

(
fk + gT

k p
)

s.t. }p} ď ∆k ; (7)

Calculate the scalar τk ą 0 that minimizes mk(pS
k) subject to satis-

fying the trust-region bound; that is,

τk = arg min
τě0

mk(τpS
k) s.t. }τpS

k} ď ∆k ; (8)

Set pC
k = τkpS

k.

Remark: Since pS
k satisfies }pS

k} = ∆k, the optimization problem
(8) is indeed identical to

τk = arg min
τě0

mk(τpS
k) s.t. |τ | ď 1 . (8’)
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
It is easy to write down a closed-form definition of the Cauchy point.
For a start, the solution of (7) is simply

pS
k = ´

∆k
}gk}

gk .

To obtain τk explicitly, we consider the cases of gT
k Bk gk ď 0 and

gT
k Bk gk ą 0 separately.
1 For the former case, the function mk(τpS

k) decreases monoton-
ically with τ whenever gk ‰ 0, so τk is simply the largest value
that satisfies the trust-region bound, namely, τk = 1.

2 For the case gT
k Bk gk ą 0, mk(τpS

k) is a convex quadratic in τ ,
so τk is either the unconstrained minimizer of this quadratic,
}gk}3/(∆kgT

k Bk gk), or the boundary value 1, whichever comes
first.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
It is easy to write down a closed-form definition of the Cauchy point.
For a start, the solution of (7) is simply

pS
k = ´

∆k
}gk}

gk .

To obtain τk explicitly, we consider the cases of gT
k Bk gk ď 0 and

gT
k Bk gk ą 0 separately.
1 For the former case, the function mk(τpS

k) decreases monoton-
ically with τ whenever gk ‰ 0, so τk is simply the largest value
that satisfies the trust-region bound, namely, τk = 1.

2 For the case gT
k Bk gk ą 0, mk(τpS

k) is a convex quadratic in τ ,
so τk is either the unconstrained minimizer of this quadratic,
}gk}3/(∆kgT

k Bk gk), or the boundary value 1, whichever comes
first.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
It is easy to write down a closed-form definition of the Cauchy point.
For a start, the solution of (7) is simply

pS
k = ´

∆k
}gk}

gk .

To obtain τk explicitly, we consider the cases of gT
k Bk gk ď 0 and

gT
k Bk gk ą 0 separately.
1 For the former case, the function mk(τpS

k) decreases monoton-
ically with τ whenever gk ‰ 0, so τk is simply the largest value
that satisfies the trust-region bound, namely, τk = 1.

2 For the case gT
k Bk gk ą 0, mk(τpS

k) is a convex quadratic in τ ,
so τk is either the unconstrained minimizer of this quadratic,
}gk}3/(∆kgT

k Bk gk), or the boundary value 1, whichever comes
first.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
In summary, we have

pC
k = ´τk

∆k
}gk}

gk , (9)
where

τk =

"

1 if gT
k Bk gk ď 0 ,

min
(
}gk}3/(∆kgT

k Bk gk), 1
)

otherwise . (10)

Figure 3 (in the next slide) illustrates the Cauchy point for a sub-
problem in which Bk is positive definite. In this example, pC

k lies
strictly inside the trust region. The Cauchy step pC

k is inexpensive to
calculate – no matrix factorizations are required – and is of crucial
importance in deciding if an approximate solution of the trust-region
sub-problem is acceptable. Specifically, a trust-region method will
be globally convergent if its steps pk give a reduction in the model mk
that is at least some fixed positive multiple of the decrease attained
by the Cauchy step.
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Figure 3: The Cauchy point.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
‚ Improving on the Cauchy Point
Since the Cauchy point pC

k provides sufficient reduction in the model
function mk to yield global convergence, and since the cost of cal-
culating it is so small, why should we look any further for a better
approximate solution of (3)? The reason is that by always taking
the Cauchy point as our step, we are simply implementing the steep-
est descent method with a particular choice of step length. As we
have seen in Chapter 3, steepest descent performs poorly even if an
optimal step length is used at each iteration.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
The Cauchy point does not depend very strongly on the matrix Bk,
which is used only in the calculation of the step length. Rapid
convergence can be expected only if Bk plays a role in determining
the direction of the step as well as its length, and if Bk contains valid
curvature information about the function. A number of trust-region
algorithms compute the Cauchy point and then try to improve on
it. The improvement strategy is often designed so that the full step
pB

k = ´B´1
k gk is chosen whenever Bk is positive definite and }pB

k } ď

∆k. When Bk is the exact Hessian (∇2f )(xk) or a quasi-Newton
approximation, this strategy can be expected to yield superlinear
convergence.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
We now consider three methods for finding approximate solutions to
(3) that have the features just described. Throughout this section
we will be focusing on the internal workings of a single iteration,
so we simplify the notation by dropping the subscript “k” from the
quantities ∆k, pk, mk, and gk and refer to the formulation

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

of the sub-problem. In this section, we denote the solution of (5)
by p˚(∆), to emphasize the dependence on ∆.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
‚ The Dogleg Method
The first approach we discuss goes by the descriptive title of the
dogleg method. It can be used when B is positive definite. To
motivate this method, we start by examining the effect of the trust-
region radius ∆ on the solution p˚(∆) of the sub-problem

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

When B is positive definite, we have already noted that the uncon-
strained minimizer of m is pB = ´B´1g.
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§4.1 Algorithms Based on the Cauchy Point
When B is positive definite, we have already noted that the uncon-
strained minimizer of m is pB = ´B´1g.

1 When this point is feasible for (5), it is obviously a solution, so
we have

p˚(∆) = pB , when ∆ ě }pB}. (11)

2 When ∆ is small relative to pB , the restriction }p} ď ∆ ensures
that the quadratic term in m has little effect on the solution
of (5). For such ∆, we can get an approximation to p(∆) by
simply omitting the quadratic term from (5) and writing

p˚(∆) « ´∆
g

}g}
, when ∆ is small. (12)

3 For intermediate values of ∆, the solution p˚(∆) typically fol-
lows a curved trajectory like the one in Figure 4.
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Figure 4: Exact trajectory and dogleg approximation.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
The dogleg method finds an approximate solution by replacing the
curved trajectory for p˚(∆) with a path consisting of two line seg-
ments. The first line segment runs from the origin to the minimizer
of m along the steepest descent direction, which is

pU ” ´
gTg

gTBgg , (13)

while the second line segment runs from pU to pB (see Figure 4).
Formally, we denote this trajectory by rp(τ) for τ P [0, 2], where

rp(τ) =
#

τpU if 0 ď τ ď 1 ,

pU + (τ ´ 1)(pB ´ pU) if 1 ď τ ď 2 .
(14)

The dogleg method chooses p to minimize the model m along this
path, subject to the trust-region bound. The following lemma shows
that the minimum along the dogleg path can be found easily.
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Lemma
Let B be positive definite. Then

1 }rp(τ)} is an increasing function of τ , and
2 m(rp(τ)) is a decreasing function of τ .

Proof.
It is “easy to see” that 1⃝ and 2⃝ both hold for τ P [0, 1], so we
restrict our attention to the case of τ P [1, 2].
For 1⃝, define h(α) by

h(α) = 1

2
}rp(1 + α)}2 =

1

2
}pU + α(pB ´ pU)}2

=
1

2
}pU}2 + α(pU)T(pB ´ pU) +

1

2
α2}pB ´ pU}2 .

Our result is proved if we can show that h 1(α) ě 0 for α P (0, 1). ˝
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Proof (cont’d).
Now we compute h 1(α) and obtain

h 1(α) = ´(pU)T(pU ´ pB) + α}pU ´ pB}2 ě ´(pU)T(pU ´ pB)

=
gTg

gTBggT
(

´
gTg

gTBgg + B´1g
)

= gTg ¨
gTB´1g

gTBg

[
1 ´

(gTg)2
(gTBg)(gTB´1g)

]
.

By the fact that B is positive definite,

}gT?
B}2 = gTBg and }

?
B´1g}2 = gTB´1g

so that the Cauchy-Schwarz inequality shows that

(gTg)2 = (gT?
B

?
B´1g)2 ď }gT?

B}2}gT
?

B´1}2

Therefore, h 1(α) ě 0. ˝
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Proof (cont’d).

For 2⃝, we define ph(α) = m(rp(1 +α)) and show that ph 1(α) ď 0 for
α P (0, 1). Substitution of

rp(1 + α) = pU + α(pB ´ pU)

into (5) and differentiation with respect to the argument leads to
ph 1(α) = (pB ´ pU)T(g + BpU) + α(pB ´ pU)TB(pB ´ pU)

ď (pB ´ pU)T(g + BpU + B(pB ´ pU))

= (pB ´ pU)T(g + BpB) = 0 ,

giving the result. ˝
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It follows from this lemma that the path rp(τ) intersects the trust-
region boundary }p} ď ∆ at exactly one point if }pB} ě ∆, and
nowhere otherwise. Since m is decreasing along the path, the chosen
value of p will be at pB if }pB} ď ∆, otherwise at the point of
intersection of the dogleg and the trust-region boundary. In the
latter case, we compute the appropriate value of τ by solving the
following scalar quadratic equation:

}pU + (τ ´ 1)(pB ´ pU)}2 = ∆2.
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Consider now the case in which the exact Hessian (∇2f )(xk) is avail-
able for use in the model problem (5):

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

When (∇2f )(xk) is positive definite, we can simply set B = (∇2f )(xk)

(that is, pB = ´(∇2f (xk))´1gk) and apply the procedure above to
find the Newton-dogleg step. Otherwise, we can define pB by choos-
ing B to be one of the positive definite modified Hessians described
in Section 3.4, then proceed as above to find the dogleg step. Near
a solution satisfying second-order sufficient conditions ((∇2f )(x˚) is
positive definite), pB will be set to the usual Newton step, allowing
the possibility of rapid local convergence of Newton’s method (see
Section 4.4).
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Section 4.4).
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§4.1 Algorithms Based on the Cauchy Point
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
The use of a modified Hessian in the Newton-dogleg method is
not completely satisfying from an intuitive viewpoint. A modified
factorization perturbs the diagonals of (∇2f )(xk) in a somewhat ar-
bitrary manner, and the benefits of the trust-region approach may
not be realized. In fact, the modification introduced during the fac-
torization of the Hessian is redundant in some sense because the
trust-region strategy introduces its own modification. As we show
in Section 4.3, the exact solution of the trust-region problem (3)
with Bk = (∇2f )(xk) is ´(∇2f (xk) + λI)´1gk, where λ is cho-
sen large enough to make (∇2f (xk) + λI) positive definite, and its
value depends on the trust-region radius ∆k. We conclude that
the Newton-dogleg method is most appropriate when the objective
function is convex. The techniques described below may be more
suitable for the general case.
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
The dogleg strategy can be adapted to handle indefinite matrices
B, but there is not much point in doing so because the full step pB

is not the unconstrained minimizer of m in this case. Instead, we
now describe another strategy, which aims to include directions of
negative curvature (that is, directions d for which d TBd ă 0) in the
space of candidate trust-region steps.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
‚ Two-dimensional Subspace Minimization
When B is positive definite, the dogleg method strategy can be made
slightly more sophisticated by widening the search for p to the entire
two-dimensional subspace spanned by pU and pB (equivalently, g and
´B´1g). The sub-problem (5) is replaced by

min
p

m(p)= f +gTp +
1

2
pTBp s.t. }p}ď∆, p P span[g,B´1g ] . (15)

This is a problem in two variables that is computationally inexpensive
to solve. Clearly, the Cauchy point pC is feasible for (15), so the
optimal solution of this sub-problem yields at least as much reduction
in m as the Cauchy point, resulting in global convergence of the
algorithm. The two-dimensional subspace minimization strategy is
obviously an extension of the dogleg method as well, since the entire
dogleg path lies in span[g,B´1g ].
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
This strategy can be modified to handle the case of indefinite B.
When B has negative eigenvalues, the two-dimensional subspace in
(15) is changed to

span[g, (B + αI)´1g ] for some α P (´λ1,´2λ1] , (16)

where λ1 denotes the most negative/smallest eigenvalue of B. When
}(B + αI)´1g} ď ∆, we discard the subspace search of (15), (16)
and instead define the step to be

p = ´(B + αI)´1g + v , (17)

where v is a vector that satisfies vT(B+αI)´1g ď 0. (This condition
ensures that }p} ě }(B + αI)´1g}.) When B has zero eigenvalues
but no negative eigenvalues, we define the step to be the Cauchy
point p = pC .
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Chapter 4. Trust Region Methods

§4.1 Algorithms Based on the Cauchy Point
When the exact Hessian is available, we can set B = (∇2f )(xk),
and note that B´1g is the Newton step. Hence, when the Hessian
is positive definite at the solution x˚ and when xk is close to x˚

and ∆ is sufficiently large, the subspace minimization problem (15)
will be solved by the Newton step. The reduction in model function
m achieved by the two-dimensional subspace minimization strategy
often is close to the reduction achieved by the exact solution of (5).

Most of the computational effort lies in a single factorization of B
or B+αI (estimation of α and solution of (15) are less significant),
while strategies that find nearly exact solutions of (5) typically re-
quire two or three such factorizations (see Section 4.3).
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
‚ Reduction Obtained by the Cauchy Point
In the preceding discussion of algorithms for approximately solving
the trust-region sub-problem, we have repeatedly emphasized that
global convergence depends on the approximate solution obtaining
at least as much decrease in the model function m as the Cauchy
point. In fact, a fixed positive fraction of the Cauchy decrease
suffices. We start the global convergence analysis by obtaining an
estimate of the decrease in m achieved by the Cauchy point. We
then use this estimate to prove that the sequence of gradients tgku

generated by Algorithm 4.1 has an accumulation point at zero, and
in fact converges to zero when η is strictly positive.
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Steihaug’s algorithm (Algorithm 7.2) produce approximate solutions
pk of the sub-problem

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }p} ď ∆k , (3)

that satisfy the following estimate of decrease in the model function:

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
(18)

for some constant c1 P (0, 1]. The usefulness of this estimate will
become clear in the following two sections. For now, we note that
when ∆k is the minimum value in (18), the condition is slightly rem-
iniscent of the first Wolfe condition: The (least) desired reduction
in the model is proportional to the gradient and the size of the step.

Next we show now that the Cauchy point pC
k satisfies (18), with

c1 = 1/2.
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Lemma
The Cauchy point pC

k satisfies (18) with c1 = 1/2; that is,

mk(0) ´ mk(pC
k) ě

1

2
}gk} min

(
∆k,

}gk}

}Bk}

)
(19)

Proof.
For simplicity, we drop the iteration index k in the proof.
We consider first the case gTBg ď 0. Here, we have

m(pC) ´ m(0) = m
(

´
∆

}g}
g
)

´ f

= ´
∆

}g}
}g}2 +

1

2

∆2

}g}2
gTBg

ď ´∆}g} ď ´}g} min
(
∆,

}g}

}B}

)
,

and so (19) certainly holds. ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
For the next case, consider gTBg ą 0 and

}g}3

∆gTBg ą 1 . (20)

Recall from (9) and (10) that for the case gTBg ą 0 the Cauchy
point pC

k is given by
pC = ´ min

(
}g}3

∆gTBg , 1
)

∆

}g}
g = ´

∆

}g}
g .

Using this fact together with (20), we obtain

m(pC) ´ m(0) = ´
∆

}g}
}g}2 +

1

2

∆2

}g}2
gTBg ď ´∆}g} +

1

2

∆2

}g}2
}g}3

∆

= ´
1

2
∆}g} ď ´

1

2
}g} min

(
∆,

}g}

}B}

)
Therefore, in this case (19) holds too. ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
In the remaining case, (20) does not hold, and therefore

}g}3

∆gTBg ď 1 . (21)

From the formula for the Cauchy point we have

pC = ´ min
(

}g}3

∆gTBg , 1
)

∆

}g}
g = ´

}g}2

gTBgg ,
so
m(pC) ´ m(0) = ´

}g}2

gTBg}g}2 +
1

2

}g}4

(gTBg)2 gTBg = ´
1

2

}g}4

gTBg

ď ´
1

2

}g}4

}B}}g}2
= ´

1

2

}g}2

}B}
ď ´

1

2
}g} min

(
∆,

}g}

}B}

)
,

yielding the desired result (19) once again. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
In the remaining case, (20) does not hold, and therefore

}g}3

∆gTBg ď 1 . (21)

From the formula for the Cauchy point we have

pC = ´ min
(

}g}3

∆gTBg , 1
)

∆

}g}
g = ´

}g}2

gTBgg ,
so
m(pC) ´ m(0) = ´

}g}2

gTBg}g}2 +
1

2

}g}4

(gTBg)2 gTBg = ´
1

2

}g}4

gTBg

ď ´
1

2

}g}4

}B}}g}2
= ´

1

2

}g}2

}B}
ď ´

1

2
}g} min

(
∆,

}g}

}B}

)
,

yielding the desired result (19) once again. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
To satisfy

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
(18)

for some constant c1 P (0, 1], our approximate solution pk has only
to achieve a reduction that is at least some fixed fraction c2 of the
reduction achieved by the Cauchy point. We state the observation
formally as a theorem.
Theorem
Let pk be any vector such that }pk} ď ∆k and

mk(0) ´ mk(pk) ě c2
[
mk(0) ´ mk(pC

k)
]
.

Then pk satisfies (18) with c1 = c2/2. In particular, if pk is the
exact solution p˚

k of (3) (the minimization of mk subject to the
trust-region bound), then it satisfies (18) with c1 = 1/2.
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Note that the dogleg and two-dimensional subspace minimization
algorithms both satisfy (18) with c1 = 1/2, because they all produce
approximate solutions pk for which

mk(pk) ď mk(pC
k) .
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
‚ Convergence to Stationary Points
Global convergence results for trust-region methods come in two
varieties, depending on whether we set the parameter η in Algorithm
4.1 to zero or to some small positive value. When η = 0, (that is,
the step is taken whenever it produces a lower value of f ), we can
show that the sequence of gradients tgku has a limit point at zero.
For the more stringent acceptance test with η ą 0, which requires
the actual decrease in f to be at least some small fraction of the
predicted decrease, we have the stronger result that gk Ñ 0.
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Algorithm 4.1 (Trust Region).
Given p∆ ą 0, ∆0 P (0, p∆), and η P [0, 1/4);
for k = 0, 1, 2, ¨ ¨ ¨

Obtain pk by (approximately) solving (3) & evaluate ρk from (4);
if ρk ă 1/4

∆k+1 =
1

4
∆k;

else
if ρk ą 3/4 and }pk} = ∆k

∆k+1 = min(2∆k, p∆);
else

∆k+1 = ∆k;
if ρk ą η

xk+1 = xk + pk;
else

xk+1 = xk;
end (for)
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
In this section we prove the global convergence results for both
cases. We assume that the approximate Hessians Bk are uniformly
bounded, and that f is bounded from below on the level set

S ”
␣

x
ˇ

ˇ f (x) ď f (x0)
(

. (22)
For later reference, we define an open neighborhood of this set by

S(R0) ”
␣

x
ˇ

ˇ }x ´ y} ă R0 for some y P S
(

,

where R0 is a positive constant.

To allow our results to be applied more generally, we also allow the
length of the approximate solution pk of (3) to exceed the trust-
region bound, provided that it stays within some fixed multiple of
the bound; that is,

}pk} ď γ∆k for some constant γ ě 1. (23)
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S(R0) ”
␣

x
ˇ

ˇ }x ´ y} ă R0 for some y P S
(

,

where R0 is a positive constant.

To allow our results to be applied more generally, we also allow the
length of the approximate solution pk of (3) to exceed the trust-
region bound, provided that it stays within some fixed multiple of
the bound; that is,

}pk} ď γ∆k for some constant γ ě 1. (23)
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Theorem
Consider solving the minimization problem

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }p} ď γ∆k , (3’)

using Algorithm 4.1, where γ ě 1 is a fixed constant in (3’). Sup-
pose that }Bk} ď β for some constant β, that f is bounded from
below on the level set S defined by (22) and Lipschitz continuously
differentiable in the neighborhood S(R0) for some R0 ą 0, and that
all approximate solutions of (3’) satisfy the inequalities

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
(18)

for some constant c1 P (0, 1]. We then have lim inf
kÑ8

}gk} = 0. More-
over, if η ą 0, then lim

kÑ8
}gk} = 0.
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Suppose the contrary (of lim inf

kÑ8
}gk} = 0) that there are ε ą 0 and

K ą 0 such that
}gk} ě ε @ k ě K. (24)

From (18) we have for k ě K that

mk(0)´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
ě c1εmin

(
∆k,

ε

β

)
. (25)

We claim that there exists s∆ ą 0 such that
if ∆k ď s∆ for some particular k ě K, then ρk ą 1/4 for such k,

where ρk is the ratio between the actual reduction and the model
reduction ρk given by

ρk =
f (xk) ´ f (xk + pk)

mk(0) ´ mk(pk)
. (4)

˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Suppose (for now) that the claim is valid so that there exists a s∆ ą 0

such that
if ∆k ď s∆ for some particular k ě K, then ρk ą 1/4 for such k.

Recall that in Algorithm 4.1 we have
1 ∆k+1 = ∆k/4 if ρk ă 1/4;
2 ∆k+1 ě ∆k if ρk ě 1/4.

Therefore, ∆k+1 ě ∆k whenever ∆k falls below the threshold s∆

and reduction of ∆k (by a factor of 1/4) can occur in our algorithm
only if ∆k ě s∆. We then conclude that

∆k ě min
(
∆K, s∆/4

)
@ k ě K. (26)

The contradiction will be based on (26). ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Let K =

␣

k ě K
ˇ

ˇ ρk ě 1/4
(

. Note that if k P K, xk+1 = xk + pk.
By the definition of ρk and inequalities (25), (26), for k P K we have

f (xk) ´ f (xk+1) = f (xk) ´ f (xk + pk)ě
1

4

[
mk(0) ´ mk(pk)

]
ě

1

4
c1εmin

(
∆k,

ε

β

)
ě

1

4
c1εmin

(
∆K,

s∆

4
,
ε

β

)
.

Since tf (xk)u is a decreasing sequence and f is bounded from below,

f (x0) ´ inf
S

f ě
8
ÿ

k=0

[
f (xk) ´ f (xk+1)

]
ě

#K
4

c1εmin
(
∆K,

s∆

4
,
ε

β

)
,

so #K ă 8. Hence ρk ă 1/4 for all k sufficiently large. Therefore,
∆k will eventually be multiplied by 1/4 at every iteration, and we
have lim

kÑ8
∆k = 0, which contradicts (26). Hence, our original

assertion (24) must be false, giving that lim inf
kÑ8

}gk} = 0. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Let K =

␣

k ě K
ˇ

ˇ ρk ě 1/4
(

. Note that if k P K, xk+1 = xk + pk.
By the definition of ρk and inequalities (25), (26), for k P K we have

f (xk) ´ f (xk+1) = f (xk) ´ f (xk + pk)ě
1

4

[
mk(0) ´ mk(pk)

]
ě

1

4
c1εmin

(
∆k,

ε

β

)
ě

1

4
c1εmin

(
∆K,

s∆

4
,
ε

β

)
.

Since tf (xk)u is a decreasing sequence and f is bounded from below,

f (x0) ´ inf
S

f ě
8
ÿ

k=0

[
f (xk) ´ f (xk+1)

]
ě

#K
4

c1εmin
(
∆K,

s∆

4
,
ε

β

)
,

so #K ă 8. Hence ρk ă 1/4 for all k sufficiently large. Therefore,
∆k will eventually be multiplied by 1/4 at every iteration, and we
have lim

kÑ8
∆k = 0, which contradicts (26). Hence, our original

assertion (24) must be false, giving that lim inf
kÑ8

}gk} = 0. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Let K =

␣

k ě K
ˇ

ˇ ρk ě 1/4
(

. Note that if k P K, xk+1 = xk + pk.
By the definition of ρk and inequalities (25), (26), for k P K we have

f (xk) ´ f (xk+1) = f (xk) ´ f (xk + pk)ě
1

4

[
mk(0) ´ mk(pk)

]
ě

1

4
c1εmin

(
∆k,

ε

β

)
ě

1

4
c1εmin

(
∆K,

s∆

4
,
ε

β

)
.

Since tf (xk)u is a decreasing sequence and f is bounded from below,

f (x0) ´ inf
S

f ě
8
ÿ

k=0

[
f (xk) ´ f (xk+1)

]
ě

#K
4

c1εmin
(
∆K,

s∆

4
,
ε

β

)
,

so #K ă 8. Hence ρk ă 1/4 for all k sufficiently large. Therefore,
∆k will eventually be multiplied by 1/4 at every iteration, and we
have lim

kÑ8
∆k = 0, which contradicts (26). Hence, our original

assertion (24) must be false, giving that lim inf
kÑ8

}gk} = 0. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Now we establish the claim that there exists a s∆ ą 0 such that

if ∆k ď s∆ for some particular k ě K, then ρk ą 1/4 for such k

under the assumption (of lim inf
kÑ8

}gk} ą 0) that

}gk} ě ε @ k ě K. (24)
so that for k ě K

mk(0) ´ mk(pk) ě c1εmin
(
∆k,

ε

β

)
. (25)

Let β1 denote the Lipschitz constant for g on the set S(R0), and
define

s∆ = min
( c1ε
γ2(β + β1)

,
R0

2γ

)
.

The fact that c1 ď 1 and γ ě 1 imply that s∆ ď ε/β. ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Let k ě K satisfy ∆k ď s∆. Then }pk} ď γ∆k ď R0/2 so that

xk + tpk P S(R0) @ t P [0, 1] .

By Taylor’s theorem,

f (xk +pk) = f (xk) + g(xk)
Tpk +

ż 1

0

[
g(xk + tpk) ´ g(xk)

]Tpk dt.

Therefore, the Lipschitz condition shows that
ˇ

ˇmk(pk) ´ f (xk +pk)
ˇ

ˇ

=
ˇ

ˇ

ˇ

1

2
pT

k Bk pk ´

ż 1

0

[
g(xk + tpk) ´ g(xk)

]Tpk dt
ˇ

ˇ

ˇ

ď
β

2
}pk}2 +

ż 1

0

β1t}pk}2 dt

ď
β

2
}pk}2 +

β1

2
}pk}2 ď

γ2

2
∆2

k(β + β1) . (27)
˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Since ∆k ď s∆, using (27), the inequality

mk(0)´mk(pk) ě c1εmin
(
∆k,

ε

β

)
, (25)

the definition of s∆ = min
( c1ε
γ2(β + β1)

,
R0

2γ

)
, and the fact that s∆ ď

ε/β we find that

|ρk ´ 1| =

ˇ

ˇ

ˇ

ˇ

(f (xk) ´ f (xk + pk)) ´ (mk(0) ´ mk(pk))

mk(0) ´ mk(pk)

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

mk(pk) ´ f (xk + pk)

mk(0) ´ mk(pk)

ˇ

ˇ

ˇ

ˇ

ď
γ2∆2

k(β + β1)

2c1εmin(∆k, ε/β)

=
γ2∆2

k(β + β1)

2c1ε∆k
ď

γ2
s∆(β + β1)

2c1ε
ď

1

2

which shows that ρk ą
1

4
. Therefore, the claim is established. ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Now suppose that η ą 0. Let m P N satisfy gm ‰ 0. Define

ε =
1

2
}gm} , R = min

(
ε

β1
,

R0

2

)
.

Since B[xm,R ] =
␣

x
ˇ

ˇ }x ´ xm} ď R
(

is contained in S(R0), by the
Lipschitz condition,

}g(x) ´ gm} ď β1}x ´ xm} @ x P B[xm,R ] .

Therefore, if x P B[xm,R ], we have
}g(x)} ě }gm} ´ }g(x) ´ gm} ě 2ε ´ ε = ε ;

thus if the entire sequence txkukěm stays inside the ball B[xm,R ],
we would have }gk} ě ε ą 0 for all k ě m, and the reasoning in the
previous case shows that this scenario cannot occur. Therefore, the
sequence txkukěm eventually leaves B[xm,R ]. ˝
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Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
Let the index ℓ ě m be such that xℓ+1 is the first iterate after xm

outside B[xm,R ]. Since }gk} ě ε for k = m,m + 1, ¨ ¨ ¨ , ℓ, we can
use the condition

mk(0) ´ mk(pk) ě c1εmin
(
∆k,

ε

β

)
(25)

to conclude

f (xm)´ f (xℓ+1) =
ℓ
ÿ

k=m

[
f (xk)´ f (xk+1)

]
ě

ℓ
ÿ

k=m
xk‰xk+1

η
[
mk(0)´mk(pk)

]
ě

ℓ
ÿ

k=m
xk‰xk+1

ηc1εmin
(
∆k,

ε

β

)
,

where we have limited the sum to the iterations k for which xk ‰

xk+1; that is, those iterations on which a step was actually taken. ˝

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.2 Global Convergence
Proof (cont’d).
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f (xm)´ f (xℓ+1) ě ηc1ε
ℓ
ÿ

k=m
xk‰xk+1

∆k ě ηc1εR = ηc1εmin
(

ε

β1
,

R0

2

)
. (28)

Otherwise, if ∆k ą ε/β for some m ď k ď ℓ with xk ‰ xk+1, then
f (xm) ´ f (xℓ+1) ě ηc1ε ¨

ε

β
. (29)

Since tf (xk)u8
k=0 is decreasing and bounded from below, f (xk) Œ f˚

for some f˚ ą ´8. Therefore, using (28) and (29), we obtain

f (xm) ´ f˚ ě f (xm) ´ f (xℓ+1) ě ηc1εmin
(
ε

β
,
ε

β1
,

R0

2

)
=

1

4
ηc1}gm} min

(
}gm}

β
,

}gm}

β1
,R0

)
ą 0.

Since f (xm) ´ f˚ Œ 0, we must have }gm} Ñ 0. ˝

f (xm)´f (xℓ+1) ě ηc1ε
ℓ
ÿ

k=m
xk‰xk+1

∆k ě ηc1εR = ηc1εmin
(

ε

β1
,

R0

2

)
. (28)

f (xm) ´ f (xℓ+1) ě ηc1ε ¨
ε

β
. (29)
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
In this section, we describe a technique that uses the characterization

(B + λI)p˚ = ´g for some λ ě 0 (6a)
of the sub-problem solution, applying Newton’s method to find the
value of λ which matches the given trust-region radius ∆ in

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

We also prove the key result concerning the characterization of so-
lutions of (5).

The methods of Section 4.1 make no serious attempt to find the
exact solution of the sub-problem (5). They do, however, make
some use of the information in the model Hessian Bk, and they
have advantages of reasonable implementation cost and nice global
convergence properties.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
In this section, we describe a technique that uses the characterization

(B + λI)p˚ = ´g for some λ ě 0 (6a)
of the sub-problem solution, applying Newton’s method to find the
value of λ which matches the given trust-region radius ∆ in

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

We also prove the key result concerning the characterization of so-
lutions of (5).

The methods of Section 4.1 make no serious attempt to find the
exact solution of the sub-problem (5). They do, however, make
some use of the information in the model Hessian Bk, and they
have advantages of reasonable implementation cost and nice global
convergence properties.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
When the problem is relatively small (that is, n is not too large),
it may be worthwhile to exploit the model more fully by looking
for a closer approximation to the solution of the sub-problem. In
this section, we describe an approach for finding a good approxima-
tion at the cost of a few factorizations of the matrix B (typically
three factorization), as compared with a single factorization for the
dogleg and two-dimensional subspace minimization methods. This
approach is based on the characterization of the exact solution given
in the key theorem (shown in the next slide), together with an inge-
nious application of Newton’s method in one variable. Essentially,
the algorithm tries to identify the value of λ for which (6a) is satis-
fied by the solution of (5).
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
Theorem (Key theorem in Section 4.3)
The vector p˚ is a global solution of the trust-region problem

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

if and only if p˚ is feasible and there is a scalar λ ě 0 such that the
following conditions are satisfied:

(B + λI)p˚ = ´g , (6a)
λ(∆ ´ }p˚}) = 0 , (6b)

(B + λI) is positive semi-definite. (6c)

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
The characterization of the key theorem suggests an algorithm for
finding the solution p of

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

Either λ = 0 satisfies (6a) and (6c) with }p} ď ∆, or else we define
p(λ) = ´(B + λI)´1g

for λ sufficiently large that B + λI is positive definite and seek a
value λ ą 0 such that

}p(λ)} = ∆ . (30)
This problem is a one-dimensional root-finding problem in the vari-
able λ.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
To see that a value of λ with all the desired properties exists, we
appeal to the eigen-decomposition of B and use it to study the
properties of }p(λ)}. Since B is symmetric, there is an orthogonal
matrix Q and a diagonal matrix Λ such that B = QΛQT, where

Λ = diag(λ1, λ2, ¨ ¨ ¨ , λn) ,

and λ1 ď λ2 ď ¨ ¨ ¨ ď λn are the eigenvalues of B. Clearly, B+λI =
Q(Λ + λI)QT, and for λ ‰ λj, we have

p(λ) = ´Q(Λ + λI)´1QTg = ´
n
ÿ

j=1

qT
j g

λj + λ
qj , (31)

where qj denotes the j-th column of Q. Therefore, by orthonormality
of q1, q2, ¨ ¨ ¨ , qn, we have

}p(λ)}2 =
n
ÿ

j=1

(qT
j g)2

(λj + λ)2
. (32)
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem

Figure 5: }p(λ)} as a function of λ.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
This expression tells us a lot about }p(λ)}. If λ ą ´λ1, we have
λj + λ ą 0 for all j = 1, 2, ¨ ¨ ¨ , n, and so }p(λ)} is a continuous,
non-increasing function of λ on the interval (´λ1,8). In fact,

lim
λÑ8

}p(λ)} = 0 (33)
and

lim
λÑ´λj

}p(λ)} = 8 if qT
j g ‰ 0. (34)

Figure 5 plots }p(λ)} against λ in a case in which qT
1 g, qT

2 g, and qT
3 g

are all nonzero. Note that the properties (33) and (34) hold and that
}p(λ)} is a non-increasing function of λ on (´λ1,8). In particular,
when qT

1 g ‰ 0, there is always a unique value λ˚ P (´λ1,8) such
that }p(λ˚)} = ∆. Note that there may be other smaller values of
λ for which }p(λ)} = ∆, but these will fail to satisfy (6c).
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
We now sketch a procedure for identifying the λ˚ P (´λ1,8) for
which }p(λ˚)} = ∆, which works when qT

1 g ‰ 0 (and leave the case
of qT

1 g = 0 later). First, note that when B is positive definite and
}B´1g} ď ∆, the value λ = 0 satisfies (6), so the procedure can be
terminated immediately with λ˚ = 0. Otherwise, we could use the
root-finding Newton’s method to find the value of λ ą ´λ1 that
solves

φ1(λ) = }p(λ)} ´ ∆ = 0. (35)
The disadvantage of this approach can be seen by considering the
form of }p(λ)} when λ is greater than, but close to, ´λ1. For such
λ, we can approximate φ1 by a rational function, as follows:

φ1(λ) «
C1

λ+ λ1
+ C2 ,

where C1 ą 0 and C2 are constants.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
We now sketch a procedure for identifying the λ˚ P (´λ1,8) for
which }p(λ˚)} = ∆, which works when qT

1 g ‰ 0 (and leave the case
of qT

1 g = 0 later). First, note that when B is positive definite and
}B´1g} ď ∆, the value λ = 0 satisfies (6), so the procedure can be
terminated immediately with λ˚ = 0. Otherwise, we could use the
root-finding Newton’s method to find the value of λ ą ´λ1 that
solves

φ1(λ) = }p(λ)} ´ ∆ = 0. (35)
The disadvantage of this approach can be seen by considering the
form of }p(λ)} when λ is greater than, but close to, ´λ1. For such
λ, we can approximate φ1 by a rational function, as follows:

φ1(λ) «
C1

λ+ λ1
+ C2 ,

where C1 ą 0 and C2 are constants.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
Clearly this approximation (and hence φ1) is highly nonlinear, so
the root-finding Newton’s method will be unreliable or slow. Better
results will be obtained if we reformulate the problem (35) so that
it is nearly linear near the optimal λ. By defining

φ2(λ) =
1

∆
´

1

}p(λ)} ,

using (32) we can show that for λ slightly greater than ´λ1,

φ2(λ) «
1

∆
´

λ+ λ1

C3

for some C3 ą 0. Hence, φ2 is nearly linear near ´λ1 (see Figure 6),
and the root-finding Newton’s method will perform well, provided
that it maintains λ ą ´λ1.
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§4.3 Iterative Solution of the Sub-problem

Figure 6: 1/}p(λ)} as a function of λ.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
The root-finding Newton’s method applied to φ2 generates a se-
quence of iterates λ(ℓ) by setting

λ(ℓ+1) = λ(ℓ) ´
φ2

(
λ(ℓ)

)
φ 1
2

(
λ(ℓ)

) . (36)

After some elementary manipulation, this updating formula can be
implemented in the following practical way.

Algorithm 4.3 (Trust Region Sub-problem).
Given λ(0), ∆ ą 0;
for ℓ = 0, 1, 2, ¨ ¨ ¨

Factor B + λ(ℓ)I = RTR;
Solve RTRpℓ = ´g, RTqℓ = pℓ;
Set λ(ℓ+1) = λ(ℓ) +

}pℓ}2

}qℓ}2
¨

}pℓ} ´ ∆

∆
;

end (for)
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
Safeguards must be added to this algorithm to make it practical; for
instance, when λ(ℓ) ă ´λ1, the Cholesky factorization B + λ(ℓ)I =
RTR will not exist. A slightly enhanced version of this algorithm
does, however, converge to a solution of (30) in most cases.

The main work in each iteration of this method is, of course, the
Cholesky factorization of B + λ(ℓ)I. Practical versions of this algo-
rithm do not iterate till convergence to the optimal λ is obtained
with high accuracy, but are content with an approximate solution
that can be obtained in two or three iterations.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
‚ The hard case
Recall that in the discussion above, we assumed that qT

1 g ‰ 0.
In fact, the approach described above can be applied even when
the most negative eigenvalue is a multiple eigenvalue (that is, 0 ą

λ1 = λ2 = ¨ ¨ ¨ ), provided that QT
1 g ‰ 0, where Q1 is the matrix

whose columns span the subspace corresponding to the eigenvalue
λ1. When this condition does not hold, the situation becomes a
little complicated, because the limit

lim
λÑ´λ1

}p(λ)} = 8

does not hold and so there may not be a value λ P (´λ1,8) such
that }p(λ)} = ∆ (see Figure 7). Moré and Sorensen [214] refer to
this case as the hard case.
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§4.3 Iterative Solution of the Sub-problem

Figure 7: The hard case: }p(λ)} ă ∆ for all λ P (´λ1,8).
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
At first glance, it is not clear how p and λ can be chosen to satisfy
(6) in the hard case. Clearly, our root-finding technique will not
work, since there is no solution for λ in the open interval (´λ1,8).
Nevertheless, the key theorem assures us that the right value of λ lies
in the interval [´λ1,8), so there is only one possibility: λ = ´λ1.
To find p, it is not enough to delete the terms for which λj = λ1

from the formula (31) and set

p =
ÿ

j:λj‰λ1

qT
j g

λj ´ λ1
qj .

Instead, we note that (B ´ λ1I) is singular, so there is a vector z
such that }z} = 1 and (B ´ λ1I)z = 0. In fact, z is an eigenvector
of B corresponding to the eigenvalue λ1, so by orthogonality of Q
we have qT

j z = 0 for index j with λj ‰ λ1.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
It follows from this property that if we set

p =
ÿ

j:λj‰λ1

qT
j g

λj ´ λ1
qj + τz (37)

for any scalar τ , we have

}p}2 =
ÿ

j:λj‰λ1

(qT
j g)2

(λj ´ λ1)2
+ τ2 ,

so it is always possible to choose τ to ensure that }p} = ∆. It is
easy to check that the conditions (6) holds for this choice of p.
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
We now give a formal proof of the key result that characterizes the
exact solution of (5). The proof relies on the following technical
lemma, which deals with the unconstrained minimizers of quadrat-
ics and is particularly interesting in the case where the Hessian is
positive semi-definite.
Lemma
Let m be the quadratic function defined by

m(p) = gTp +
1

2
pTBp , (38)

where B is any symmetric matrix. Then
1 m attains a minimum if and only if B is positive semi-definite

and g is in the range of B. If B is positive semi-definite, then
every p satisfying Bp = ´g is a global minimizer of m.

2 m has a unique minimizer if and only if B is positive definite.
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§4.3 Iterative Solution of the Sub-problem
Proof.
We prove each of the three claims in turn.

1 “ð” Since g is in the range of B, there is a p with Bp = ´g.
For all w P Rn, we have

m(p + w) = gT(p + w) + 1

2
(p + w)TB(p + w)

= (gTp +
1

2
pTBp) + gTw + (Bp)Tw +

1

2
wTBw

= m(p) + 1

2
wTBw

ě m(p) (39)
since B is positive semi-definite. Hence, p is a minimizer of m.
“ñ” Let p be a minimizer of m. Since ∇m(p) = Bp + g = 0,
we have that g is in the range of B. Also, we have ∇2m(p) =B
positive semi-definite, giving the result. ˝
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§4.3 Iterative Solution of the Sub-problem
Proof (cont’d).

2 “ð” The same argument as in 1⃝ suffices with the additional
point that wTBw ą 0 whenever w ‰ 0.
“ñ” We proceed as in 1⃝ to deduce that B is positive semi-
definite. If B is not positive definite, there is a vector w ‰ 0

such that Bw = 0. Hence, from (39) we have m(p+w) = m(p),
so the minimizer is not unique, giving a contradiction. ˝

We also need/recall the following
Theorem (Lagrange Multiplier)
Let f and g be continuously differentiable functions. Suppose that
subject to the constraint g(x) = 0 the function f attains its extrema
at x˚. If (∇g)(x˚) ‰ 0, then there is a real value λ such that
(∇f )(x˚) = λ(∇g)(x˚).
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
Theorem (Key theorem in Section 4.3)
The vector p˚ is a global solution of the trust-region problem

min
pPRn

m(p) ” f + gTp +
1

2
pTBp s.t. }p} ď ∆ . (5)

if and only if p˚ is feasible and there is a scalar λ ě 0 such that the
following conditions are satisfied:

(B + λI)p˚ = ´g , (6a)
λ(∆ ´ }p˚}) = 0 , (6b)

(B + λI) is positive semi-definite. (6c)
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§4.3 Iterative Solution of the Sub-problem
Proof.
“ð” Assume first that there is λ ě 0 such that the conditions (6)
are satisfied. By 1⃝ in the previous lemma, (6a) and (6c) imply that
p˚ is a global minimizer of the quadratic function

pm(p) = f + gTp +
1

2
pT(B + λI)p = m(p) + λ

2
pTp. (40)

This implies that pm(p) ě pm(p˚) for all p P Rn; thus

m(p) ě m(p˚) +
λ

2
(pT

˚ p˚ ´ pTp) .

Since λ(∆ ´ }p˚}) = 0, we have λ(∆2 ´ pT
˚ p˚) = 0.

m(p) ě m(p˚) +
λ

2
(∆2 ´ pTp).

Hence, from λ ě 0, we have m(p) ě m(p˚) for all p with }p} ď ∆.
Therefore, p˚ is a global minimizer of (5). ˝
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§4.3 Iterative Solution of the Sub-problem
Proof (cont’d).
“ñ” For the converse, we assume that p˚ is a global solution of
(5) and show that there is a λ ě 0 that satisfies (6). In the case
}p˚} ă ∆, p˚ is an unconstrained minimizer of m, and so

∇m(p˚) = Bp˚ + g = 0 , ∇2m(p˚) = B positive semi-definite,

and so the properties (6) hold for λ = 0.
Assume for the remainder of the proof that }p˚} = ∆. Then (6b) is
immediately satisfied, and p˚ also solves the constrained problem

min m(p) subject to }p} = ∆.

By the Lagrange multiplier theorem, there is a λ such that the
Lagrangian function defined by L(p, λ) = m(p) + λ

2
(pTp ´∆2) has

a stationary point at p˚. ˝
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Chapter 4. Trust Region Methods

§4.3 Iterative Solution of the Sub-problem
Proof (cont’d).
By setting ∇p L(p˚, λ) to zero, we obtain

Bp˚ + g + λp˚ = 0 ñ (B + λI)p˚ = ´g , (41)

so that (6a) holds. Since m(p) ě m(p˚) for any p with pTp =

pT
˚ p˚ = ∆2, we have for such vectors p that

m(p) ě m(p˚) +
λ

2

(
pT

˚ p˚ ´ pTp
)
. (42)

Using (6a), we obtain that
1

2
(p ´ p˚)

T(B + λI)(p ´ p˚)

=
1

2
pT(B + λI)p +

1

2
pT

˚ (B + λI)p˚ ´ pT
˚ (B + λI)p

=
1

2
pT(B + λI)p ´

1

2
pT

˚ (B + λI)p˚ ´ gTp˚ + gTp ˝
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§4.3 Iterative Solution of the Sub-problem
Proof (cont’d).
so that (42) implies that

(p ´ p˚)
T(B + λI)(p ´ p˚) ě 0 if }p} = }p˚} = ∆. (43)

Since the set of directions
!

w
ˇ

ˇ

ˇ
w = ˘

p ´ p˚

}p ´ p˚}
for some p with }p} = ∆

)

is dense on the unit sphere, (43) suffices to prove (6c).
It remains to show that one of these Lagrange multipliers λ is non-
negative. Because (6a) and (6c) are satisfied by p˚, we have from
1⃝ of the previous lemma that p˚ minimizes

pm(p) = f + gTp +
1

2
pT(B + λI)p = m(p) + λ

2
pTp, (40)

so (42) holds for all p P Rn. ˝
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Proof (cont’d).
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§4.3 Iterative Solution of the Sub-problem
Proof (cont’d).
Suppose that there are only negative values of λ that satisfy (6a)
and (6c). Then we have from

m(p) ě m(p˚) +
λ

2

(
pT

˚ p˚ ´ pTp
)
. (42)

that m(p) ě m(p˚) whenever }p} ě }p˚} = ∆. Since we already
know that p˚ minimizes m for }p} ď ∆, it follows that p˚ is in fact
a global, unconstrained minimizer of m. From 1⃝ of the previous
lemma it follows that Bp˚ = ´g and B is positive semi-definite.
Therefore conditions (6a) and (6c) are satisfied by λ = 0, which
contradicts our assumption that only negative values of λ can satisfy
the conditions. We conclude that λ ě 0, completing the proof. ˝
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§4.3 Iterative Solution of the Sub-problem
‚ Convergence of Algorithm Based on Nearly Exact Solutions
As we noted in the discussion of Algorithm 4.3 (which finds λ(ℓ)

by Newton’s root-finding method), the loop to determine the op-
timal values of λ and p for the sub-problem (5) does not iterate
till high accuracy is achieved. Instead, it is terminated after two or
three iterations with a fairly loose approximation to the true solution.
The inexactness in this approximate solution is measured in a dif-
ferent way from the dogleg and subspace minimization algorithms,
in which, for the convergence of the sequence tgku, it requires that
the sequence tpku satisfies

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
(18)

for some positive constant c1.
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§4.3 Iterative Solution of the Sub-problem
Instead, we require that

m(0) ´ m(p) ě c1
[
m(0) ´ m(p˚)

]
, (44a)

}p} ď γ∆ , (44b)

for some constants c1 P (0, 1] and γ ą 0, where p˚ is the exact
solution of (3). The condition (44a) ensures that the approximate
solution achieves a significant fraction of the maximum decrease
possible in the model function m. Here we emphasize that it is not
necessary to know p˚; there are practical termination criteria that
imply (44a).

m(0) ´ m(p) ě c1
[
m(0) ´ m(p˚)

]
, (44a)

}p} ď γ∆ , (44b)
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§4.3 Iterative Solution of the Sub-problem
One major difference between (44) and the earlier criterion (18) is
that (44) makes better use of the second-order part of m(¨); that is,
the pTBp term. This difference is illustrated by the case in which
g = 0 while B has negative eigenvalues, indicating that the current
iterate xk is a saddle point. Here, the right-hand side of (18) is
zero (indeed, the algorithms we described earlier would terminate
at such a point). The right-hand side of (44) is positive, indicating
that decrease in the model function is still possible, so it forces the
algorithm to move away from xk.
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§4.3 Iterative Solution of the Sub-problem
The close attention that near-exact algorithms pay to the second-
order term is warranted only if this term closely reflects the actual
behavior of the function f – in fact, the trust-region Newton method,
for which B = (∇2f )(x), is the only case that has been treated in
the literature. For purposes of global convergence analysis, the use
of the exact Hessian allows us to say more about the limit points of
the algorithm than merely that they are stationary points. The fol-
lowing result shows that second-order necessary conditions (∇2f (x˚)

is positive semi-definite) are satisfied at the limit points.
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§4.3 Iterative Solution of the Sub-problem
Theorem
Let f : Rn Ñ R be continuous, x0 P Rn be given, S be the level
set

␣

x
ˇ

ˇ f (x) ď f (x0)
(

. Suppose that f is twice differentiable and
bounded from below in S, and f is Lipschitz continuously differen-
tiable in the neighborhood S(R0) for some R0 ą 0. Consider solving
the minimization problem

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }p} ď ∆k (3)

using Algorithm 4.1, where Bk = (∇2f )(xk), and all approximate
solutions pk of (3) satisfy the inequalities

m(0) ´ m(pk) ě c1
[
m(0) ´ m(p˚

k)
]
, (44a)

}pk} ď γ∆k , (44b)

where p˚
k is the exact minimizer of (3). Then lim

kÑ8
}gk} = 0.
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§4.3 Iterative Solution of the Sub-problem
Theorem (cont’d)
If, in addition, the level set S is compact, then either the algorithm
terminates at a point xk at which the second-order necessary con-
ditions – (∇2f )(xk) is positive semi-definite – for a local solution
hold, or else txku has a limit point x˚ in S at which the second-order
necessary conditions hold.
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Since global convergence of trust-region methods that use exact
Hessians (∇2f )(x) is established above, we turn our attention now
to local convergence issues. The key to attaining the fast rate of
convergence usually associated with Newton’s method is to show
that the trust-region bound eventually does not interfere as we ap-
proach a solution. Specifically, we hope that near the solution, the
(approximate) solution of the trust-region sub-problem is well inside
the trust region and becomes closer and closer to the true Newton
step. Steps that satisfy the latter property are said to be asymp-
totically similar to the Newton steps.
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convergence usually associated with Newton’s method is to show
that the trust-region bound eventually does not interfere as we ap-
proach a solution. Specifically, we hope that near the solution, the
(approximate) solution of the trust-region sub-problem is well inside
the trust region and becomes closer and closer to the true Newton
step. Steps that satisfy the latter property are said to be asymp-
totically similar to the Newton steps.
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
We first prove a general result that applies to any algorithm of the
form of Algorithm 4.1 that generates steps that are asymptotically
similar to Newton steps whenever the Newton steps easily satisfy
the trust-region bound. It shows that the trust-region constraint
eventually becomes inactive in algorithms with this property and
that superlinear convergence can be attained. The result assumes
that the exact Hessian Bk = (∇2f )(xk) is used in (3) when xk is
close to a solution x˚ that satisfies second-order sufficient condi-
tions: (∇2f )(x˚) is positive definite. Moreover, it assumes that the
algorithm uses an approximate solution pk of (3) that achieves a
similar decrease in the model function mk as the Cauchy point.
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Theorem
Let f : Rn Ñ R be twice Lipschitz continuously differentiable in
the level set S =

␣

x
ˇ

ˇ f (x) ď f (x0)
(

, and the trust-region algorithm
based on (3) with Bk = (∇2f )(xk) and Algorithm 4.1 chooses steps
pk that satisfy the Cauchy-point-based model reduction criterion

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
(18)

and are asymptotically similar to the Newton steps pN
k in the sense

}pk ´ pN
k } = o(}pN

k }) . (46)

If the sequence txku converges to x˚ at which the second-order suf-
ficient conditions hold, then the trust-region bound ∆k
becomes inactive for all k sufficiently large, and the sequence txku

converges superlinearly to x˚.

}pk ´ pN
k } = o(}pN

k }) . (45)
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k } = o(}pN

k }) . (46)
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Proof.
We first show that the unconstrained minimizer pN

k , the Newton
direction, satisfies }pN

k } ď
1

2
∆k for all sufficiently large k.

To begin with, we look for a lower bound on the predicted reduction
mk(0)´mk(pk) for all sufficiently large k. We assume that k is large
enough that the o(}pN

k }) term in (46) is less than }pN
k }.

1 If }pN
k } ď ∆k/2, we have }pk} ď }pN

k } + o(}pN
k }) ď 2}pN

k }.
2 If }pN

k } ą ∆k/2, we have }pk} ď ∆k ă 2}pN
k }.

In both cases, then, we have
}pk} ď 2}pN

k } ď 2}B´1
k }}gk} ,

and so }gk} ě
1

2
}pk}/}B´1

k } for k sufficiently large. ˝
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Proof (cont’d).
Using (18), we find that for k sufficiently large,

mk(0) ´ mk(pk) ě c1}gk} min
(
∆k,

}gk}

}Bk}

)
ě c1

}pk}

2}B´1
k }

min
(

}pk},
}pk}

2}Bk}}B´1
k }

)
= c1

}pk}2

4}B´1
k }2}Bk}

.

Since xk Ñ x˚, by the continuity of (∇2f )(x) and the positive def-
initeness of B˚ ” (∇2f )(x˚) we deduce that the following bound
holds for all k sufficiently large:

c1
4}B´1

k }2}Bk}
ě

c1
8}B´1

˚ }2}B˚}
” c3,

where c3 ą 0. ˝
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§4.4 Local Convergence of Trust-Region Newton Methods
Proof (cont’d).
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min
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}pk}
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4}B´1
k }2}Bk}
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Proof (cont’d).
By Lipschitz continuity of (∇2f )(x) near x˚,

ˇ

ˇ

ˇ

[
f (xk) ´ f (xk + pk)

]
´
[
mk(0) ´ mk(pk)

]ˇ
ˇ

ˇ

=
ˇ

ˇ

ˇ

1

2
pT

k Bk pk ´
1

2
pT

k (∇2f )(xk + tpk)pk
ˇ

ˇ

ˇ
ď

L
2

}pk}3,

where L ą 0 is the Lipschitz constant for ∇2f . Hence, by the
definition of ρk, we have for sufficiently large k that

|ρk ´ 1| ď
}pk}3(L/2)

c3}pk}2
=

L
2c3

}pk} ď
L
2c3

∆k . (47)

Now, the trust-region radius can be reduced only if ρk ă 1/4 (or
some other fixed number less than 1), so it is clear from (47) that
the sequence t∆ku is bounded away from zero. ˝

|ρk ´ 1| ď
}pk}3(L/2)

c3}pk}2
=

L
2c3

}pk} ď
L
2c3

∆k . (47)
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§4.4 Local Convergence of Trust-Region Newton Methods
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Proof (cont’d).
Since xk Ñ x˚, we have }pN

k } Ñ 0 and therefore }pk} Ñ 0 from
(46). Hence, the trust-region bound is inactive for all k sufficiently
large, and the bound }pN

k } ď
1

2
∆k is eventually always satisfied.

To prove superlinear convergence, we use the quadratic convergence
of Newton’s method to conclude that

}xk + pN
k ´ x˚} = O

(
}xk ´ x˚}2

)
.

This implies that }pN
k } = O(}xk ´ x˚}). Therefore, using (46),

}xk + pk ´ x˚} ď }xk + pN
k ´ x˚} + }pN

k ´ pk}

= O
(
}xk ´ x˚}2

)
+ o(}pN

k }) = o
(
}xk ´ x˚}

)
,

thus proving superlinear convergence. ˝
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Proof (cont’d).
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Chapter 4. Trust Region Methods

§4.4 Local Convergence of Trust-Region Newton Methods
Reasonable implementations of the dogleg, subspace minimization,
and nearly-exact algorithm of Section 4.3 with Bk = (∇2f )(xk)

eventually use the steps pk = pN
k under the conditions of the theorem

just established, and therefore converge quadratically. In the case
of the dogleg and two-dimensional subspace minimization methods,
the exact step pN

k is one of the candidates for pk – it lies inside the
trust region, along the dogleg path, and inside the two-dimensional
subspace. Since under the assumptions of the theorem, pN

k is the
unconstrained minimizer of mk for k sufficiently large, it is certainly
the minimizer in the more restricted domains, so we have pk = pN

k .
For the approach of Section 4.3, if we follow the reasonable strategy
of checking whether pN

k is a solution of (3) prior to embarking on
Algorithm 4.3, then eventually we will also have pk = pN

k also.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
‚ Scaling
As we noted in Chapter 2, optimization problems are often posed
with poor scaling – the objective function f is highly sensitive to small
changes in certain components of the vector x and relatively insen-
sitive to changes in other components. Topologically, a symptom of
poor scaling is that the minimizer x˚ lies in a narrow valley, so that
the contours of the objective f (¨) near x˚ tend towards highly ec-
centric ellipses. Algorithms that fail to compensate for poor scaling
can perform badly; see Figure 8 (in the next slide) for an illustration
of the poor performance of the steepest descent approach.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements

Figure 8: Poorly scaled and well scaled problems, and performance of the
steepest descent direction.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
Recalling our definition of a trust region – a region around the cur-
rent iterate within which the model mk(¨) is an adequate represen-
tation of the true objective f (¨) – it is easy to see that a spherical
trust region may not be appropriate when f is poorly scaled. Even if
the model Hessian Bk is exact, the rapid changes in f along certain
directions probably will cause mk to be a poor approximation to f
along these directions. On the other hand, mk may be a more reli-
able approximation to f along directions in which f is changing more
slowly. Since the shape of our trust region should be such that our
confidence in the model is more or less the same at all points on
the boundary of the region, we are led naturally to consider elliptical
trust regions in which the axes are short in the sensitive directions
and longer in the less sensitive directions.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
Elliptical trust regions can be defined by

}Dp} ď ∆ , (48)

where D is a diagonal matrix with positive diagonal elements, yield-
ing the following scaled trust-region sub-problem:

min
pPRn

mk(p) = fk + gT
k p +

1

2
pTBk p s.t. }Dp} ď ∆k . (49)

When f (x) is highly sensitive to the value of the i-th component xi,
we set the corresponding diagonal element dii of D to be large, while
dii is smaller for less-sensitive components.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
Information to construct the scaling matrix D may be derived from
the second derivatives B2f

Bx2
i

. We can allow D to change from itera-

tion to iteration; most of the theory of this chapter will still apply
with minor modifications provided that each dii stays within some
predetermined range [dlo, dhi], where 0 ă dlo ď dhi ă 8. Of course,
we do not need D to be a precise reflection of the scaling of the
problem, so it is not necessary to devise elaborate heuristics or to
perform extensive computations to get it just right.
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
Algorithm 4.4 (Generalized Cauchy Point ).
Find the vector pS

k that solves
pS

k = arg min
pPRn

(
fk + gT

k p
)

s.t. }Dp} ď ∆k ; (50)

Calculate the scalar τk ą 0 that minimizes mk(τpS
k) subject to sat-

isfying the trust-region bound; that is,
τk = arg min

τą0
mk(τpS

k) s.t. }τDpS
k} ď ∆k ;

pC
k = τkpS

k .
(51)

For this scaled version, we find that

pS
k = ´

∆k
}D´1gk}

D´2gk , (52)

τk =

$

&

%

1 if gT
k D´2BkD´2gk ď 0,

min
(

}D´1gk}3

∆kgT
k D´2BkD´2gk

, 1
)

otherwise. (53)
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Chapter 4. Trust Region Methods

§4.5 Other Enhancements
A simpler alternative for adjusting the definition of the Cauchy point
and the various algorithms of this chapter to allow for the elliptical
trust region is simply to rescale the variables p in the sub-problem
(49) so that the trust region is spherical in the scaled variables. By
defining rp = Dp and by substituting into (49), we obtain that

min
rp PRn

rmk(rp) = fk + gT
k D´1

rp +
1

2
rpTD´1BkD´1

rp s.t. }rp} ď ∆k .

The theory and algorithms can now be derived in the usual way by
substituting rp for p, D´1gk for gk, D´1BkD´1 for Bk and so on.
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§4.5 Other Enhancements
‚ Trust Region in Other Norms
Trust regions may also be defined in terms of norms such as

}p}1 ď ∆k or }p}8 ď ∆k ,

or their scaled counterparts
}Dp}1 ď ∆k or }Dp}8 ď ∆k ,

where D is a positive diagonal matrix as before. Norms such as
these offer no obvious advantages for small-medium unconstrained
problems, but they may be useful for constrained problems. For
instance, for the bound-constrained problem

min
pPRn

f (x) subject to x ě 0 ,

the trust-region sub-problem may take the form
min
pPRn

mk(p) = fk +gT
k p+ 1

2
pTBk p s.t. xk +p ě 0 , }p} ď∆k . (54)
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§4.5 Other Enhancements
When the trust region is defined by a Euclidean norm, the feasi-
ble region for (54) consists of the intersection of a sphere and the
non-negative orthant – an awkward object, geometrically speaking.
When the 8-norm is used, however, the feasible region is simply the
rectangular box defined by

xk + p ě 0 , p ě ´∆k


1
1
...
1

 , p ď ∆k


1
1
...
1

 ,

so the solution of the sub-problem is easily calculated by using tech-
niques for bound-constrained quadratic programming.
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§4.5 Other Enhancements
For large problems, in which factorization or formation the model
Hessian Bk is not computationally desirable, the use of a trust re-
gion defined by } ¨ }8 will also give rise to a bound-constrained
sub-problem, which may be more convenient to solve than the stan-
dard sub-problem (3). To our knowledge, there has not been much
research on the relative performance of methods that use trust re-
gions of different shapes on large problems.
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