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Chapter 2. Fundamentals of Unconstrained Optimization

Introduction
In unconstrained optimization, we minimize an objective function
that depends on real variables, with no restrictions at all on the
values of these variables. The mathematical formulation is

min
x PRn

f (x), (1)

where f : Rn Ñ R is a smooth function.

Usually, we lack a global perspective on the function f. All we
know are the values of f and maybe some of its derivatives at a
set of points x0, x1, x2, ¨ ¨ ¨ . Fortunately, our algorithms get to
choose these points, and they try to do so in a way that identifies
a solution reliably and without using too much computer time or
storage. Often, the information about f does not come cheaply,
so we usually prefer algorithms that do not call for this information
unnecessarily.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Generally, we would be happiest if we found a global minimizer
of f , a point where the function attains its least value. A formal
definition is

A point x˚ is a global minimizer if f (x˚) ď f (x) for all x P Rn.

A global minimizer can be difficult to find, because our knowledge
of f is usually only local. Since our algorithm does not visit many
points (we hope!), we usually do not have a good picture of the
overall shape of f , and we can never be sure that the function does
not take a sharp dip in some region that has not been sampled by
the algorithm.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Most algorithms are able to find only a local minimizer, which is
a point that achieves the smallest value of f in its neighborhood.
Formally, we say:

A point x˚ is a local minimizer if there is a neighborhood N
of x˚ such that f (x˚) ď f (x) for all x P N .

Recall that a neighborhood of x˚ is simply an open set that contains
x˚. A point that satisfies this definition is sometimes called a weak
local minimizer. By contrast,

A point x˚ is a strict local minimizer (also called a strong
local minimizer) if there is a neighborhood N of x˚ such
that f (x˚) ă f (x) for all x P N with x ‰ x˚.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
A slightly more exotic type of local minimizer is defined as follows.

A point x˚ is an isolated local minimizer if there is a
neighborhood N of x˚ such that x˚ is the only local
minimizer in N .

While strict local minimizers are not always isolated, it is true that
all isolated local minimizers are strict.

Sometimes we have additional “global” knowledge about f that may
help in identifying global minima. An important special case is that
of convex functions, for which every local minimizer is also a global
minimizer.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
From the definitions given above, it might seem that the only way to
find out whether a point x˚ is a local minimum is to examine all the
points in its immediate vicinity, to make sure that none of them has
a smaller function value. When the function f is smooth; however,
there are more efficient and practical ways to identify local minima.
In particular, if f is twice continuously differentiable, we may be
able to tell that x˚ is a local minimizer (and possibly a strict local
minimizer) by examining just the gradient ∇f (x˚) and the Hessian
∇2f (x˚).
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
The mathematical tool used to study minimizers of smooth functions
is Taylor’s theorem.
Theorem (Taylor)
Suppose that f : Rn Ñ R is continuously differentiable and that
p P Rn. Then we have that

f (x +p) = f (x) +∇f (x + tp)Tp

for some t P (0, 1). Moreover, if f is twice continuously differen-
tiable, we have that

∇f (x +p) = ∇f (x) +
ż 1

0

∇2f (x + tp)p dt
and that

f (x +p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p,

for some t P (0, 1).
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Necessary conditions for optimality are derived by assuming that
x˚ is a local minimizer and then proving facts about ∇f (x˚) and
∇2f (x˚).

Theorem
If x˚ is a local minimizer and f is continuously differentiable in an
open neighborhood of x˚, then ∇f (x˚) = 0.

We call x˚ a stationary point if ∇f (x˚) = 0. According to the
theorem above, any local minimizer must be a stationary point.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Recall that a matrix B is positive definite if pTBp ą 0 for all p ‰ 0,
and positive semi-definite if pTBp ě 0 for all p P Rn.
Theorem (Second-Order Necessary Conditions)
If x˚ is a local minimizer of f and ∇2f exists and is continuous in an
open neighborhood of x˚, then ∇f (x˚) = 0 and ∇2f (x˚) is positive
semi-definite.

We now describe sufficient conditions on the derivatives of f at the
point z˚ that guarantee that x˚ is a local minimizer.
Theorem (Second-Order Sufficient Conditions)
Suppose that ∇2f is continuous in an open neighborhood of x˚ and
that ∇f (x˚) = 0 and ∇2f (x˚) is positive definite. Then x˚ is a
strict local minimizer of f.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Note that the second-order sufficient conditions of the theorem in
the previous page guarantee something stronger than the necessary
conditions discussed earlier; namely, that the minimizer is a strict
local minimizer. Note too that the second-order sufficient conditions
are not necessary: A point x˚ may be a strict local minimizer, and
yet may fail to satisfy the sufficient conditions. A simple example
is given by the function f (x) = x 4, for which the point x˚ = 0 is a
strict local minimizer at which the Hessian matrix vanishes (and is
therefore not positive definite).
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
When the objective function is convex, local and global minimizers
are simple to characterize.
Theorem
When f is convex, any local minimizer x˚ is a global minimizer of
f. If in addition f is differentiable, then any stationary point x˚ is a
global minimizer of f.

Proof.
Suppose that x˚ is a local but not a global minimizer. Then there
exists a point z P Rn with f (z) ă f (x˚). For a given neighborhood
N of x˚, let λ P (0, 1) be such that x = λz + (1 ´ λ)x˚ P N (such
a λ must exist). Then the convexity property for f implies that

f (x) ď λf (z) + (1 ´ λ)f (x˚) ă f (x˚).

Hence, x˚ is not a local minimizer. ˝
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
Proof (cont’d).
For the second part of the theorem, suppose that x˚ is not a global
minimizer and choose z as above. Then, from convexity, we have

∇f (x˚)
T(z ´ x˚) =

d
dλ

ˇ

ˇ

ˇ

λ=0
f
(
λz + (1 ´ λ)x˚)

)
= lim

λÑ0+

f
(
λz + (1 ´ λ)x˚)

)
´ f (x˚)

λ

ď lim
λÑ0+

λf (z) + (1 ´ λ)f (x˚) ´ f (x˚)

λ

= f (z) ´ f (x˚)ă 0 .

Therefore, ∇f (x˚) ‰ 0, and so x˚ is not a stationary point. ˝

These results, which are based on elementary calculus, provide the
foundations for unconstrained optimization algorithms. In one way
or another, all algorithms seek a point where ∇f (¨) vanishes.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
‚ Non-smooth Problems
Our lecture focuses on smooth functions, by which we generally
mean functions whose second derivatives exist and are continuous.
We note, however, that there are interesting problems in which the
functions involved may be non-smooth and even discontinuous. It is
not possible in general to identify a minimizer of a general discon-
tinuous function. If, however, the function consists of a few smooth
pieces, with discontinuities between the pieces, it may be possible
to find the minimizer by minimizing each smooth piece individually.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.1 What Is a Solution?
If the function is continuous everywhere but non-differentiable at cer-
tain points, as in Figure 1, we can identify a solution by examing the
sub-gradient or generalized gradient, which are generalizations of
the concept of gradient to the non-smooth case. Non-smooth opti-
mization is beyond the scope of our lecture.

Figure 1: Non-smooth function with minimum at a kink
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
‚ Unconstrained Optimization:
All algorithms for unconstrained minimization require the user to
supply a starting point, which we usually denote by x0. Begin-
ning at x0, optimization algorithms generate a sequence of iterates
txku8

k=1 that terminate when either no more progress can be made
or when it seems that a solution point has been approximated with
sufficient accuracy. In deciding how to move from one iterate xk
to the next, the algorithms use information about the function f at
xk, and possibly also information from earlier iterates x0, x1, ¨ ¨ ¨ ,
xk´1. They use this information to find a new iterate xk+1 with a
lower function value than xk. There exist non-monotone algorithms
that do not insist on a decrease in f at every step, but even these
algorithms require f to be decreased after some prescribed number
m of iterations; that is, f (xk) ă f (xk´m).
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
‚ Two Strategies: Line Search and Trust Region:
In the line search strategy, the algorithm chooses a direction pk and
searches along this direction from the current iterate xk for a new
iterate with a lower function value. The distance to move along pk
can be found by approximately solving the following one-dimensional
minimization problem to find a step length α:

min
αą0

f (xk + αpk) . (2)

By solving (2) exactly, we would derive the maximum benefit from
the direction pk, but an exact minimization may be expensive and
is usually unnecessary. Instead, the line search algorithm generates
a limited number of trial step lengths until it finds one that loosely
approximates the minimum of (2). At the new point, a new search
direction and step length are computed, and the process is repeated.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
In the second algorithmic strategy, known as trust region, the in-
formation gathered about f is used to construct a model function
mk whose behavior near the current point xk is similar to that of
the actual objective function f. Because the model mk may not be
a good approximation of f when x is far from xk, we restrict the
search for a minimizer of mk to some region around xk. In other
words, we find the candidate step p by approximately solving the
following sub-problem:

min
pPRn

mk(xk + p) ,where xk + p lies inside the trust region. (3)

If the candidate solution does not produce a sufficient decrease in f ,
we conclude that the trust region is too large, and we shrink it and
re-solve (3). Usually, the trust region is a ball defined by }p} ď ∆,
where the scalar ∆ ą 0 is called the trust-region radius. Elliptical
and box-shaped trust regions may also be used.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
The model mk in (3) is usually defined to be a quadratic function
of the form

mk(xk + p) = fk + pT∇fk +
1

2
pTBk p , (4)

where fk, ∇fk, and Bk are a scalar, vector, and matrix, respectively.
As the notation indicates, fk and ∇fk are chosen to be the function
and gradient values at the point xk, so that mk and f are in agree-
ment to first order at the current iterate xk. The matrix Bk is either
the Hessian ∇2fk or some approximation to it.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
In a sense, the line search and trust-region approaches differ in the
order in which they choose the direction and distance of the move
to the next iterate. Line search starts by fixing the direction pk and
then identifying an appropriate distance, namely the step length αk.
In trust region, we first choose a maximum distance – the trust-
region radius ∆k – and then seek a direction and step that attain
the best improvement possible subject to this distance constraint. If
this step proves to be unsatisfactory, we reduce the distance measure
∆k and try again.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
‚‚ Search Direction for Line Search Methods:
The steepest descent direction ´∇fk is the most obvious choice for
search direction for a line search method. It is intuitive; among all
the directions we could move from xk, it is the one along which f
decreases most rapidly. The steepest descent method is a line
search method that moves along pk = ´∇fk at every step. It can
choose the step length αk in a variety of ways, as we discuss in
Chapter 3. One advantage of the steepest descent direction is that it
requires calculation of the gradient ∇fk but not of second derivatives.
However, it can be excruciatingly slow on difficult problems.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Line search methods may use search directions other than the steep-
est descent direction. In general, any descent direction – one that
makes an angle of strictly less than π/2 radians with ´∇fk – is guar-
anteed to produce a decrease in f , provided that the step length is
sufficiently small.

Another important search direction – perhaps the most important
one of all – is the Newton direction. This direction is derived from
the second-order Taylor series approximation to f (xk + p), which is

f (xk + p) « fk + pT∇fk +
1

2
pT∇2fk p ” mk(p) . (5)

Assuming for the moment that ∇2fk is positive definite, we obtain
the Newton direction by finding the vector p = pN

k that minimizes
mk(p).
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
By simply setting the derivative of mk(p) to zero, we find that

pN
k = ´(∇2fk)´1∇fk . (6)

The Newton direction pN
k is reliable when the difference between the

true function f (xk + p) and its quadratic model mk(p) is not too
large. By comparing (5) with the exact identity

f (x +p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p ,

we see that the only difference between these functions is that the
matrix ∇2f (xk + tp) in the third term of the expansion has been
replaced by ∇2fk. If ∇2f is sufficiently smooth, this difference in-
troduces a perturbation of only O(}p}3) into the expansion, so that
when }p} is small, the approximation f (xk + p) « mk(p) is quite
accurate.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
The Newton direction pN

k can be used in a line search method when
∇2fk is positive definite, for in this case we have

∇f T
k pN

k = ´(pN
k )

T∇2fk pN
k ď ´σk}pN

k }2

for some σk ą 0 (the minimum eigenvalue of ∇2fk). Unless the
gradient ∇fk (and therefore the step pN

k ) is zero, we have that
∇f T

k pN
k ă 0, so the Newton direction is a descent direction. Unlike

the steepest descent direction, there is a “natural” step length of 1
associated with the Newton direction. Most line search implemen-
tations of Newton’s method use the unit step α = 1, where possible
and adjust α only when it does not produce a satisfactory reduction
in the value of f.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
When ∇2fk is not positive definite, the Newton direction may not
even be defined, since (∇2fk)´1 may not exist. Even when it is
defined, it may not satisfy the descent property ∇f T

k pN
k ă 0, in

which case it is unsuitable as a search direction. In these situations,
line search methods modify the definition of pk to make it satisfy
the descent condition while retaining the benefit of the second-order
information contained in ∇2fk. We describe these modifications in
Chapter 3.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Methods that use the Newton direction have a fast rate of local
convergence, typically quadratic. After a neighborhood of the so-
lution is reached, convergence to high accuracy often occurs in just
a few iterations. The main drawback of the Newton direction is the
need for the Hessian ∇2f (x). Explicit computation of this matrix
of second derivatives can sometimes be a cumbersome, error-prone,
and expensive process. Finite-difference and automatic differentia-
tion techniques described in Chapter 8 may be useful in avoiding the
need to calculate second derivatives by hand.
Definition
A sequence txku8

k=1 is said to converge to x˚ quadratically if there
exists a constant M ą 0 such that

}xk+1 ´ x˚}

}xk ´ x˚}2
ď M @ k " 1 .
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Definition
A sequence txku8

k=1 is said to converge to x˚ superlinearly if the
following limit holds:

lim
kÑ8

}xk+1 ´ x˚}

}xk ´ x˚}
= 0 .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Quasi-Newton search directions provide an attractive alternative to
Newton’s method in that they do not require computation of the
Hessian and yet still attain a superlinear rate of convergence.
In place of the true Hessian ∇2fk, they use an approximation Bk,
which is updated after each step to take account of the additional
knowledge gained during the step. The updates make use of the fact
that changes in the gradient g provide information about the second
derivative of f along the search direction. Using the expression

∇f (x +p) = ∇f (x) +
ż 1

0

∇2f (x + tp)p dt ,

by adding and subtracting the term ∇2f (x)p we have

∇f (x + p) = ∇f (x) +∇2f (x)p +
ż 1

0

[
∇2f (x + tp) ´ ∇2f (x)

]
p dt .
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Because ∇f is continuous, the size of the final integral term is
o(}p}). By setting x = xk and p = xk+1 ´ xk, we obtain

∇fk+1 = ∇fk +∇2fk(xk+1 ´ xk) + o(}xk+1 ´ xk}) .

When xk and xk+1 lie in a region near the solution x˚, within which
∇2f is positive definite, the final term in this expansion is eventually
dominated by the ∇2fk(xk+1 ´ xk) term, and we can write

∇2fk(xk+1 ´ xk) « ∇fk+1 ´ ∇fk . (7)

We choose the new Hessian approximation Bk+1 so that it mimics
the property (7) of the true Hessian; that is, we require it to satisfy
the following condition, known as the secant equation:

Bk+1(xk+1 ´ xk) = ∇fk+1 ´ ∇fk .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Because ∇f is continuous, the size of the final integral term is
o(}p}). By setting x = xk and p = xk+1 ´ xk, we obtain

∇fk+1 = ∇fk +∇2fk(xk+1 ´ xk) + o(}xk+1 ´ xk}) .

When xk and xk+1 lie in a region near the solution x˚, within which
∇2f is positive definite, the final term in this expansion is eventually
dominated by the ∇2fk(xk+1 ´ xk) term, and we can write

∇2fk(xk+1 ´ xk) « ∇fk+1 ´ ∇fk . (7)

We choose the new Hessian approximation Bk+1 so that it mimics
the property (7) of the true Hessian; that is, we require it to satisfy
the following condition, known as the secant equation:

Bk+1(xk+1 ´ xk) = ∇fk+1 ´ ∇fk .

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Because ∇f is continuous, the size of the final integral term is
o(}p}). By setting x = xk and p = xk+1 ´ xk, we obtain

∇fk+1 = ∇fk +∇2fk(xk+1 ´ xk) + o(}xk+1 ´ xk}) .

When xk and xk+1 lie in a region near the solution x˚, within which
∇2f is positive definite, the final term in this expansion is eventually
dominated by the ∇2fk(xk+1 ´ xk) term, and we can write

∇2fk(xk+1 ´ xk) « ∇fk+1 ´ ∇fk . (7)

We choose the new Hessian approximation Bk+1 so that it mimics
the property (7) of the true Hessian; that is, we require it to satisfy
the following condition, known as the secant equation:

Bk+1(xk+1 ´ xk) = ∇fk+1 ´ ∇fk .
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Typically, we impose additional conditions on Bk+1, such as sym-
metry (motivated by symmetry of the exact Hessian), and a re-
quirement that the difference between successive approximations
Bk and Bk+1 have low rank.
Two of the most popular formulae for updating the Hessian approx-
imation Bk are the symmetric-rank-one (SR1) formula, defined
by

Bk+1 = Bk +
(yk ´ Bksk)(yk ´ Bksk)T

(yk ´ Bksk)Tsk
(8)

and the BFGS formula, named after its inventors, Broyden, Fletcher,
Goldfarb, and Shanno, which is defined by

Bk+1 = Bk ´
BksksT

k Bk
sT
k Bksk

+
yT

k yk
yT

k sk
, (9)

where sk = xk+1 ´ xk, yk = ∇fk+1 ´ ∇fk.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Note that the difference between the matrices Bk and Bk+1 is a
rank-one matrix in the case of (8) and a rank-two matrix in the
case of (9). Both updates maintain symmetry and both satisfy the
secant equation

Bk+1(xk+1 ´ xk) = ∇fk+1 ´ ∇fk
or equivalently,

Bk+1sk = yk .

One can show that BFGS update (9) generates positive definite ap-
proximations whenever the initial approximation B0 is positive defi-
nite and sT

k yk ą 0. We discuss these issues further in Chapter 6.

Two variants of quasi-Newton methods designed to solve large prob-
lems – partially separable and limited-memory updating – are de-
scribed in Chapter 7.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
The quasi-Newton search direction is obtained by using Bk in place
of the exact Hessian in the Newton direction; that is,

pk = ´B´1
k ∇fk .

Some practical implementations of quasi-Newton methods avoid the
need to factorize Bk at each iteration by updating the inverse of Bk,
instead of Bk itself. In fact, the equivalent formula for (8) and (9),
applied to the inverse approximation Hk ” B´1

k , is

Hk+1 = (I ´ ρkskyT
k )Hk(I ´ ρkyksT

k ) + ρksksT
k , ρk =

1

yT
k sk

. (10)

Calculation of pk can then be performed by using the formula pk =

´Hk∇fk. This matrix–vector multiplication is simpler than the fac-
torization/back-substitution procedure that is needed to implement
the quasi-Newton search direction.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
The last class of search directions we preview here is that generated
by nonlinear conjugate gradient methods. They have the form

pk = ´(∇f )(xk) + βkpk´1 ,

where βk is a scalar that ensures that pk and pk´1 are conjugate
– an important concept in the minimization of quadratic functions
that will be defined in Chapter 5. Conjugate gradient methods were
originally designed to solve systems of linear equations Ax = b,
where the coefficient matrix A is symmetric and positive definite.
The problem of solving this linear system is equivalent to the problem
of minimizing the convex quadratic function defined by

φ(x) = 1

2
x TAx ´ ´bTx ,

so it was natural to investigate extensions of these algorithms to
more general types of unconstrained minimization problems.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
In general, nonlinear conjugate gradient directions are much more
effective than the steepest descent direction and are almost as simple
to compute. These methods do not attain the fast convergence rates
of Newton or quasi-Newton methods, but they have the advantage
of not requiring storage of matrices. An extensive discussion of
nonlinear conjugate gradient methods is given in Chapter 5. All
of the search directions discussed so far can be used directly in
a line search framework. They give rise to the steepest descent,
Newton, quasi-Newton, and conjugate gradient line search methods.
All except conjugate gradients have an analogue in the trust-region
framework, as we now discuss.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
‚ Models for Trust-Region Methods
If we set Bk = 0 in

mk(xk + p) = fk + pT∇fk +
1

2
pTBk p (4)

and define the trust region using the Euclidean norm, the trust-
region sub-problem (3) becomes

min
pPRn

(fk + pT∇fk) subject to }p} ď ∆k.

The closed form solution to the minimization problem above is

pk = ´
∆k∇fk
}∇fk}

.

This is simply a steepest descent step in which the step length
is determined by the trust region radius; the trust-region and line
search approaches are essentially the same in this case.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
A more interesting trust-region algorithm is obtained by choosing Bk

to be the exact Hessian ∇2fk in the quadratic model (4). Because
of the trust-region restriction }p} ď ∆k, the sub-problem (3) is
guaranteed to have a solution pk even when ∇2fk is not positive
definite. The trust-region Newton method has proved to be highly
effective in practice, as we discuss in Chapter 7.

If the matrix Bk in the quadratic model function mk of (4) is defined
by means of a quasi-Newton approximation, we obtain a trust-region
quasi-Newton method.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
‚ Scaling
The performance of an algorithm may depend crucially on how the
problem is formulated. One important issue in problem formulation
is scaling. In unconstrained optimization, a problem is said to be
poorly scaled if changes to x in a certain direction produce much
larger variations in the value of f than do changes to x in another
direction.

Scaling is performed (sometimes unintentionally) when the units
used to represent variables are changed. During the modeling pro-
cess, we may decide to change the units of some variables, say from
meters to millimeters. By doing so, the range of those variables and
their size relative to the other variables will both change.
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Chapter 2. Fundamentals of Unconstrained Optimization

§2.2 Overview of Algorithms
Some optimization algorithms, such as steepest descent, are sen-
sitive to poor scaling, while others, such as Newton’s method, are
unaffected by it. Figure 2 shows the contours of two convex nearly
quadratic functions, the first of which is poorly scaled, while the
second is well scaled.

Figure 2: Poorly scaled and well scaled problems, and performance of the
steepest descent direction.
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§2.2 Overview of Algorithms
For the poorly scaled problem, the one with highly elongated con-
tours, the steepest descent direction does not yield much reduction
in the function, while for the well-scaled problem it performs much
better. In both cases, Newton’s method will produce a much better
step, since the second-order quadratic model

mk(p) ” fk + pT∇fk +
1

2
pT∇2fk p (5)

happens to be a good approximation of f.

Algorithms that are not sensitive to scaling are preferable, because
they can handle poor problem formulations in a more robust fashion.
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