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Introduction
Optimization is the minimization or maximization of a function sub-
ject to constraints on its variables. We use the following notation:

1 x is the vector of variables, also called unknowns or parameters;
2 f is the objective function, a (scalar) function of x that we want

to maximize or minimize;
3 ci are constraint functions, which are scalar functions of x that

define certain equations and inequalities that the unknown vec-
tor x must satisfy.

Using this notation, the optimization problem can be written as

min
x PRn

f (x) subject to
#

ci(x) = 0 if i P E ,

ci(x) ě 0 if i P I .
(1)

Here E and I are sets of indices for equality and inequality con-
straints, respectively.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 1. Introduction

Introduction
Optimization is the minimization or maximization of a function sub-
ject to constraints on its variables. We use the following notation:

1 x is the vector of variables, also called unknowns or parameters;
2 f is the objective function, a (scalar) function of x that we want

to maximize or minimize;
3 ci are constraint functions, which are scalar functions of x that

define certain equations and inequalities that the unknown vec-
tor x must satisfy.

Using this notation, the optimization problem can be written as

min
x PRn

f (x) subject to
#

ci(x) = 0 if i P E ,

ci(x) ě 0 if i P I .
(1)

Here E and I are sets of indices for equality and inequality con-
straints, respectively.

Ching-hsiao Arthur Cheng 鄭經斅 最佳化方法與應用 MA5037-*



Chapter 1. Introduction

Introduction
Often it is more natural or convenient to label the unknowns with
two or three subscripts, or to refer to different variables by com-
pletely different names, so that relabeling is necessary to pose the
problem in the form (1). Another common difference is that we are
required to maximize rather than minimize f , but we can accom-
modate this change easily by minimizing ´f in the formulation (1).
Good modeling systems perform the conversion to standardized for-
mulations such as (1) transparently to the user.
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‚ Continuous v.s. Discrete Optimization:
In some optimization problems the variables make sense only if they
take on integer values. The mathematical formulation of such prob-
lems includes integrality constraints, which have the form xi P Z,
where Z is the set of integers, or binary constraints, which have
the form xi P t0, 1u, in addition to algebraic constraints like those
appearing in (1). Problems of this type are called integer pro-
gramming problems. If some of the variables in the problem are
not restricted to be integer or binary variables, they are sometimes
called mixed integer programming problems, or MIPs for short.
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Integer programming problems are a type of discrete optimization
problem. Generally, discrete optimization problems may contain not
only integers and binary variables, but also more abstract variable
objects such as permutations of an ordered set. The defining feature
of a discrete optimization problem is that the unknown x is drawn
from a finite (but often very large) set.
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By contrast, the feasible set for continuous optimization problems,
the class of problems studied in this course, is usually uncountably
infinite, as when the components of x are allowed to be real numbers.
Continuous optimization problems are easier to solve because the
smoothness of the functions makes it possible to use objective and
constraint information at a particular point x to deduce information
about the function’s behavior at all points close to x.

In discrete problems, by constrast, the behavior of the objective and
constraints may change significantly as we move from one feasible
point to another, even if the two points are “close” by some measure.
The feasible sets for discrete optimization problems can be thought
of as exhibiting an extreme form of non-convexity, as a convex com-
bination of two feasible points is in general not feasible.
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‚ Constrained and Unconstrained Optimizations:
Problems with the general form (1) can be classified according to the
nature of the objective function and constraints (linear, nonlinear,
convex), the number of variables (large or small), the smoothness
of the functions (differentiable or non-differentiable), and so on. An
important distinction is between problems that have constraints on
the variables and those that do not. This textbook is divided into
two parts according to this classification.
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Unconstrained optimization problems, for which we have E =

I = H in (1), arise directly in many practical applications. Even for
some problems with natural constraints on the variables, it may be
safe to disregard them as they do not affect on the solution and do
not interfere with algorithms. Unconstrained problems arise also as
reformulations of constrained optimization problems, in which the
constraints are replaced by penalization terms added to objective
function that have the effect of discouraging constraint violations.
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Constrained optimization problems arise from models in which
constraints play an essential role, for example in imposing budgetary
constraints in an economic problem or shape constraints in a design
problem. These constraints may be simple bounds such as 0 ď

x1 ď 100, more general linear constraints such as
ř

i xi ď 1, or
nonlinear inequalities that represent complex relationships among
the variables.
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When the objective function and all the constraints are linear func-
tions of x, the problem is a linear programming problem. Problems
of this type are probably the most widely formulated and solved of
all optimization problems, particularly in management, financial, and
economic applications. Nonlinear programming problems, in which
at least some of the constraints or the objective are nonlinear func-
tions, tend to arise naturally in the physical sciences and engineering,
and are becoming more widely used in management and economic
sciences as well.
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‚ Global and Local Optimization:
Many algorithms for nonlinear optimization problems seek only a
local solution, a point at which the objective function is smaller
than at all other feasible nearby points. They do not always find
the global solution, which is the point with lowest function value
among all feasible points. Global solutions are needed in some ap-
plications, but for many problems they are difficult to recognize and
even more difficult to locate. For convex programming problems,
and more particularly for linear programs, local solutions are also
global solutions. General nonlinear problems, both constrained and
unconstrained, may possess local solutions that are not global solu-
tions.
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In this textbook we treat global optimization only in passing and
focus instead on the computation and characterization of local solu-
tions. We note, however, that many successful global optimization
algorithms require the solution of many local optimization problems,
to which the algorithms described in this textbook can be applied.
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‚ Stochastic and Deterministic Optimization:
In some optimization problems, the model cannot be fully specified
because it depends on quantities that are unknown at the time of
formulation. This characteristic is shared by many economic and
financial planning models, which may depend for example on future
interest rates, future demands for a product, or future commodity
prices, but uncertainty can arise naturally in almost any type of
application.
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Rather than just use a “best guess” for the uncertain quantities,
modelers may obtain more useful solutions by incorporating addi-
tional knowledge about these quantities into the model. For exam-
ple, they may know a number of possible scenarios for the uncertain
demand, along with estimates of the probabilities of each scenario.
Stochastic optimization algorithms use these quantifications of the
uncertainty to produce solutions that optimize the expected perfor-
mance of the model.
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Related paradigms for dealing with uncertain data in the model in-
clude chance constrained optimization, in which we ensure that the
variables x satisfy the given constraints to some specified probability,
and robust optimization, in which certain constraints are required to
hold for all possible values of the uncertain data.

We do not consider stochastic optimization problems further in this
textbook, focusing instead on deterministic optimization problems,
in which the model is completely known. Many algorithms for
stochastic optimization do, however, proceed by formulating one
or more deterministic subproblems, each of which can be solved by
the techniques outlined here.
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‚ Convexity:
The concept of convexity is fundamental in optimization. Many
practical problems possess this property, which generally makes them
easier to solve both in theory and practice.

The term “convex” can be applied both to sets and to functions. A
set S P Rn is a convex set if the straight line segment connecting any
two points in S lies entirely inside S. Formally, for any two points
x, y P S, we have αx + (1 ´ α)y P S for all α P [0, 1]. A function f
is a convex function if its domain S is a convex set and if for any
two points x and y in S, the following property is satisfied:

f (αx + (1 ´ α)y) ď αf (x) + (1 ´ α)f (y) @α P [0, 1].
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Example

1 Any ball in Rn is convex.
2 Any polyhedron, which is a set defined by linear equalities and

inequalities; that is,
␣

x P Rn ˇ
ˇAx = b,Cx ď d

(

,

where A and C are matrices of appropriate dimension, and b
and d are vectors, is convex.

Example
1 For any constant vector c P Rn and scalar α, the linear function

f (x) = cTx + α is convex.
2 For any symmetric positive semi-definite matrix H, the

quadratic function f (x) = xTHx is convex.
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We say that f is strictly convex if

f (αx + (1 ´ α)y) ă αf (x) + (1 ´ α)f (y) @α P (0, 1).

A function f is said to be concave if ´f is convex. If the objective
function in the optimization problem (1) and the feasible region
are both convex, then any local solution of the problem is in fact a
global solution. The term convex programming is used to describe
a special case of the general constrained optimization problem (1)
in which

1 the objective function is convex,
2 the equality constraint functions ci(¨), i P E , are linear, and
3 the inequality constraint functions ci(¨), i P I, are concave.
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If we write our optimization problem as

min
x PRn

f (x) subject to
#

ci(x) = 0 if i P E ,

ci(x)ď 0 if i P I .
(11)

Then the term convex programming is used to describe a special
case of the general constrained optimization problem (11) in which

1 the objective function is convex,
2 the equality constraint functions ci(¨), i P E , are linear, and
3 the inequality constraint functions ci(¨), i P I, are convex.
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‚ Optimization Algorithm:
Optimization algorithms are iterative. They begin with an initial
guess of the variable x and generate a sequence of improved es-
timates (called “iterates”) until they terminate, hopefully at a so-
lution. The strategy used to move from one iterate to the next
distinguishes one algorithm from another. Most strategies make use
of the values of the objective function f , the constraint functions
ci, and possibly the first and second derivatives of these functions.
Some algorithms accumulate information gathered at previous itera-
tions, while others use only local information obtained at the current
point.
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Good algorithms should possess the following properties:

1 Robustness: They should perform well on a wide variety of
problems in their class, for all reasonable values of the starting
point.

2 Efficiency: They should not require excessive computer time
or storage.

3 Accuracy: They should be able to identify a solution with
precision, without being overly sensitive to errors in the data or
to the arithmetic rounding errors that occur when the algorithm
is implemented on a computer.
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These goals may conflict. For example, a rapidly convergent
method for a large unconstrained nonlinear problem may require
too much computer storage. On the other hand, a robust method
may also be the slowest. Tradeoffs between convergence rate and
storage requirements, and between robustness and speed, and so on,
are central issues in numerical optimization.

The mathematical theory of optimization is used both to character-
ize optimal points and to provide the basis for most algorithms. It
is not possible to have a good understanding of numerical optimiza-
tion without a firm grasp of the supporting theory. Accordingly, the
course gives a solid (though not comprehensive) treatment of opti-
mality conditions, as well as convergence analysis that reveals the
strengths and weaknesses of some of the most important algorithms.
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‚ Side Note:
Optimization traces its roots to the calculus of variations（變分
學）and the work of Euler and Lagrange. The development of
linear programming in the 1940s broadened the field and stimulated
much of the progress in modern optimization theory and practice
during the past 60 years.

Optimization is often called mathematical programming, a some-
what confusing term coined in the 1940s, before the word “pro-
gramming” became inextricably linked with computer software. The
original meaning of this word was more inclusive（包容性）, with
connotations（內涵）of algorithm design and analysis.

Modeling will not be treated extensively in this course.
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