Exercise Problem Sets 10

May. 24. 2021

Problem 1. Solve the wave equations

$$
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, y) \quad 0<x<L, t>0
$$

with the following boundary and initial conditions:

1. $u(0, t)=u(L, t)=0$ for $t>0$, and $u(x, 0)=\frac{1}{4} x(L-x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0$ for $0<x<L$.
2. $u(0, t)=u(L, t)=0$ for $t>0$, and $u(x, 0)=0,\left.\frac{\partial u}{\partial t}\right|_{t=0}=\sin \frac{\pi x}{L}$ for $0<x<L$.
3. $u(0, t)=u(L, t)=0$ for $t>0$, and $u(x, 0)=\left.\frac{\partial u}{\partial t}\right|_{t=0}=x(L-x)$ for $0<x<L$.

Problem 2. Find a solution of the initial-boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}(x, t) & =\frac{\partial^{2} u}{\partial x^{2}}(x, y)-u(x, y) & & 0<x<\pi, t>0 \\
u(0, t) & =u(\pi, t)=0 & & t>0, \\
u(x, 0) & =f(x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0 & & 0<x<\pi
\end{aligned}
$$

where

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } 0<x<\pi / 2 \\
\pi-x & \text { if } \pi \leqslant x<\pi
\end{array}\right.
$$

Problem 3. The vertical displacement $u(x, t)$ of an infinitely long string is determined from the initial-value problem

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t) \quad x \in \mathbb{R}, t>0, \tag{0.1a}\\
u(x, 0)=f(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=g(x) \quad x \in \mathbb{R} . \tag{0.1b}
\end{gather*}
$$

This problem can be solved by the following procedures.
(1) Show that the wave equation (0.1a) can be put into the form $\frac{\partial^{2} v}{\partial \eta \partial \xi}=0$ by means of the substitution $\xi=x+c t$ and $\eta=x-c t$, and $v(\xi, \eta)=u\left(\frac{\xi+\eta}{2}, \frac{\xi-\eta}{2 c}\right)$.
(2) Integrating the partial differential equation given in (1) to find that

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

for some functions F and G. Use this expression of solution and the initial condition (0.1b) to show that

$$
F(x)=\frac{1}{2} f(x)+\frac{1}{2 c} \int_{x_{0}}^{x} g(y) d y+C
$$

and

$$
G(x)=\frac{1}{2} f(x)-\frac{1}{2 c} \int_{x_{0}}^{x} g(y) d y-C,
$$

where x_{0} is arbitrary and C is a constant.
(3) Use the result in (2) to show that

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y .
$$

Problem 4. Solve the Laplace equations

$$
\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=0 \quad 0<x<a, 0<y<b
$$

with the following boundary conditions:

1. $\frac{\partial u}{\partial x}(0, y)=u(0, y), u(a, y)=1$ for $0<y<b$, and $\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, b)=0$ for $0<x<a$.
2. $a=1, b=\pi, u(0, y)=\cos y, u(1, y)=1+\cos 2 y$ for $0<y<\pi$, and $\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, \pi)=0$ for $0<x<1$.

Problem 5. Consider the Laplace equations

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=0 & 0<x<a, 0<y<b, \\
\frac{\partial u}{\partial y}(x, 0)=\frac{\partial u}{\partial y}(x, b)=0 & 0<x<a \\
\frac{\partial u}{\partial x}(0, y)=0, \frac{\partial u}{\partial x}(a, y)=g(y) 00<y<b .
\end{array}
$$

Explain why a necessary condition for a solution u to exist is that g satisfy

$$
\int_{0}^{b} g(y) d y=0
$$

The condition above is called a compatibility condition.

