Exercise Problem Sets 7

May. 2. 2021

Problem 1. 1. Find the eigenfunctions v of $\frac{d^2}{dx^2}$ on [-p, p] with the boundary condition v(-p) = v(p) = 0; that is, find non-trivial v satisfying

$$v''(x) = \lambda v(x) \quad \forall x \in [-p, p], \qquad v(-p) = v(p) = 0 \tag{(\star)}$$

for some constant $\lambda \in \mathbb{R}$.

2. Suppose that $\{v_k\}_{k=1}^{\infty}$ are collection of eigenfunctions satisfying (\star) which forms a complete orthogonal set on $[-\pi, \pi]$ (that is, $p = \pi$ in $(\star\star)$). For a given function f defined on $[-\pi, \pi]$, f can be expressed as

$$f = \sum_{k=1}^{\infty} c_k v_k$$

Find the "linear combination" of $\{v_k\}_{k=1}^{\infty}$ that is used to represent $f(x) = x^2$.

Problem 2. 1. Find the eigenfunctions w of $\frac{d^2}{dx^2}$ on [0, p] with the boundary condition w(0) = w'(p) = 0; that is, find non-trivial w satisfying

$$w''(x) = \lambda w(x) \quad \forall x \in [0, p], \qquad w(0) = w'(p) = 0 \tag{(\star\star)}$$

for some constant $\lambda \in \mathbb{R}$.

2. Suppose that $\{w_k\}_{k=1}^{\infty}$ are collection of eigenfunctions satisfying $(\star\star)$ which forms a complete orthogonal set on $[0, \pi]$ (that is, $p = \pi$ in $(\star\star)$). For a given function f defined on $[0, \pi]$, f can be expressed as

$$f = \sum_{k=1}^{\infty} c_k w_k$$

Find the "linear combination" of $\{w_k\}_{k=1}^{\infty}$ that is used to represent $f(x) = x^2$.

Problem 3. 1. Find the cosine series of the function $f: [0, \pi] \to \mathbb{R}$ given by $f(x) = \sin x$.

2. Find the sine series of the function $f: [0, \pi] \to \mathbb{R}$ given by $f(x) = \cos x$.