Exercise Problem Sets 4

Problem 1. Solve $\boldsymbol{X}^{\prime}=\boldsymbol{A}(t) \boldsymbol{X}+\boldsymbol{F}(t)$ with the following \boldsymbol{A} and \boldsymbol{F}.

1. $\boldsymbol{X}^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 4 & 2\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}\sin 2 t \\ \cos 2 t\end{array}\right] e^{2 t}$.
2. $\boldsymbol{X}^{\prime}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}\sec t \\ 0\end{array}\right]$.
3. $\boldsymbol{X}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}0 \\ \sec t \tan t\end{array}\right]$.
4. $\boldsymbol{X}^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -\frac{1}{2} & 1\end{array}\right] \boldsymbol{X}+\left[\begin{array}{c}\csc t \\ \sec t\end{array}\right] e^{t}$.

Problem 2. Solve $\boldsymbol{X}^{\prime}=\boldsymbol{A} \boldsymbol{X}$ using the matrix exponential for the following \boldsymbol{A}. In each of the following problems, two matrices \boldsymbol{A} and $\boldsymbol{\Lambda}$ will be given, and there exists \boldsymbol{P} such that $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{\Lambda} \boldsymbol{P}^{-1}$. Try to find \boldsymbol{P} and then find the general solution to the linear system $\boldsymbol{X}^{\prime}=\boldsymbol{A} \boldsymbol{X}$.

1. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & -1 & 1\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] . \quad$ 2. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & 1 & 0\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
2. $\boldsymbol{A}=\left[\begin{array}{lllc}2 & 1 & 0 & -2 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$.
3. $\boldsymbol{A}=\left[\begin{array}{cccc}2 & 1 & 1 & -1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$.
4. $\boldsymbol{A}=\left[\begin{array}{ccccc}3 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 3 & 1 \\ -1 & -1 & -1 & -1 & 1\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$.
5. $\boldsymbol{A}=\left[\begin{array}{ccccc}4 & 1 & 0 & 0 & 0 \\ -4 & 0 & 0 & 0 & 0 \\ 8 & 4 & 0 & 1 & 0 \\ 16 & 8 & -4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right], \boldsymbol{\Lambda}=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$.
