Exercise Problem Sets 2

Problem 1. Is it possible that $\boldsymbol{X}_{1}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{t}$ and $\boldsymbol{X}_{2}(t)=\left[\begin{array}{l}1 \\ 1\end{array}\right] t e^{t}$ is a fundamental set of a linear system $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]^{\prime}=\left[\begin{array}{ll}a(t) & b(t) \\ c(t) & d(t)\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$? Explain your answer using the Wronskian.

Problem 2. Solve the linear system $\boldsymbol{X}^{\prime}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]^{\prime}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\boldsymbol{A} \boldsymbol{X}$ following the steps
Step 1: Find second order differential equations that x_{1} and x_{2} satisfy;
Step 2: Find the general solutions of x_{1} and x_{2};
Step 3: Find the relations among coefficients of the general solutions of x_{1} and x_{2};
Step 4: Find a fundamental set of solutions to $\boldsymbol{X}^{\prime}=\boldsymbol{A} \boldsymbol{X}$;
that we talked about in class to find a fundamental set of the linear system $\boldsymbol{X}^{\prime}=\boldsymbol{A} \boldsymbol{X}$ for following given \boldsymbol{A} :
(1) $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
(2) $\boldsymbol{A}=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$.
(3) $\boldsymbol{A}=\left[\begin{array}{cc}-1 & -2 \\ 2 & 1\end{array}\right]$.
(4) $\boldsymbol{A}=\left[\begin{array}{cc}-5 & 5 \\ 3 & -3\end{array}\right]$.
(5) $\boldsymbol{A}=\left[\begin{array}{ll}5 & -5 \\ 3 & -3\end{array}\right]$.

Problem 3. Find a fundamental set of the linear system $\boldsymbol{X}^{\prime}=\left[\begin{array}{lll}0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \boldsymbol{X}$ following the steps given in Problem 2.

