Differential Equations MA2041-A Sample Midterm Exam 2

National Central University, Dec. 14 2016

學號:________姓名:_____

Problem 1. Consider the initial value problem y' = 1 + y with y(0) = 0.

- 1. Find the local truncation error $\tau_k(h)$ for the improved Euler's method.
- 2. Find the local truncation error $\tau_k(h)$ for the Taylor's method of order 2.
- 3. Show that the numerical method

$$y_{k+1} = y_k + \frac{h}{6}(1+y_k)(6+3h+h^2)$$

is a third order numerical method; that is, show that the global truncation error $e_k(h)$ satisfies

$$|e_k(h)| \leq Ch^3 \qquad \forall 1 \leq k \leq \frac{T}{h}$$

for some constant C > 0.

Problem 2. Consider the initial value problem $y' = \sin(t^2 + y)$ with y(0) = 0.

1. Write the improved Euler method in the form

$$y_{k+1} = y_k + h\Phi(h, t_k, y_k).$$

In other words, find the function Φ such that the iterative scheme above is equivalent to the improved Euler method.

- 2. Show that $\left|\Phi_y(h,t,y)\right| \leq \frac{3}{2}$ if h < 1 and $t \in [0,1]$.
- 3. Show that the local truncation error $\tau_k(h)$ satisfies

$$|\tau_k(h)| \leq 7h^2 \qquad \forall h \leq \frac{1}{k}.$$

Problem 3. Let $\alpha, \beta, \gamma \in \mathbb{R}$ be constants. Use the variation of parameter to find the general solution to the equation

$$y'' - 2\alpha y' + (\alpha^2 + \beta^2)y = e^{\alpha t}\cos(\gamma t).$$

Problem 4. Find the Wronskian (which is unique up to a constant multiple) of two solutions on $(0, \infty)$ to

$$ty'' + (t-1)y' + 3y = 0.$$

Problem 5. Given a solution $\varphi_1(t) = t^{-1/2} \cos t$ to the equation

$$t^{2}y'' + ty' + (t^{2} - \frac{1}{4})y = 0, \qquad t > 0,$$

find the solution to the initial value problem

$$t^2y'' + ty' + (t^2 - \frac{1}{4})y = t^{5/2}, \qquad y(1) = y'(1) = 0.$$

Problem 6. Consider the equation

$$t^{2}y'' + ty' + 9y = -\tan(3\log t), \qquad t > 0.$$
(*)

- 1. Let $z(x) = y(e^x)$. Find the ODE that z satisfies.
- 2. Find the general solution to (\star) by solving for z first.

Problem 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that the boundary value problem

$$y''+y=f(t)\,,\qquad y(0)=0,\ y(\pi)=0$$
 has a solution if and only if $\int_0^\pi f(t)\sin t\,dt=0.$