Differential Equations Recommended Exercise 1

Problem 1．推導放置在角度為 θ 的斜面上，懸於平行於斜面虎克常數為 k 的彈簧上質量為 m 的物體的運動方程式。

Problem 2．In class we derive the differential equation for the brachistochrone curve connecting $(0,0)$ and (a, b) ，where $b<0$ ：

$$
\left[\frac{f^{\prime}(y)}{\sqrt{-2 g y} \sqrt{1+f^{\prime}(y)^{2}}}\right]^{\prime}=0, \quad f(0)=0, f(a)=b
$$

Solve this differential equation．
Suppose that the brachistochrone curve connecting $(0,0)$ and (a, b) can be represented as $y=h(x)$ （thus $h(0)=0$ and $h(a)=b$ ）．Use the variational principle to derive the differential equation that h has to satisfy．

Problem 3．Suppose that there exists a twice continuously differentiable minimizer $y=y(t)$ to the following variational problem

$$
\min _{\varphi \in \mathcal{A}} \int_{0}^{a} L\left(\varphi, \varphi^{\prime}, t\right) d t, \text { where } \mathcal{A}=\{\varphi:[0, a] \rightarrow \mathbb{R} \mid \varphi(0)=\varphi(a)=0\}
$$

where $L(p, q, t)$ is differentiable with respect to p and q ．Derive the equation that the minimizer y has to satisfy．

Problem 4．§1．2 課本習題 1．（b）Show that $x y^{3}-x y^{3} \sin x=1$ is an implicit solution to

$$
\frac{d y}{d x}=\frac{(x \cos x+\sin x-1) y}{3(x-x \sin x)}
$$

on the interval $(0, \pi / 2)$ ．
Problem 5．§1．2 課本習題 9．Determine whether the relation $y-\ln y=x^{2}+1$ is an implicit solution to the differential equation

$$
\frac{d y}{d x}=\frac{2 x y}{y-1}
$$

Problem 6．§1．2 課本習題 13．Determine whether the relation $\sin y+x y-x^{3}=2$ is an implicit solution to the differential equation

$$
y^{\prime \prime}=\frac{6 x y^{\prime}+\left(y^{\prime}\right)^{3} \sin y-2\left(y^{\prime}\right)^{2}}{3 x^{2}-y}
$$

Problem 7．§1．2 課本習題 30．Implicit Function Theorem．Let $G(x, y)$ have continuous first partial derivatives in the rectangle $R=\{(x, y) \mid a<x<b, c<y<d\}$ containing the point（ x_{0}, y_{0} ）． If $G\left(x_{0}, y_{0}\right)=0$ and the partial derivative $G_{y}\left(x_{0}, y_{0}\right) \neq 0$ ，then there exists a differentiable function $y=\phi(x)$ ，defined in some interval $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ ，that satisfies $G(x, \phi(x))=0$ for all $x \in I$ ．

The implicit function theorem gives conditions under which the relationship $G(x, y)=0$ defines y implicitly as a function of x ．Use the implicit function theorem to show that the relationship $x+y+e^{x y}=0$ defines y implicity as a function of x near the point $(0,-1)$ ．

