
A Concise Lecture Note on Differential Equations

1 Introduction
1.1 Background

Definition 1.1. A differential equation is a mathematical equation that relates some unknown
function with its derivatives. The unknown functions in a differential equations are sometimes called
dependent variables, and the variables which the derivatives of the unknown functions are taken
with respect to are sometimes called the independent variables. A differential equation is called
an ordinary differential equation (ODE) if it contains an unknown function of one independent
variable and its derivatives. A differential equation is called a partial differential equation (PDE)
if it contains unknown multi-variable functions and their partial derivatives.

Example 1.2. The following three differential equations are identical (with different expression):

y1 + y = x+ 3 ,

dy

dx
+ y = x+ 3 ,

f 1(x) + f(x) = x+ 3 .

Example 1.3. Let u :

"

R2 Ñ R
(x, t) ÞÑ u(x, t)

be an unknown function. The differential equation

ut ´ ux = t ´ x

is a partial differential equation.

Definition 1.4. The order of a differential equation is the order of the highest-order derivatives
present in the equation. A differential equation of order 1 is called first order, order 2 second order,
etc.

Example 1.5. The differential equations in Example 1.2 and 1.3 are both first order differential
equations, while the equation y2 + xy13 = x7 and ut ´ uxx = x3 + t5 are second order equations.

Definition 1.6. The ordinary differential equation

F (t, y, y1, ¨ ¨ ¨ , y(n)) = 0

is said to be linear if F is linear (or more precise, affine) function of the variable y, y1, ¨ ¨ ¨ , y(n). In
other words, a linear ordinary differential equation has the form

an(t)
dny

dtn
+ an´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + a1(t)

dy

dt
+ a0(t)y = f(t) .

If an ordinary differential equation said to be nonlinear if it is not linear.
Similar terminologies are applied to partial differential equations.



1.1.1 Why do we need to study differential equations?

Example 1.7 (Spring with or without Friction).

mẍ = ´kx ´ rẋ .

Example 1.8 (Oscillating pendulum).

mLθ̈ = ´mg sin θ

Example 1.9 (System of ODEs). Let p : [0,8) Ñ R+ denote the population of certain species. If
there are plenty of resource for the growth of the population, the growth rate (the rate of change of
the population) is proportion to the population. In other words, there exists constant γ ą 0 such
that

d

dt
p(t) = γp(t) .

The Lotka-Volterra equation or the predator-prey equation:

p1 = γp ´ αpq ,

q1 = βq + δpq .

Example 1.10. A brachistochrone curve, meaning ”shortest time” or curve of fastest descent, is the
curve that would carry an idealized point-like body, starting at rest and moving along the curve,
without friction, under constant gravity, to a given end point in the shortest time. For given two
point (0, 0) and (a, b), where b ă 0, what is the brachistochrone curve connecting (0, 0) and (a, b)?

Define
A =

␣

h : [0, b] Ñ R
ˇ

ˇh(0) = 0, h(b) = a, h is differentiable on (0,b)
(

and
N =

␣

φ : [0, b] Ñ R
ˇ

ˇφ(0) = 0, φ(b) = 0, φ is differentiable on (0,b)
(

,

and suppose that the brachistochrone curve can be expressed as x = f(y) for some f P A. Then f

the minimizer of the functional

T (h) =

ż b

0

ds

v
= ´

ż b

0

a

1 + h1(y)2
?

´2gy
dy

or equivalently,

T (f) = min
hPA

´

ż b

0

a

1 + h1(y)2
?

´2gy
dy = ´ max

hPA

ż b

0

a

1 + h1(y)2
?

´2gy
dy .

If φ P N , then for t in a neighborhood of 0, f + tφ P A; thus

F (t) ”

ż b

0

a

1 + (f + tφ)1(y)2
?

´2gy
dy

attains its minimum at t = 0. Therefore,

F 1(0) =
d

dt

ˇ

ˇ

ˇ

t=0

ż b

0

a

1 + (f + tφ)1(y)2
?

´2gy
dy = 0 @φ P N .



By the chain rule,
ż b

0

f 1(y)φ1(y)
?

´2gy
a

1 + f 1(y)2
dy = 0 @φ P N .

Suppose in addition that f is twice differentiable, then integration-by-parts implies that

´

ż b

0

[
f 1(y)

?
´2gy

a

1 + f 1(y)2

]1

φ(y) dy = 0 @φ P N

which further implies that f satisfies the ODE[
f 1(y)

?
´2gy

a

1 + f 1(y)2

]1

= 0

since φ P N is chosen arbitrarily.
Question: What if we assume that y = f(x) to start with? What equation must f satisfy?

Example 1.11 (Euler-Lagrange equation). In general, we often encounter problems of the type

min
yPA

ż a

0

L(y, y1, t) dt , where A =
␣

y : [0, a] Ñ R
ˇ

ˇ y(0) = y(a) = 0
(

.

Write L = L(p, q, t). Then the minimizer y P A satisfies

d

dt
Lq(y, y

1, t) = Lp(y, y
1, t) .

The equation above is called the Euler-Lagrange equation.

Example 1.12 (Heat equations). Let u(x, t) defined on Ωˆ (0, T ] be the temperature of a material
body at point x P Ω at time t P (0, T ], and c(x), ϱ(x), k(x) be the specific heat, density, and the
inner thermal conductivity of the material body at x. Then by the conservation of heat, for any
open set U Ď Ω,

d

dt

ż

U
c(x)ϱ(x)u(x, t) dx =

ż

BU
k(x)∇u(x, t) ¨ N(x) dS , (1.1)

where N denotes the outward-pointing unit normal of U . Assume that u is smooth, and U is a
Lipschitz domain. By the divergence theorem, (1.1) implies

ż

U
c(x)ϱ(x)ut(x, t)dx =

ż

U
div

(
k(x)∇u(x, t)

)
dx .

Since U is arbitrary, the equation above implies

c(x)ϱ(x)ut(x, t) ´ div(k(x)∇u(x, t)) = 0 @x P Ω , t P (0, T ].

If k is constant, then
cϱ

k
ut = ∆u ”

n
ÿ

i=1

B 2u

Bx2i
.

If furthermore c and ϱ are constants, then after rescaling of time we have

ut = ∆u . (1.2)

This is the standard heat equation, the prototype equation of parabolic equations.



Example 1.13 (Minimal surfaces). Let Γ be a closed curve in R3. We would like to find a surface
which has minimal surface area while at the same time it has boundary Γ.

Suppose that Ω Ď R2 is a bounded set with boundary parametrized by (x(t), y(t)) for t P I, and
Γ is a closed curve parametrized by (x(t), y(t), f(x(t), y(t))). We want to find a surface having C as
its boundary with minimal surface area. Then the goal is to find a function u with the property that
u = f on BΩ that minimizes the functional

A (w) =

ż

Ω

a

1 + |∇w|2 dA .

Let φ P C 1(Ω), and define

δA(u;φ) = lim
tÑ0

A(u+ tφ) ´ A(u)

t
=

ż

Ω

∇u ¨ ∇φ
a

1 + |∇u|2
dx .

If u minimize A, then δA(u;φ) = 0 for all φ P C 1
c (Ω). Assuming that u P C 2(Ω), we find that u

satisfies
div

( ∇u
a

1 + |∇u|2

)
= 0 ,

or expanding the bracket using the Leibnitz rule, we obtain the minimal surface equation

(1 + u2y)uxx ´ 2uxuyuxy + (1 + u2x)uyy = 0 @ (x, y) P Ω . (1.3)

Example 1.14 (System of PDEs - the Euler equations). Let Ω Ď R3 denote a fluid container, and
ϱ(x, t),u(x, t), p(x, t) denotes the fluid density, velocity and pressure at position x and time t. For a
given an open subset O Ď Ω with smooth boundary, the rate of change of the mass in O is the same
as the mass flux through the boundary; thus

d

dt

ż

O
ϱ(x, t)dx = ´

ż

BO
(ϱu)(x, t) ¨ N dS ,

where N is the outward-pointing unit normal of BO. The divergence theorem then implies that
d

dt

ż

O
ϱ(x, t)dx = ´

ż

O
div(ϱu)(x, t) dS .

If ϱ is a smooth function, then d

dt

ż

O
ϱ(x, t)dx =

ż

O
ϱt(x, t)dx; thus

ż

O

[
ϱt + div(ϱu)

]
(x, t)dx = 0 .

Since O is chosen arbitrarily, we must have

ϱt + div(ϱu) = 0 in Ω . (1.4)

Equation (1.4) is called the equation of continuity.
Now we consider that conservation of momentum. Let m = ϱu be the momentum. The conser-

vation of momentum states that
d

dt

ż

O
m dx = ´

ż

BO
m(u ¨ N) dS ´

ż

BO
pN dS +

ż

O
ϱf dx ,



here we use the fact that the rate of change of momentum of a body is equal to the resultant force
acting on the body, and with p denoting the pressure the buoyancy force is given by

ż

BO
pN dS.

Here we assume that the fluid is invicid so that no friction force is presented in the fluid. Therefore,
assuming the smoothness of the variables, the divergence theorem implies that

ż

O

[
mt +

n
ÿ

j=1

B (muj)

Bxj
+∇p ´ ϱf

]
dx = 0 .

Since O is chosen arbitrarity, we obtain the momentum equation

(ϱu)t + div(ϱu b u) = ´∇p+ ϱf . (1.5)

Initial conditions: ϱ(x, 0) = ϱ0(x) and u(x, 0) = u0(x) for all x P Ω.
Boundary condition: u ¨ N = 0 on BΩ.

1. If the density is constant (such as water), then (1.4) and (1.5) reduce to

ut + u ¨ ∇u = ´∇p+ f in Ω ˆ (0, T ) , (1.6a)
divu = 0 in Ω ˆ (0, T ) . (1.6b)

Equation (1.6) together with the initial and the boundary condition are called the incompress-
ible Euler equations.

2. If the pressure p solely depends on the density; that is, p = p(ϱ) (the equation of state), then
(1.4) and (1.5) together with are called the isentropic Euler equations.

1.2 Solutions and Initial Value Problems

Recall that a general form of an n-th order ODE with t independent, y dependent, can be expressed
as

F (t, y, y 1, ¨ ¨ ¨ , y(n)) = 0 , (1.7)

where F is a function that depends on x, y, and the derivatives of y up to order n. We assume
that the equation holds for all t in an open interval I = (a, b). In many cases we can isolate the
highest-order term y(n) and write equation (1.7) as

y(n) = f(t, y, y 1, ¨ ¨ ¨ , y(n´1)) . (1.8)

Definition 1.15. An explicit solution to a differential equation on I is a function φ(t) that, when
substituted for y in (1.7) or (1.8), satisfies the differential equations for all t P I.

A relation G(t, y) = 0 (which, under certain assumptions, defines an implicit function of t) is
said to be an implicit solution to equation (1.7) on the interval I if it defines one or more explicit
solutions on I.

A solution to an ODE is either an explicit solution or an implicit solution of that ODE.



Example 1.16. Show that φ(t) = t2 ´ t´1 is an explicit solution to the linear equation y 11 ´
2

t2
y = 0

but ψ(t) = t3 is not.

Example 1.17. Show that for any choice of constants c1 and c2, the function φ(t) = c1e
´t + c2e

2t is
an explicit solution to the linear equation y 11 ´ y 1 = 2y = 0.

Example 1.18. Show that the relation t+y+ety = 0 is an implicit solution to the nonlinear equation

(1 + tety)y 1 + 1 + yety = 0 .

Example 1.19. Verify that for every constant C the relation 4t2 ´ y2 = C is an implicit solution
to yy 1 ´ 4t = 0. Graph the solution curves for C = 0,˘1,˘4. The collection of all such solutions is
called a one-parameter family of solutions.

Definition 1.20. By an initial value problem for an n-th order differential equation

F (t, y, y 1, ¨ ¨ ¨ , y(n)) = 0

we mean: find a solution to the differential equation on an interval I that satisfies at t0 the n-initial
conditions

y(t0) = y0 , y 1(t0) = y1 , ¨ ¨ ¨ y(n´1)(t0) = yn´1 ,

where t0 P I and y0, y1, ¨ ¨ ¨ , yn´1 are given constants.

Example 1.21. Show that φ(t) = sin t ´ cos t is a solution to the initial value problem

y 11 + y = 0 ; y(0) = ´1 , y 1(0) = 1 .

Example 1.22. As shown in Example 1.17, the function φ(x) = c1e
´t + c2e

2t is a solution to
y 11 ´ y 1 ´ 2y = 0 for any choice of the constants c1 and c2. Determine c1 and c2 so that the initial
conditions y(0) = 2 and y 1(0) = ´3 are satisfied.

Remark 1.23. For an ODE f
(
x, y, y1, y2, ¨ ¨ ¨ , y(2n´1), y(2n)

)
= 0 of even order on a particular interval

[a, b], another set of conditions, called the boundary condition for an ODE, can be imposed. The
boundary condition of the ODE f

(
x, y, y1, y2, ¨ ¨ ¨ , y(2n´1), y(2n)

)
= 0 is of the form

y(a) = c1, y(b) = d1, y
1(a) = c2, y

1(b) = d2, ¨ ¨ ¨ , y(n)(a) = cn+1, y
(n)(b) = dn+1 .

Theorem 1.24 (Existence and Uniqueness of Solution/Fundamental theorem of ODE). Consider
the initial value problem

y(n) = f(t, y, y 1, ¨ ¨ ¨ , y(n´1)) , y(t0) = y0 , y 1(t0) = y1 , ¨ ¨ ¨ y(n´1)(t0) = yn´1 . (1.9)

If f and the first partial derivatives of f with respect to all its variables, possibly except t, are
continuous functions in some rectangular domain R = [a, b]ˆ [c0, d0]ˆ [c1, d1]ˆ ¨ ¨ ¨ ˆ [cn´1, dn´1] that
contains the point (t0, y0, y1, ¨ ¨ ¨ , yn´1), then the initial value problem has a unique solution φ(t) in
some interval I = (t0 ´ h, t0 + h) for some positive number h.



Proof. We only establish the case n = 1 (this is the version in the textbook), and the proof for the
general case is similar since (1.9) is equivalent to z 1 = f (t, z) with initial condition z(t0) = z0, where

z = (y, y 1, ¨ ¨ ¨ , y(n´1)) , f (t, z) = (z2, z3, ¨ ¨ ¨ , zn, f(t, z)) and z0 = (y0, y1, ¨ ¨ ¨ , yn´1) .

The proof is separated into two parts.

Existence: Choose a constant k P (0, 1) such that [t0 ´ k, t0 + k] ˆ [y0 ´ k, y0 + k] Ď R. Since
[t0 ´ k, t0 + k] ˆ [y0 ´ k, y0 + k] is closed and bounded, the continuous functions |f | and |fy|

attain their maximum in [t0 ´ k, t0 + k] ˆ [y0 ´ k, y0 + k]. Assume that for some M ě 1,
ˇ

ˇf(t, y)
ˇ

ˇ +
ˇ

ˇfy(t, y)
ˇ

ˇ ď M for all (t, y) P [t0 ´ k, t0 + k] ˆ [y0 ´ k, y0 + k]. Let h = k/M and
I = [t0 ´ h, t0 + h]. Then for t P I, define the iterative scheme (called Picard’s iteration)

φn+1(t) = y0 +

ż t

t0

f
(
s, φn(s)

)
ds , φ0(t) = y0 . (1.10)

Note that φn is continuous for all n P N. We show that the sequence of functions tφnu8
n=1

converges to a solution to (1.9).

Claim 1: For all n P N Y t0u,
ˇ

ˇφn(t) ´ y0
ˇ

ˇ ď k @ t P I . (1.11)

Proof of claim 1: We prove claim 1 by induction. Clearly (1.11) holds for n = 0. Now
suppose that (1.11) holds for n = N . Then for n = N + 1 and t P I,

ˇ

ˇφN+1(t) ´ y0
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż t

t0

f(s, φN(s)
)
ds
ˇ

ˇ

ˇ
ď M |t ´ t0| ď k .

Claim 2: For all n P N Y t0u,

max
tPI

ˇ

ˇφn+1(t) ´ φn(t)
ˇ

ˇ ď kn+1 .

Proof of claim 2: Let en+1(t) = φn+1(t) ´ φn(t). Using (1.10) and the mean value theorem,
we find that

en+1(t) =

ż t

t0

[
f
(
s, φn+1(s)

)
´ f

(
s, φn(s)

)]
ds =

ż t

t0

fy
(
s, ξn(s)

)
en(s) ds

for some function ξn satisfying
ˇ

ˇξn(t) ´ y0
ˇ

ˇ ď k in I (by claim 1); thus with ϵn denoting
max
tPI

ˇ

ˇen(t)
ˇ

ˇ,
ϵn+1 ď kϵn @n P N ;

thus
ϵn+1 ď kϵn ď k2ϵn´1 ď ¨ ¨ ¨ ď knϵ1 = kn max

tPI

ˇ

ˇ

ˇ

ż t

t0

f(s, y0) ds
ˇ

ˇ

ˇ
ď Mhkn = kn+1 .

Claim 3: The sequence of functions
␣

φn(t)
(8

n=1
converges for each t P I.



Proof of claim 3: Note that

φn+1(t) = y0 +
n
ÿ

j=0

[
φj+1(t) ´ φj(t)

]
.

For each fixed t P I, the series
8
ř

j=0

[
φj+1(t) ´ φj(t)

]
converges absolutely (by claim 2 with the

comparison test). Therefore, tφn(t)
(8

n=1
converges for each t P I.

Claim 4: The limit function φ is continuous in I.

Proof of Claim 4: Let ε ą 0 be given. Choose δ =
ε

2M
. Then if t1, t2 P I satisfying

|t1 ´ t2| ă δ, we must have

ˇ

ˇφn+1(t1) ´ φn+1(t2)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż t2

t1

f
(
s, φn(s)

)
ds
ˇ

ˇ

ˇ
ď M |t1 ´ t2| ă

ε

2
.

Passing to the limit as n Ñ 8, we conclude that
ˇ

ˇφ(t1) ´ φ(t2)
ˇ

ˇ ď
ε

2
ă ε @ t1, t2 P I and |t1 ´ t2| ă δ

which implies that φ is continuous in I.

Claim 5: The limit function φ satisfies φ(t) = y0 +
ż t

t0

f
(
s, φ(s)

)
ds for all t P I.

Proof of claim 5: It suffices to show that

lim
nÑ8

ż t

t0

f
(
s, φn(s)

)
ds =

ż t

t0

f
(
s, φ(s)

)
ds @ t P I .

Let ε ą 0 be given. Choose N ą 0 such that kN+2

1 ´ k
ă ε. Then by claim 2 and the mean value

theorem, for n ě N ,
ˇ

ˇ

ˇ

ż t

t0

f
(
s, φn(s)

)
ds ´

ż t

t0

f
(
s, φ(s)

)
ds
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż t

t0

fy
(
s, ξ(s)

)[
φn(s) ´ φ(s)

]
ds
ˇ

ˇ

ˇ

ď M
ˇ

ˇ

ˇ

ż t

t0

8
ÿ

j=n

ˇ

ˇφj+1(s) ´ φj(s)
ˇ

ˇ ds
ˇ

ˇ

ˇ
ď M |t ´ t0|

8
ÿ

j=N

kj+1 ď
kN+2

1 ´ k
ă ε .

Claim 6: y = φ(t) is a solution to (1.9).

Proof of claim 6: Since φ is continuous, by the fundamental theorem of Calculus,

d

dt

[
y0 +

ż t

t0

f
(
s, φ(s)

)
ds
]
= f

(
t, φ(t)

)
which implies that φ 1(t) = f

(
t, φ(t)

)
. Moreover, φ(0) = y0; thus y = φ(t) is a solution to (1.9).

Uniqueness: Suppose that y = ψ(t) is another solution to the ODE (1.9) in the time interval I By
the continuity of ψ, there must be some interval J = (t0 ´ δ, t0 + δ) such that

ˇ

ˇψ(t) ´ y0
ˇ

ˇ ď k

in J . We first show that ψ(t) = φ(t) for all t P J , and then show that I Ď J .



Let ϑ = φ ´ ψ. Then ϑ solves

ϑ 1 = f(t, φ) ´ f(t, ψ) = fy
(
t, ξ(t)

)
ϑ ϑ(t0) = 0

for some ξ in between φ and ψ satisfying |ξ(t)´ y0| ď k. Integrating in t over the time interval
[t0, t] we find that

ϑ(t) =

ż t

t0

fy(s, ξ(s))ϑ(s) ds .

(a) If t ą t0,

|ϑ(t)| ď

ˇ

ˇ

ˇ

ż t

t0

ˇ

ˇfy(s, ξ(s)
)ˇ
ˇ|ϑ(s)| ds

ˇ

ˇ

ˇ
ď M

ż t

t0

|ϑ(s)| ds ;

thus the fundamental theorem of Calculus implies that

d

dt

(
e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds
)
= e´Mt

(
|ϑ(t)| ´ M

ż t

t0

|ϑ(s)|
)

ď 0 .

Therefore,

e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds ď e´Mt0

ż t0

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds = 0

which implies that ϑ(t) = 0 for all t P (t0, t0 + δ).

(b) If t ă t0,

|ϑ(t)| ě ´

ˇ

ˇ

ˇ

ż t

t0

ˇ

ˇfy(s, ξ(s)
)ˇ
ˇ|ϑ(s)| ds

ˇ

ˇ

ˇ
ě ´M

ż t0

t

|ϑ(s)| ds =M

ż t

t0

|ϑ(s)| ds ;

thus the fundamental theorem of Calculus implies that

d

dt

(
e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds
)
= e´Mt

(
|ϑ(t)| ´ M

ż t

t0

|ϑ(s)|
)

ě 0 .

Therefore,

e´Mt

ż t

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds ě e´Mt0

ż t0

t0

ˇ

ˇϑ(s)
ˇ

ˇ ds = 0

which implies that ϑ(t) = 0 for all t P (t0 ´ δ, t0).

Therefore, θ(t) ” 0 for all t P J which implies that the solution φ equals the solution ψ in some
open interval J containing t0.

Finally, we need to argue if it is possible to have a solution y = ψ(t) in the time interval I
but

ˇ

ˇy(t) ´ y0
ˇ

ˇ ą k for some t P I. If so, by the continuity of the solution there must be some
t1 P I such that

ˇ

ˇψ(t1) ´ y0
ˇ

ˇ = k. Since ψ satisfies

ψ 1 = f(t, ψ) ψ(t1) = φ(t1) ,

the argument above implies that there is an open interval rJ Ď I in which φ = ψ. Since y = φ(t)

is a solution in the time interval J , we must have φ = ψ in I X rJ . In other words, ψ(t) stays in
[y0 ´ k, y0 + k] as long as t P I. This concludes the uniqueness of the solution to (1.9). ˝



Remark 1.25. In the proof of the existence and the uniqueness theorem, the condition that fy is
continuous is not essential. This condition can be replaced by that f is (local) Lipschitz in its second
variable; that is, there exists L ą 0 such that

ˇ

ˇf(t, y1) ´ f(t, y2)
ˇ

ˇ ď L|y1 ´ y2| .

Example 1.26. Consider the initial value problem

3y 1 = t2 ´ ty3 , y(1) = 6 .

Let f(t, y) =
1

3
(t2 ´ ty3). Then f and fy are continuous in R2; thus the fundamental theorem of

ODE provides the existence and uniqueness of the solution in an interval about 1 to the ODE above.

Example 1.27. Consider the initial value problem

y 1 = y2 , y(0) = 1 . (1.12)

Let f(t, y) = y2. Then f and fy are continuous in R2; thus the fundamental theorem of ODE provides
the existence and uniqueness of the solution in an interval about 0 to (1.12). In fact,

y(t) =
1

1 ´ t
(1.13)

satisfies y 1 = y2 and the initial data y(0) = 1; thus the unique solution to (1.12) is given by (1.13)
which blows up in finite time. Therefore, even if f and fy are continuous in any rectangle containing
(t0, y0), the ODE y 1 = f(t, y) with initial data y(t0) = y0 might not have a solution that exists for
all time.

Example 1.28. Consider the initial value problem

y 1 = 3y
2
3 , y(2) = 0 . (1.14)

The fundamental theorem of ODE cannot be applied since the function f(t, y) ” 3y
2
3 does not have

continuous partial derivative in any rectangle containing (2, 0). In fact, ϕ1(t) = 0 and ϕ2(t) = (t´2)3

are solutions to (1.14). Moreover, for every a ą 2, the function

ϕ(t) =

"

(x ´ a)3 if x ą a ,
0 if x ď a

is also a solution to (1.14). Therefore, the initial value problem (1.14) has infinitely many solutions.

Example 1.29. Solve the initial value problem y 1 = 2t(1 + y) with initial data y(0) = 0 using the
Picard iteration.

Recall the Picard iteration

φk+1(t) =

ż t

0

2s(1 + φk(s)
)
ds with φ0(t) = 0. (1.15)



Then φ1(t) =
ż t

0
2s ds = t2, and φ2(t) =

ż t

0
2s(1 + s2) ds = t2 +

t4

2
, and then φ3(t) =

ż t

0
2s
(
1 + s2 +

s4

2

)
ds = t2 +

t4

2
+

t6

6
. To see a general rule, we observe that φk(t) must be a polynomial of the form

φk(t) =
k
ÿ

j=1

ajt
2j ,

and φk+1(t) = φk(t) + ak+1t
2(k+1). Therefore, we only need to determine the coefficients ak in order

to find the solution. Note that using (1.15) we have

k+1
ÿ

j=1

ajt
2j =

ż t

0

2s
(
1 +

k
ÿ

j=1

ajt
2j
)
ds = t2 +

k
ÿ

j=1

2aj
2j + 2

t2j+2 = t2 +
k+1
ÿ

j=2

aj´1

j
t2j ;

thus the comparison of coefficients implies that a1 = 1, aj =
aj´1

j
. Therefore,

ak =
ak´1

k
=

ak´2

k(k ´ 1)
= ¨ ¨ ¨ =

a1
k(k ´ 1) ¨ ¨ ¨ 2

=
1

k!

which implies that φk(t) =
k
ř

j=1

t2j

j!
=

k
ř

j=0

t2j

j!
´ 1. Using the Maclaurin series of the exponential

function, we find that φk(t) converges to et2 ´ 1. The function φ(t) = et
2

´ 1 is indeed a solution of
the ODE under consideration.

1.3 Direction Fields

A direction field is in particular very useful in the study of first order differential equations of the
type:

dy

dt
= f(t, y) ,

where f is a scalar function. A plot of short line segments (with equal length) drawn at various
points in the ty-plane showing the slope of the solution curve there is called a direction field for
the differential equation.

Example 1.30. Plot the direction field for the ODE dy

dt
= ´

y

t
. Note that for every constant c, the

relation ty = c is an implicit solution to the ODE.

Example 1.31. Plot the direction field for the ODE dy

dt
= 3y

2
3 .

1.3.1 The method of isoclines

The method of isocline can be used to plot the direction field for differential equations. An isocline
for the differential equation y 1 = f(t, y) is a set of points in ty-plane where all the solutions have the
same slope dy

dt
; thus it is a level curve for the function f(t, y).

To implement the method of isoclines for sketching direction fields, we draw hash marks with
slope c along the isocline f(t, y) = c for a few selected value of c.



Example 1.32. Plot the direction field for the ODE dy

dt
= t2 ´ y. Show that for each constant c,

the function ϕ(t) = ce´t + t2 ´ 2t+ 2 is an explicit solution to the ODE.

Example 1.33. Consider a falling object whose velocity satisfies the ODE

m
dv

dt
= mg ´ bv .

Plot the direction field for the ODE above.

1.3.2 Integral Curves

The so-called integral curves of an ODE is related to the direction field in the sense that at each
point of each integral curve, the direction field (at that point) is tangent to the curve.

Definition 1.34. A curve C is said to be an integral curve of the ODE dy

dx
= f(x, y) if there exists

a parametrization (x(t), y(t)) of C, where where t belongs to some parameter domain I, such that

y 1(t) = f(x(t), y(t))x 1(t) @ t P I .

2 First Order Differential Equations
In general, a first order ODE can be written as

dy

dt
= f(t, y)

for some function f . In this chapter, we are going to solve the linear equation above explicitly with

1. f(t, y) = g(y)h(t);

2. f(t, y) = p(t)y + q(t);

3. f(t, y) = ´Fx(x, y)/Fy(x, y) for some function F ;

4. f(t, y) = g(y/t) for some function g;

and more.

2.1 Introduction: Motion of a Falling Body

The equation of falling body is a first order ODE

m
dv

dt
= mg ´ bv . (2.1)

The technique of separation of variables (which will be detailed in the next section) implies that

dv

mg ´ bv
=
dt

m
.



Integrating both sides, we obtain that

´
1

b
log |mg ´ bv| =

t

m
+ C

for some constant C. Therefore,
|mg ´ bv| = e´bCe´ bt

m

which implies that there exists A such that mg ´ bv = Ae´ bt
m . Therefore,

v =
mg

b
´
A

b
e´ bt

m .

To determine A, suppose one initial condition

v(0) = v0 (2.2)

is imposed. Then
v0 =

mg

b
´
A

b
or equivalently, ´

A

b
= v0 ´

mg

b
;

thus we conclude that the IVP (2.1 + (2.2) has a solution

v = v(t) =
mg

b
+
(
v0 ´

mg

b

)
e´ bt

m .

Some information that we obtain from the form of the solution above:
‚ As t Ñ 8, the velocity reaches a so-called terminal velocity mg

b
. Since the decay is exponential,

the falling object reaches the terminal velocity very quickly. The heavier the object, the faster the
terminal velocity.

2.2 Separable Equations

Definition 2.1. The ODE y 1 = f(t, y) is said to be separable if f(t, y) = g(y)h(t) for some functions
g and h.

Suppose that we are given a first order linear equation

dy

dt
= g(y)h(t) with initial condition y(t0) = y0 ,

where 1/g is assume to be integrable. Let G be an anti-derivative of 1/g. Then

dy

dt
= g(y)h(t) ñ

1

g(y)

dy

dt
= h(t) ñ G1(y)

dy

dt
= h(t)

ñ
d

dt
G(y(t)) = h(t) ñ

ż t

a

d

ds
G(y(s))ds = h(t) ñ G(y(t)) ´ G(y(t0)) =

ż t

t0

h(s)ds

ñG(y(t)) = G(y0) +

ż t

t0

h(s)ds ,

and y can be solved if the inverse function of G is known.



Computations in shorthand: To solve the equation dy

dt
= g(y)h(t), we formally write

dy

g(y)
= h(t)dt .

If G is an anti-derivative of 1/g and H is an anti-derivative of h; that is, dG

dy
=

1

g(y)
and dH

dt
= h(t),

then the equality above implies that
dG = dH .

Therefore, G(y) = H(t) + C for some constant C which can be determined by the initial condition
(if there is one).

Example 2.2. Let y be a solution to the ODE dy

dx
=

x2

1 ´ y2
. Then x, y satisfies x3 + y3 ´ 3y = C

for some constant C.

Example 2.3. Let y be a solution to the ODE dy

dx
=

3x2 + 4x+ 2

2(y ´ 1)
with initial data y(0) = ´1. Then

y = 1 ´
?
x3 + 2x2 + 2x+ 4.

Definition 2.4 (Integral Curves). Let F = (F1, ¨ ¨ ¨ , Fn) be a vector field. A parametric curve
x(t) =

(
x1(t), ¨ ¨ ¨ , xn(t)

)
is said to be an integral curve of F if it is a solution of the following

autonomous system of ODEs:
dx1
dt

= F1(x1, ¨ ¨ ¨ , xn) ,

...
dxn
dt

= Fn(x1, ¨ ¨ ¨ , xn) .

In particular, when n = 2, the autonomous system above is reduced to
dx

dt
= F (x, y) ,

dy

dt
= G(x, y) (2.3)

for some function F,G. Since at each point (x0, y0) =
(
x(t0), y(t0)

)
on the integral curve,

dy

dx

ˇ

ˇ

ˇ

(x,y)=(x0,y0)
=
dy/dt

dx/dt

ˇ

ˇ

ˇ

t=t0

if dx

dt

ˇ

ˇ

ˇ

t=t0
‰ 0, instead of finding solutions to (2.3) we often solve

dy

dx
=
G(x, y)

F (x, y)
.

Example 2.5. Let F : R2 Ñ R2 be a vector field defined by F(x, y) =
(
F1(x, y), F2(x, y)

)
= (´y, x).

Then the parametric curve (cos t, sin t) is an integral curve of F since
(
x1(t), x2(t)

)
= (cos t, sin t)

satisfies
x 1
1(t) = ´ sin t = ´x2(t) = F1

(
x1(t), x2(t)

)
,

x 1
2(t) = cos t = x1(t) = F2

(
x1(t), x2(t)

)
.

Example 2.6. Find the integral curve of the vector field F(x, y) = (4+ y3, 4x´x3) passing through
(0, 1). Answer: y4 + 16y + x4 ´ 8x2 = 17.



2.3 Linear Equations; Method of Integrating Factors

Suppose that we are given a first order linear equation

dy

dt
+ p(t)y = q(t) with initial condition y(t0) = y0 .

Let P (t) be an anti-derivative of p(t); that is, P 1(t) = p(t). Then

eP (t)
(dy
dt

+ P 1(t)y
)
= eP (t)q(t) ñ

d

dt

(
eP (t)y(t)

)
= eP (t)q(t)

ñ

ż t

t0

d

ds

(
eP (s)y(s)

)
ds =

ż t

t0

eP (s)Q(s)ds ñ eP (t)y(t) ´ eP (t0)y(t0) =

ż t

t0

eP (s)Q(s)ds

ñ y(t) = eP (a)´P (t)y0 +

ż t

t0

eP (s)´P (t)Q(s)ds .

How about if we do not know what the initial data is? Then

eP (t)
(dy
dt

+ P 1(t)y
)
= eP (t)q(t) ñ

d

dt

(
eP (t)y(t)

)
= eP (t)q(t) ñ eP (t)y(t) = C +

ż

eP (t)q(t)dt ,

where
ż

eP (t)q(t)dt denotes an anti-derivative of ePQ. Therefore,

y(t) = Ce´P (t) + e´P (t)

ż

eP (t)q(t)dt .

Example 2.7. Solve dy

dt
+

1

2
y =

1

2
et/3. Answer: y(t) = 3

5
et/3 + Ce´t/2.

Example 2.8. Solve dy

dt
´ 2y = 4 ´ t. Answer: y(t) = ´

7

4
+

1

2
t+ Ce2t.

Example 2.9. Solve 1

t

dy

dt
´

y

t2
= t cos t, where t ą 0. Answer: y(t) = t2 sin t+ Ct2.

Example 2.10. Solve ty 1 + 2y = 4t2 with y(1) = 2. Answer: y(t) = t2 +
1

t2
.

2.4 Exact Equations and Integrating Factors

In this section, we focus on solving dy

dx
= ´

M(x, y)

N(x, y)
for M , N satisfying some special relation.

Recall vector calculus:

Definition 2.11 (Vector fields). A vector field is a vector-valued function whose domain and range
are subsets of Euclidean space Rn.

Definition 2.12 (Conservative vector fields). A vector field F : D Ď Rn Ñ Rn is said to be
conservative if F = ∇φ for some scalar function φ. Such a φ is called a (scalar) potential for F on
D.

Theorem 2.13. If F = (M,N) is a conservative vector field in a domain D, then Nx =My in D.



Theorem 2.14. Let D be an open, connected domain, and let F be a smooth vector field defined on
D. Then the following three statements are equivalent:

1. F is conservative in D.

2.
¿

C
F ¨ dr = 0 for every piecewise smooth, closed curve C in D.

3. Given and two point P0, P1 P D,
ż

C
F ¨ dr has the same value for all piecewise smooth curves

in D starting at P0 and ending at P1.

Definition 2.15. A connected domain D is said to be simply connected if every simple closed
curve can be continuously shrunk to a point in D without any part ever passing out of D.

Theorem 2.16. Let D be a simply connected domain, and M,N,My, Nx be continuous in D. If
My = Nx, then F = (M,N) is conservative.

Sketch of the proof. Since Nx =My,

N(x, y) = N(x0, y) +

ż x

x0

My(z, y) dz = N(x0, y) +
B

By

ż x

x0

M(z, y) dz

=
B

By

[
Ψ(y) +

ż x

x0

M(z, y) dz
]
,

where Ψ(y) is an anti-derivative of N(x0, y). Let φ(x, y) = Ψ(y) +
ż x

x0

M(z, y) dz. Then clearly
(M,N) = ∇φ which implies that F = (M,N) is conservative. ˝

Combining Theorem 2.13 and 2.16, in a simply connected domain a vector field F = (M,M) is
conservative if and only if My = Nx.

Example 2.17. Let D = R2zt(0, 0)u, and M(x, y) =
´y

x2 + y2
, N(x, y) =

x

x2 + y2
. Then My = Nx =

y2 ´ x2

(x2 + y2)2
in D; however, F ‰ ∇φ for some scalar function φ for if there exists such a φ, φ, up to

adding a constant, must be identical to the polar angle θ(x, y) P [0, 2π).

Now suppose that we are given a differential equation of the form

dy

dx
= ´

M(x, y)

N(x, y)
,

in which separation of variables is not possible. We note that this is equivalent of finding integral
curves of the vector field F = (´N,M).

Definition 2.18. Let D Ď R2 be open, and M,N : D Ñ R be continuous. An ODE of the form
dy

dx
= ´

M(x, y)

N(x, y)
(or the differential form M(x, y)dx+N(x, y)dy) is called exact in D if there exists a

continuously differentiable function φ : D Ñ R, called the potential function, such that φx = M

and φy = N .



Definition 2.19. A function µ = µ(x, y) is said to be an integrating factor of the differential
form M(x, y)dx+N(x, y)dy if (µM)(x, y)dx+ (µN)(x, y)dy is exact (in the domain of interest).

To solve the ODE
dy

dx
= ´

M(x, y)

N(x, y)
, (2.4)

the following two possibilities are most possible situations:

1. If My = Nx in a simply connected domain D, then Theorem 2.16 implies that the ODE (2.4)
is exact in a simply connected domain D Ď R2; that is, there exists a potential function φ such
that ∇φ = (M,N). Then (2.4) can be rewritten as

φx(x, y) + φy(x, y)
dy

dx
= 0 ;

and if (x(t), y(t)) is an integral curve, we must have

φx(x(t), y(t))
dx

dt
+ φy(x(t), y(t))

dy

dt
= 0 or equivalently, d

dt
φ(x(t), y(t)) = 0 .

Therefore, integral curve satisfies φ(x, y) = C.

2. If My ‰ Nx, we look for a function µ such that (µM)y = (µN)x in a simply connected domain
D Ď R2. Such a µ always exists (in theory, but may be hard to find the explicit expression),
and such a µ µ satisfies the PDE

Mµy ´ Nµx + (My ´ Nx)µ = 0 . (2.5)

Usually solving a PDE as above is as difficult as solving the original ODE.

Example 2.20. Solve dy

dx
= ´

y cosx+ 2xey

sinx+ x2ey ´ 1
.

Let M(x, y) = y cosx + 2xey and N(x, y) = sinx + x2ey ´ 1. Then My(x, y) = cosx + 2xey =

Nx(x, y); thus the ODE above is exact in R2. To find the potential function φ, due to the fact that
φx =M we find that

φ(x, y) = Ψ(y) +

ż

M(x, y)dx = Ψ(y) + y sinx+ x2ey

for some function Ψ. By φy = N , we must have Ψ 1(y) = ´1. Therefore, Ψ(y) = ´y + C; thus the
potential function φ is

φ(x, y) = y sinx+ x2ey ´ y + C .

Example 2.21. Show that µ(x, y) = xy2 is an integrating factor for the differential form

(2y ´ 6x)dx+ (3x ´ 4x2y´1)dy .

Let M(x, y) = 2y ´ 6x and N(x, y) = 3x ´ 4x2y´1. Then

(µM)y =
B

By

[
xy2(2y ´ 6x)

]
= 6xy2 ´ 12x2y



and
(µN)x =

B

Bx

[
xy2(3x ´ 4x2y´1)

]
= 6xy2 ´ 12x2y .

Therefore, µ is an integrating factor since (µM)y = (µN)x on a simply connected domain R2.
Now we find a potential function φ; that is, we look for a continuously differentiable function φ

such that φx = µM and φy = µN . Since µM = xy2(2y ´ 6x) = 2xy3 ´ 6x2y2,

φ(x, y) = ψ(y) + x2y3 ´ 2x3y2

for some function ψ. Using the identity φy = µN , we find that ψ satisfies

ψ 1(y) + 3x2y2 ´ 4x3y = φy = µN = 3x2y2 ´ 4x3y .

Therefore, ψ = C and the potential function has the form φ(x, y) = x2y3 ´ 2x3y2 + C.

2.5 Special Integrating Factors

There are two special cases in which it is easy to find integrating factors.

1. My ´ Nx

N
is a continuous function of x but independent of y: then we can assume that µ is a

function of x, and (2.5) implies that µ satisfies
dµ

dx
=
My ´ Nx

N
µ . (2.6)

2. My ´ Nx

M
is a continuous function of y but independent of x: then we can assume that µ is a

function of y, and (2.5) implies that µ satisfies
dµ

dy
=
Nx ´ My

M
µ . (2.7)

Example 2.22. Solve dy

dx
= ´

3xy + y2

x2 + xy
.

Let M(x, y) = 3xy + y2 and N(x, y) = x2 + xy. Then My ´ Nx = x + y so Mdx + Ndy is not

exact. We observe that My ´ Nx

N
=

1

x
which is a function of x, we can assume that the integrating

factor µ is only a function of x, and (2.6) implies that µ satisfies
dµ

dx
=

1

x
µ ;

thus µ(x) = x. This choice of µ validates that (µM)y = (µN)x in R2; thus µMdx + µNdy is exact.
We note that the potential function φ has the form

φ(x, y) = x3y +
x2y2

2
+ C .

Therefore, we find an implicit solution

x3y +
x2y2

2
= C .

One can also verify that the function µ(x, y) =
1

xy(2x+ y)
is also a valid integrating factor (in

some domain D Ď R2).



Example 2.23. Solve dy

dx
= ´

2x2 + y

x2y ´ x
.

Let M(x, y) = 2x2 + y and N(x, y) = x2y ´ x. Then My ´ Nx = 2 ´ 2xy which implies that
My ´ Nx

N
= ´

2

x
. Therefore, we assume that µ = µ(x) satisfies

dµ

dx
= ´

2

x
µ .

The separation of variables then provides that µ(x) = x´2, and the potential function for the differ-
ential form µMdx+ µNdy has the form

φ(x, y) = 2x ´
y

x
+
y2

2
+ C .

thus we obtain an implicit solution 2x ´
y

x
+

y2

2
= C.

Remark 2.24. It is possible to lose or gain solutions when multiplying and dividing by µ(x, y).

2.6 Substitution and Transformations
2.6.1 Homogeneous equations

Definition 2.25. The ODE dy

dx
= f(x, y) is said to be homogeneous if f(x, y) = g

(y
x

)
for some

function g.

Example 2.26. The equation (x ´ y)dx+ xdy = 0 is homogeneous since it can be rewritten as
dy

dx
= ´

x ´ y

x
= ´1 +

y

x

and the right-hand side is a function of y

x
.

Test for homogeneity: The ODE dy

dx
= f(x, y) is homogeneous if and only if f(tx, ty) = f(x, y)

for all t ‰ 0.
To solve a homogeneous equation dy

dx
= g

(y
x

)
, we let v =

y

x
and substitute in dy

dx
= v + x

dv

dx
to

obtain that
x
dv

dx
+ v = g(v) .

The new equation is separable so that we can apply the separation of variables to obtain a solution.

Example 2.27. Solve (xy + y2 + x2)dx ´ x2dy = 0.

If x ‰ 0, we can rewrite the ODE above as dy

dx
=

xy + y2 + x2

x2
=

y

x
+

y2

x2
+ 1; thus the ODE is

homogeneous. Therefore, letting v =
y

x
, we find that

x
dv

dx
= v2 + 1 ;

thus the separation of variables implies that v and x satisfies
dv

v2 + 1
=
dx

x
.

Therefore, tan´1 v = log |x| + C or v = tan(log |x| + C). We also note that x = 0 is a solution.



2.6.2 Equations of the form dy

dx
= G(ax+ by)

To solve dy

dx
= G(ax+ by), we let z = ax+ by and find that

dz

dx
= a+ b

dy

dx
= a+ bG(z) .

The separation of variable can be used to solve the ODE above.

Example 2.28. Solve dy

dx
= y ´ x ´ 1 +

1

x ´ y + 2
. Letting z = x ´ y, we find that

dz

dx
= 1 ´

dy

dx
= 1 ´

(
y ´ x ´ 1 +

1

x ´ y + 2

)
= 2 + z ´

1

z + 2
=

z2 + 4z + 3

z + 2
.

Therefore, the separation of variables implies that z and x satisfy

z + 2

z2 + 4z + 3
dz = dx .

Using the partial fraction,

z + 2

z2 + 4z + 3
=

z + 2

z2 + 4z + 3
=

1

2

( 1

z + 3
+

1

z + 1

)
;

thus
1

2
log |z2 + 4z + 3| = x+ C .

This implies that
(z + 2)2 ´ 1 = ˘Ce2x = Ce2x

which shows that an implicit solution to the given ODE is

(x ´ y + 2)2 = Ce2x + 1 .

2.6.3 Bernoulli equations

Definition 2.29. A first order ODE that can be written in the form

dy

dx
+ p(x)y = q(x)yr ,

where p(x) and q(x) are continuous on an interval (a, b) and r P R, is called a Bernoulli equation.

To solve a Bernoulli equation, we focus only on the case that r ‰ 0, 1 (for otherwise we can solve
using the method of integrating factor for r = 0 or separation of variable for r = 1). Let v = y1´r.
Then

dv

dx
= (1 ´ r)y´r dy

dx
= (1 ´ r)y´r

[
q(x)yr ´ p(x)y

]
= (1 ´ r)

[
q(x) ´ p(x)y1´r

]
= (1 ´ r)

[
q(x) ´ p(x)v

]
which can be solved using the method of integrating factor.



Remark 2.30. We note that when r ą 0, y ” 0 is also a solution to the Bernoulli equation.

Example 2.31. Solve dy

dx
´ 5y = ´

5

2
xy3.

Let v = y´2. Then
dv

dx
= ´2y´3 dy

dx
= ´2y´3

(
5y ´

5

2
xy3

)
= ´10v + 5x

or equivalently,
dv

dx
+ 10v = 5x .

Using the method of integrating factor,
d

dx

(
e10xv

)
= 5xe10x ;

thus
e10xv = 5

ż

xe10x dx = 5
[
xe10x

10
´

1

10

ż

e10x dx
]
=
xe10x

2
´
e10x

20
+ C .

Therefore, using v = y´2 we obtain that

y´2 =
x

2
´

1

20
+ Ce´10x .

2.6.4 Equations with linear coefficients

Consider the ODE
(a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0 .

1. If b1 = a2, then there exists a scalar potential such that

∇φ(x, y) = (a1x+ b1y + c1, a2x+ b2y + c2) ,

and an implicit solution is given by φ(x, y) = c.

2. If a1b2 = a2b1, then
dy

dx
= ´

a1x+ b1y + c1
a2x+ b2y + c2

= G(ax+ by)

for some a, b P R.

3. If a1b2 ‰ a2b1, then there exists h, k such that[
a1 b1
a2 b2

] [
h
k

]
=

[
c1
c2

]
.

Let u = x+ h and v = y + k. Then

dv

du
= ´

a1u+ b1v

a2u+ b2v
= ´

a1 + b1
v

u

a2 + b2
v

u

= g
(v
u

)
.

The equation above is homogeneous and we can solve by the change of variable w =
v

u
.

Example 2.32. Solve (´3x + y + 6)dx + (x + y + 2)dy = 0. Answer: An implicit solution is given
by (y + 3)2 + 2(x ´ 1)(y + 3) ´ 3(x ´ 1)2 = c.



3 Numerical Methods Involving First-Order Equations
3.1 Numerical Approximations: Euler’s Method

The goal in this section is to solve the ODE

dy

dt
= f(t, y) y(t0) = y0 (3.1)

numerically (meaning, programming in computer to produce an approximation of the solution) in
the time interval [t0, t0 + T ].

Let ∆t denote the time step size (which mean we only care what the approximated solution is
at time tk = t0 + k∆t for all k P N). Since dy

dt
(tk) «

y(tk+1) ´ y(tk)

∆t
when ∆t « 0, we substitute

y(tk+1) ´ y(tk)

∆t
for dy

dt
(tk) and obtain

y(tk+1) « y(tk) + f
(
tk, y(tk)

)
∆t @ k P N .

The forward/explicit Euler method is the iterative scheme

yk+1 = yk + f(tk, yk)∆t @ k P
␣

1, 2, ¨ ¨ ¨ ,
[ T

∆t

]
´ 1

(

, y0 ‘‘=” y0 (in theory) . (3.2)

Example 3.1. Use the Euler method with step size ∆t = 0.1 to approximate the solution to the
initial value problem

y 1 = t
?
y , y(1) = 4 .

Let f(t, y) = t
?
y and (t0, y0) = (1, 4). The Euler method provides an approximating sequence

tykukPN satisfying y0 = 4 and

yk+1 = yk +∆tf(1 + k∆t, yk) = yk + 0.1(1 + k∆t)
?
yk .

Then y1 = 4 + 0.2 = 4.2 while y2 = 4.2 + 0.1(1.1)
?
4.2 « 4.42543, and etc.

k tk yk Determined by Euler’s Method Exact Value of y(tk)

0 1 4 4
1 1.1 4.2 4.21276
2 1.2 4.42543 4.45210
3 1.3 4.67787 4.71976
4 1.4 4.95904 5.01760
5 1.5 5.27081 5.34766

Table 1: Computations for y 1 = t
?
y, y(1) = 4

In order to study the “convergence” of a numerical method, we define the global truncation error
(associated with a numerical scheme) as follows.



Definition 3.2. Let tyku8
k=1 be a sequence of numerical solution obtained by a specific numerical

method (with step size ∆t ą 0 fixed) of solving ODE y 1 = f(t, y) with initial data y(t0) = y0. At
each time step tk = t0+k∆t, the global truncation error (associated with this numerical method)
is the number ek(∆t) = y(tk) ´ yk.

Therefore, to see if a numerical method produces good approximation of the exact solution, we
check if the global truncation error converges to 0 for all k

(
ď T/∆t

)
as ∆t Ñ 0.

Assume that f is bounded and has bounded continuous partial derivatives ft and fy; that is, ft
and fy are continuous and for some constant M ą 0 |f(t, y)| + |ft(t, y)| + |fy(t, y)| ď M for all t, y.
Then the fundamental theorem of ODE provides a unique continuously differentiable solution y = y(t)

to (3.1). Since ft and fy are continuous, we must have that y is twice continuously differentiable and
we have

y 11 = ft(t, y) + fy(t, y)y
1 .

By Taylor’s theorem, for some θk P (0, 1) we have

y(tk+1) = y(tk) + y 1(tk)∆t+
1

2
(∆t)2y 11(tk + θk∆t)

= y(tk) + f
(
tk, y(tk)

)
∆t+

(∆t)2

2

[
ft + fyf

]
(tk + θk∆t, y(tk + θk∆t)) ;

thus we conclude that
y(tk+1) = y(tk) + f

(
tk, y(tk)

)
∆t+ τk∆t

for some τk satisfying |τk| ď L∆t for some constant L.
With ek denoting y(tk) ´ yk, we have

ek+1 = ek +
[
f
(
tk, y(tk)

)
´ f(tk, yk)

]
∆t+ τk∆t .

The mean value theorem then implies that

|ek+1| ď |ek| + (M∆t)|ek| + L(∆t)2 = (1 +M∆t)|ek| + L(∆t)2 ;

thus by iteration we have

|ek+1| ď (1 +M∆t)|ek| + L(∆t)2 ď (1 +M∆t)
[
(1 +M∆t)|ek´1| + L(∆t)2

]
+ L(∆t)2

= (1 +M∆t)2|ek´1| + L(∆t)2
[
1 + (1 +M∆t)

]
ď ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

ď (1 +M∆t)k+1|e0| + L(∆t)2
[
1 + (1 +M∆t) + (1 +M∆t)2 + ¨ ¨ ¨ + (1 +M∆t)k

]
= (1 +M∆t)k+1|e0| +

L

M
∆t

[
(1 +M∆t)k+1 ´ 1

]
ď (1 +M∆t)k+1

(
|e0| +

L

M
∆t

)
for all k P

␣

1, 2, ¨ ¨ ¨ ,
[ T

∆t

]
´ 1

(

. Since (1 +M∆t) ď eM∆t, we conclude that

|ek+1| ď eM(k+1)∆t
(

|e0| +
L

M
∆t

)
ď eMT

(
|e0| +

L

M
∆t

)



which further implies that
max

kPt1,¨¨¨ ,[ T
∆
]u

|ek| ď eMT
(

|e0| +
L

M
∆t

)
. (3.3)

Therefore, the difference between y(tk) and yk approaches zero as ∆t Ñ 0.

Remark 3.3. The Euler method can also be “derived” in the following way: the solution y at each
tk satisfies

y(tk+1) ´ y(tk) =

ż tk+1

tk

y 1(t) dt =

ż tk+1

tk

f
(
t, y(t)

)
dt , (3.4)

and the integral on the right-hand side is approximated by the value f(tk, y(tk))(tk+1 ´ tk).

3.2 Improved Euler’s Method

Now suppose that we use the trapezoidal rule to approximate the value of the integral on the right-
hand side of (3.4); that is,

ż tk+1

tk

f
(
t, y(t)

)
dt «

f
(
tk, y(tk)

)
+ f

(
tk+1, y(tk+1)

)
2

(tk+1 ´ tk) ,

then another numberical scheme, called the trapezoid scheme, can be developed: given y0 and ∆t,
find yk+1 satisfying

yk+1 = yk +
f(tk, yk) + f(tk+1, yk+1)

2
∆t . (3.5)

We note that the numerical scheme involves solving for yk+1 from a non-linear equation which is often
very expensive (meaning that it takes a lot of computation time to find yk+1). Since yk+1 depends
on yk (and other variables) implicitly, the trapezoid scheme is an implicit numerical scheme.

To develop an explicit scheme (which means yk+1 can be explicitly expressed as a function of yk),
we approximate yk+1 on the right-hand side of (3.5) using the Euler method; that is, we approximate
yk+1 by yk +∆f(tk, yk) and the trapezoid scheme is replaced by

yk+1 = yk +
f(tk, yk) + f

(
tk+1, yk +∆tf(tk, yk)

)
2

∆t . (3.6)

The scheme above is called the improved Euler’s method.

Example 3.4. Compute the improved Euler’s method approximation to the solution of the ODE
y 1 = y, y(0) = 1.

Let ∆t be the time step size. Then the improved Euler’s method provides

yk+1 = yk +
yk + yk +∆tyk

2
∆t = yk

(
1 + ∆t+

∆t2

2

)
.

Using the initial condition,
yk =

(
1 + ∆t+

∆t2

2

)k

.

We note that for each t ą 0, k∆t ď t ă (k + 1)∆t for a unique k =
[

t

∆t

]
P N Y t0u, and k∆t Ñ t as

∆t Ñ 0. Therefore, by the face that

lim
∆tÑ0

(
1 + ∆t+

∆t2

2

) t
∆t

= et ,

we find that yk converges to the solution y(t) of the ODE given above.



In general, the so-called one-step explicit method is often given in the form

yk+1 = yk +∆tΦ(∆t, tk, yk) .

For example, in Euler’s method the function Φ(∆t, tk, yk) = f(tk, yk), while in the improved Euler’s
method,

Φ(∆t, tk, yk) =
f(tk, yk) + f(tk +∆t, yk +∆tf(tk, yk))

2
.

Definition 3.5. A numerical method is said to be consistent if

lim
∆tÑ0

Φ(∆t, t, y) = y 1(t) .

3.2.1 Rate of convergence and the local truncation errors

The rate of convergence is used to understand how fast an approximated solution provided by a
numerical scheme converges to the solution of an IVP. For a numerical method, we would like to
determined the order n such that for a fixed T ą 0,

ˇ

ˇek(∆t)
ˇ

ˇ

∆tn
is bounded for all k ď

T

∆t
as ∆t Ñ 0 ,

provided that y0 is the exact initial data. We note that the Euler method is of order 1 due to (3.3).

Definition 3.6 (Big O and little O). We use the notation

f(x) = g(x) +O(h(x)) as x Ñ a

to express the idea that
ˇ

ˇ

ˇ

f(x) ´ g(x)

h(x)

ˇ

ˇ

ˇ
is bounded when x is closed to a, and use the notation

f(x) = g(x) + O(h(x)) as x Ñ a

to express the idea that lim
xÑa

ˇ

ˇ

ˇ

f(x) ´ g(x)

h(x)

ˇ

ˇ

ˇ
= 0.

Now assume that f is twice continuously differentiable; that is, ftt, fty and fyy are continuous.
Then y is three times continuously differentiable and Taylor’s theorem implies that

y(tk+1) = y(tk) + y 1(tk)∆t+
1

2
(∆t)2y 11(tk) +O(∆t3)

= y(tk) + f
(
tk, y(tk)

)
∆t+

(∆t)2

2

[
ft + fyf

]
(tk, y(tk)) +O(∆t3) . (3.7)

On the other hand, the improved Euler’s method produces that

yk+1 = yk +
f(tk, yk) + f

(
tk+1, yk +∆tf(tk, yk)

)
2

∆t

= yk +
f(tk, yk) + f(tk, yk) + ft(tk, yk)∆t+ fy(tk, yk)∆tf(tk, yk)

2
∆t+O(∆t3)

= yk + f(tk, yk)∆t+
∆t2

2

[
ft + fyf

]
(tk, yk) +O(∆t3) .

Therefore, if we solve the ODE using the initial condition y(tk) = yk, then the difference between the
exact value y(tk+1) and the approximated value yk+1 is of order ∆t3. This induces the following



Definition 3.7. Let y be the solution to the IVP y 1 = f(t, y) with initial data y(t0) = y0. At each
time step tk = t0+k∆t, the local truncation error associated with the one-step numerical method

yk+1 = yk +∆tΦ(∆t, tk, yk)

is the number τk(∆t) =
y(tk) ´ zk

∆t
, where zk = y(tk´1)+∆tΦ

(
∆t, tk´1, y(tk´1)

)
is obtained according

to the numerical scheme with yk´1 = y(tk´1).（數值方法在前一步是正確值時走一步的誤差）

By the mean value theorem (for functions of several variables), with h = ∆t we have

ek(h) = y(tk) ´ yk = y(tk) ´ yk´1 ´ hΦ(h, tk´1, yk´1)

= y(tk) ´ y(tk´1) ´ hΦ(h, tk´1, y(tk´1)) + y(tk´1) ´ yk´1

+ h
[
Φ(h, tk´1, y(tk´1)) ´ Φ(h, tk´1, yk´1)

]
= hτk(h) + ek´1(h) + hΦy(h, tk´1, ξk´1)

[
y(tk´1) ´ yk´1

]
= hτk(h) + ek´1(h) + hΦy(h, tk´1, ξk´1)ek´1(h)

for some ξk´1 on the line segment joining y(tk´1) and yk´1. If we assume that |Φy| is bounded by M ,
then the equality above implies that

|ek(h)| ď h|τk(h)| + (1 + hM)|ek´1(h)| .

Therefore,

|ek(h)| ď h|τk(h)| + (1 + hM)|ek´1(h)| ,

(1 + hM)|ek´1(h)| ď h(1 + hM)|τk´1(h)| + (1 + hM)2|ek´2(h)| ,

... ď
...

(1 + hM)k´1|e1(h)| ď h(1 + hM)k´1|τ1(h)| + (1 + hM)k|e0(h)| .

Summing all the inequalities above, we find that

|ek(h)| ď h
k´1
ÿ

ℓ=0

(1 + hM)ℓ
ˇ

ˇτk´ℓ(h)
ˇ

ˇ+ (1 + hM)k|e0(h)| .

Suppose that the local truncation error is of order n; that is, τk satisfies

|τk(h)| ď Ahn @ k P
␣

0, 1, ¨ ¨ ¨ ,
[T
h

]
´ 1

(

for some constant A and n ą 0. Then by the fact e0(h) = 0, we conclude that

|ek(h)| ď h
k´1
ÿ

ℓ=0

(1 + hM)ℓAhn + (1 + hM)k|e0(h)| ď h
(1 + hM)k ´ 1

hM
Ahn

ď
1

M

[
(1 + hM)

T
h ´ 1

]
Ahn ď

1

M
(eMT ´ 1)Ahn .

Therefore, we establish the following



Theorem 3.8. If Φy is bounded by M and the local truncation error τk(h) associated with the one
step numerical scheme

yk+1 = yk + hΦ(h, tk, yk)

satisfies
ˇ

ˇτk(h)
ˇ

ˇ ď Ahn @ k P
␣

0, 1, ¨ ¨ ¨ ,
[T
h

](
and h ą 0 ,

then the global truncation error ek(h) satisfies

|ek(h)| ď
A

M
(eMT ´ 1)hn @h ą 0 .

In shorthand, if τk(h) = O(hn), then ek(h) = O(hn).

Example 3.9. The improved Euler’s method is a second order numerical scheme.

Example 3.10. Consider solving the initial value problem

y 1 = sin(t2 + y) , y(0) = 0

numerically (in the time interval [0, 1]) using the improved Euler method. First we compute the
derivative of y:

y 11 = cos(t2 + y)(2t+ y 1) = cos(t2 + y)
(
2t+ sin(t2 + y)

)
,

y 12 = sin(t2 + y)
(
2t+ sin(t2 + y)

)2
+ cos(t2 + y)

[
2 + cos(t2 + y)

(
2t+ sin(t2 + y)

)]
.

Therefore, writing the improved Euler in the format yk+1 = yk + hΦ(h, tk, yk), we have

Φ(h, t, y) =
1

2

[
sin(t2 + y) + sin

(
(t+ h)2 + y + h sin(t2 + y)

)]
=

1

2

[
sin(t2 + y) + sin(t2 + y + 2th+ h2 + h sin(t2 + y))

]
.

A direct computation shows that

Φy(h, t, y) =
1

2

[
cos(t2 + y) + cos((t+ h)2 + y + h sin(t2 + y)

)(
1 + h cos(t2 + y)

)]
;

thus if t P [0, 1], we must have h P [0, 1] which implies that

ˇ

ˇΦy(h, t, y)
ˇ

ˇ ď
1

2

(
1 + 1 + h

)
=

2 + h

2
ď

3

2
if t P [0, 1] .

By the Taylor theorem,

y(tk) = y(tk´1) + hy 1(tk´1) +
h2

2
y 11(tk´1) +

h3

6
y 12(ξ)

= y(tk´1) + h sin
(
t2k´1 + y(tk´1)

)
+
h2

2

[
2tk´1 cos(t2k´1 + y(tk´1))

+ sin(t2k´1 + y(tk´1)) cos(t2k´1 + y(tk´1))
]
+
h3

6
y 12(ξk´1)



for some ξk´1 in between tk´1 and tk. Moreover,

yk = yk´1 + hΦ(h, tk´1, yk´1)

= yk´1 +
h

2

[
2 sin(t2k´1 + yk´1) + cos(t2k´1 + yk´1)

(
2tk´1h+ h2 + h sin(t2k´1 + yk´1)

)
´

1

2
sin ηk´1

(
2tk´1h+ h2 + h sin(t2k´1 + yk´1)

)2]
for some ηk´1 in between t2k´1 + yk´1 and (tk´1 + h)2 + yk´1 + h sin(t2k´1 + yk´1). Therefore, in the
time interval [0, 1] the local truncation error τk(h) satisfies
ˇ

ˇτk(h)
ˇ

ˇ ď
h2

2

ˇ

ˇ cos(t2k´1 + y(tk´1))
ˇ

ˇ+
1

4
| sin ηk´1|

(
2tk´1h+ h2 + h sin(t2k´1 + yk´1)

)2
+
h2

6

ˇ

ˇy 12(ξk´1)
ˇ

ˇ

ď
h2

2
+
h2

4
(3 + h)2 +

h2

6
¨
(
(2 + 1)2 + 2 + 3

)
ď

(1
2
+ 4 +

7

3

)
h2 ď 7h2 .

To obtain numerical solution which is accurate to the six decimals, by Theorem 3.8 we need to choose
h ą 0 such that

7

3/2
(e

3
2 ´ 1)h2 ď 10´7 .

Solving for h, we find that as long as 0 ă h ă 7.8452 ˆ 10´5, the global truncation error ek(h) is
bounded above by 10´7 for all k (such that tk ď 1).

3.3 The Taylor Method and the Runge-Kutta Method

Motivated by the definition of the local truncation error and Theorem 3.8, if f is smooth enough,
we can design one step numerical method as follows: by Taylor’s theorem,

y(tk+1) = y(tk) + y 1(tk)h+
y 11(tk)

2
h2 + ¨ ¨ ¨ +

y(n)(tk)

n!
hn +O(hn+1) as h Ñ 0 .

Since y 1(t) = f(t, y), each derivative y(j)(tk) can be expressed in terms of f and its partial derivatives.
For example, we have used

y 11(t) = (ft + ffy)(t, y)

to derive that the improved Euler’s method is of order 2. The Taylor method of order 3 would require
we compute y 12(t) in terms of f and its partial derivatives. Since

y 12(t) =
d

dt
(ft + ffy)(t, y) = (ft + ffy)t(t, y) + (ft + ffy)y(t, y)f(t, y)

= (ftt + ftfy + 2ffty + ff 2
y + f 2fyy)(t, y) ,

the Taylor method of order 3 is given by

yk+1 = yk + hf(tk, yk) +
h2

2
(ft + ffy)(tk, yk) +

h3

6
(ftt + ftfy + 2ffty + ff 2

y + f 2fyy)(tk, yk) . (3.8)

Similarly, since

y(4)(t) =
d

dt
(ftt + ftfy + 2ffty + ff 2

y + f 2fyy)(t, y)

= (fttt + fttfy + 3ftfty + 2fftty + ftf
2
y + 2ffyfty + 2fftfyy + f 2ftyy)(t, y)

+ (ftty + ftyfy + ftfyy + 2fyfty + 2fftyy + f 3
y + 4ffyfyy + f 2fyyy)(t, y)f(t, y) ,



the Taylor method of order 4 is given by

yk+1= yk + hf(tk, yk) +
h2

2
(ft + ffy)(tk, yk) +

h3

6
(ftt + ftfy + 2ffty + ffty + ff 2

y + f 2fyy)(tk, yk)

+
h4

24
(fttt + fttfy + 3ftfty + 2fftty + ftf

2
y + 2ffyfty + 2fftfyy + f 2ftyy)(tk, yk) (3.9)

+
h4

24
(ftty + ftyfy + ftfyy + 2fyfty + 2fftyy + f 3

y + 4ffyfyy + f 2fyyy)(tk, yk)f(tk, yk) .

Example 3.11. Find the third order Taylor’s method for solving the IVP

y 1 = ty2 , y(0) = 1 .

Let f(t, y) = ty2. Then ft = y2, fy = 2ty, ftt = 0, fty = 2y and fyy = 2t. Therefore, using (3.8) the
3rd order Taylor’s method is

yk+1 = yk + htky
2
k +

h2

2
(y2k + 2t2ky

3
k) +

h3

6
(2tky

3
k + 4tky

3
k + 4t3ky

4
k + 2t3ky

4
k)

= yk + htky
2
k +

h2

2
(y2k + 2t2ky

3
k) + h3(tky

3
k + t3ky

4
k)

which starts at y0 = 1.

To implement the Taylor method, it requires that we compute the derivatives of y(j) in terms of
f and its partial derivative by hand. Moreover, for Taylor’s method of higher order, the iterative
relation becomes very lengthy so it becomes even harder for coding purposes. There are higher order
one step explicit method for solving the IVP which does not require that we differentiate f by hand,
and it is easy to implement. One of such one step explicit method is the Runge-Kutta method.

Let us start with a second order Runge-Kutta method to illustrate the idea. The idea of the
second order Runge-Kutta method is to find a, b, α, β such that the one-step numerical scheme

r1 = hf(tk, yk) , (3.10a)
r2 = hf(tk + αh, yk + βr1) , (3.10b)

yk+1 = yk + ar1 + br2 (3.10c)

which produces a second order method. In order to make sure that (3.10) is of order 2, we compute
the local truncation error (by assuming that f is smooth enough). By Taylor’s theorem, we find that

yk+1 = yk + ahf(tk, yk) + bh
[
f(tk, yk) + ft(tk, yk)αh+ fy(tk, yk)βr1

]
+O(h3)

= yk + (a+ b)hf(tk, yk) +
[
bαft(tk, yk) + bβf(tk, yk)ft(tk, yk)

]
h2 +O(h3) ;

thus comparing with (3.7) (with h replacing ∆t) and applying Theorem 3.8 we conclude that (3.10)
is of order 2 if

a+ b = 1 , bα =
1

2
and bβ =

1

2
.

This is a system of three equations with four unknowns and has infinitely many solutions. In partic-
ular, a = b =

1

2
and α = β = 1 provides the improved Euler’s method.



Similarly, a fourth order Runge-Kutta method in general is given by

r1 = hf(tk, yk) ,

r2 = hf(tk + α1h, yk + β1r1) ,

r3 = hf(tk + α2h, yk + β2r1 + β3r2) ,

r4 = hf(tk + α3h, yk + β4r1 + β5r2 + β6r3) ,

yk+1 = yk + ar1 + br2 + cr3 + dr4

such that it agrees with (3.9) up to the fourth order. One of the most popular choices of parameters
in the fourth order Runge-Kutta is given by

r1 = hf(tk, yk) , (3.11a)
r2 = hf(tk +

1

2
h, yk +

1

2
r1) , (3.11b)

r3 = hf(tk +
1

2
h, yk +

1

2
r2) , (3.11c)

r4 = hf(tk + h, yk + r3) , (3.11d)

yk+1 = yk +
r1 + 2r2 + 2r3 + r4

6
. (3.11e)

4 Second Order Linear Equations
Recall that a second order ordinary differential equation has the form

f
(
t, y,

dy

dt
,
d2y

dt2

)
= 0 (4.1)

for some given function f . The ODE (4.1) is called linear if the function f takes the form

f
(
t, y,

dy

dt
,
d2y

dt2

)
= P (t)

d2y

dt2
+Q(t)

dy

dt
+R(t)y ´ G(t) ,

where P is a function which never vanishes for all t ą 0. The ODE (4.1) is called nonlinear if
it is not linear. The functions P,Q,R are called the coefficients of the ODE, and G is called the
forcing of the ODE. The initial condition for (4.1) is

(
y(t0), y

1(t0)
)
= (y0, y1).

In this chapter, the main focus is on solving linear second order ODE

P (t)
d2y

dt2
+Q(t)

dy

dt
+R(t)y = G(t) . (4.2)

The prototype model of such kind of ODEs is the ODE

my 11 = ´ky ´ by 1 + f(t)

which is used to model the mass-spring oscillator, where m is the mass, k is the Hooke constant, b is
the damping coefficient, and f is the external forcing acting on the mass.



4.1 Basic Theory for Second Order Linear Equations

Let I Ď R be an interval containing t0 as an interior point. Suppose that P,Q,R, F : I Ñ R
are continuous and P (t) ‰ 0 for all t P I. By the fundamental theorem of ODE, the initial value
problem (4.2) with initial condition y(t0) = y0, y 1(t0) = y1 has a unique solution in some time interval
containing t0 as an interior point.

Since P ‰ 0 on R, the functions p ”
Q

P
, q ”

R

P
and g ”

G

P
are also continuous on I, and (4.2) is

equivalent to
y 11 + p(t)y 1 + q(t)y = g(t) . (4.3)

Theorem 4.1. Let I Ď R be an interval, and p, q, g : I Ñ R be continuous. Then the initial value
problem

y 11 + p(t)y 1 + q(t)y = g(t) , y(t0) = y0, y 1(t0) = y1 (4.4)

has a unique solution y : I Ñ R.

Proof. By the fundamental theorem of ODE, it suffices to show that y(t) exists for all t P I.
Suppose that the maximal interval for the existence of y is (a, b) Ĺ I (which means lim

tÑb´
y(t) and

lim
tÑa+

y(t) do not exist). For t P (a, b), multiplying (4.4) by y 1(t) we find that

1

2

d

dt

ˇ

ˇy 1(t)
ˇ

ˇ

2
+ q(t)

ˇ

ˇy 1(t)
ˇ

ˇ

2
+ r(t)y(t)y 1(t) = g(t)y 1(t) . (4.5)

By the fundamental theorem of calculus,

y(t) = y(t0) +

ż t

t0

y 1(s) ds = y0 +

ż t

t0

y 1(s) ds ;

thus the Cauchy-Schwarz inequality implies that for a ă t ă b

ˇ

ˇy(t)
ˇ

ˇ

2
ď 2

[
|y0|2 + (t ´ t0)

ż t

t0

ˇ

ˇy 1(s)
ˇ

ˇ

2
ds
]
.

Therefore, letting M = sup
tP[a,b]

[
ˇ

ˇp(t)
ˇ

ˇ+
ˇ

ˇq(t)
ˇ

ˇ

]
, for t P (a, b) (4.5) implies that

d

dt

ˇ

ˇy 1(t)
ˇ

ˇ

2
ď 2

ˇ

ˇq(t)
ˇ

ˇ

ˇ

ˇy 1(t)
ˇ

ˇ

2
+
ˇ

ˇr(t)
ˇ

ˇ

ˇ

ˇy(t)
ˇ

ˇ

2
+
ˇ

ˇr(t)
ˇ

ˇ

ˇ

ˇy 1(t)
ˇ

ˇ

2
+
ˇ

ˇg(t)
ˇ

ˇ

2
+
ˇ

ˇy 1(t)
ˇ

ˇ

2

ď (3M + 1)
ˇ

ˇy 1(t)
ˇ

ˇ

2
+ 2M

[
|y0|

2 + (t ´ t0)

ż t

t0

ˇ

ˇy 1(s)
ˇ

ˇ

2
ds
]
+
ˇ

ˇg(t)
ˇ

ˇ

2
.

Let X(t) =
ż t

t0

ˇ

ˇy 1(s)
ˇ

ˇ

2
ds and N = 2M(b ´ a)|y0|2 + |y1|2 +

ż b

a

ˇ

ˇg(s)
ˇ

ˇ

2
ds. Integrating the inequality

above in t, by the fact that X 1(t) =
ˇ

ˇy 1(t)
ˇ

ˇ

2 we find that

X 1(t) ď N +
[
3M + 1 + (b ´ a)2

]
X(t) @ t0 ă t ă b

and
´X 1(t) ď N ´

[
3M + 1 + (b ´ a)2

]
X(t) @ a ă t ă t0 .



Therefore, using the method of integrating factor, we obtain that
ˇ

ˇX(t)
ˇ

ˇ ď Ne[3M+1+(b´a)2](t´t0) @ a ă t ă b

which in turn implies that
ˇ

ˇy 1(t)
ˇ

ˇ is bounded above by a fixed constant C for all a ă t ă b.
Let ttnu8

n=1 Ď (a, b) be a convergent sequence with limit a (or b). Then the mean value theorem
implies that

ˇ

ˇy(tn) ´ y(tm)
ˇ

ˇ ď C|tn ´ tm|

which implies that
␣

y(tn)
(8

n=1
is a Cauchy sequence in R. Therefore,

␣

y(tn)
(8

n=1
converges as long

as ttnu8
n=1 converges (to b or a). This shows that lim

tÑb´
y(t) and lim

tÑa+
y(t) exist, a contradiction. ˝

Definition 4.2. The ODE (4.3) is called homogeneous if g ” 0, otherwise it is called non-
homogeneous. When g ı 0, the term g(t) in (4.1) is called the non-homogeneous term.

Let I Ď R be an interval, and p, q, g : I Ñ R be given continuous functions. For a twice
differentiable function y : R Ñ R, let L[y] denote the function

(L[y])(t) ” y 11(t) + p(t)y 1(t) + q(t)y(t) .

The kernel of L, denoted by Ker(L), consists of solutions to the homogeneous equation

y 11 + p(t)y 1 + q(t)y(t) = 0 .

The kernel of L is called the solution space of the homogeneous equation above. We note that Ker(L)
is a vector space.

Theorem 4.3 (Principle of Superposition). If y = φ1 and y = φ2 are two solutions of the differential
equation

L[y] = y2 + py1 + qy = 0 , (4.6)

then the linear combination c1φ1 + c2φ2 is also a solution for any values of the constants c1 and c2.
In other words, the collection of solutions to (4.6) is a vector spaces.

Let Yi(t), i = 1, 2, be the solution to the IVP

y 11 + p(t)y 1 + q(t)y = 0 , (y(t0), y
1(0)

)
= ei

respectively, where e1 = (1, 0) and e2 = (0, 1). Then the solution to the IVP

y 11 + p(t)y 1 + q(t)y = 0 , y(t0) = y0, y 1(t0) = y1

is y(t) = y0Y1(t) + y1Y1(t). Therefore, the solution to the ODE

y 11 + p(t)y 1 + q(t)y = 0



must be of the form y(t) = c1Y1(t) + c2Y2(t). On the other hand, there is no non-zero vector (c1, c2)

such that c1Y1(t) + c2Y2(t) = 0 for all t P R, the set tY1, Y2u is linearly independent. Therefore,

dim Ker(L) = 2 and tY1, Y2u is a basis for Ker(L).

It is natural to ask “are two given functions φ1, φ2 in Ker(L) linearly independent?” Suppose
that for given initial data y0, y1 there exist constants c1, c2 such that y(t) = c1φ1(t) + c2φ2(t) is a
solution to (4.4). Then [

φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

] [
c1
c2

]
=

[
y0
y1

]
.

So for any given initial data (y0, y1) the solution to (4.4) can be written as a linear combination of

φ1 and φ2 if the matrix
[
φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

]
is non-singular. This induces the following

Definition 4.4. Let φ1 and φ2 be two differentiable functions. The Wronskian or Wronskian
determinant of φ1 and φ2 at point t0 is the number

W [φ1, φ2](t0) = det
( [φ1(t0) φ2(t0)
φ 1
1(t0) φ 1

2(t0)

] )
= φ1(t0)φ

1
2(t0) ´ φ2(t0)φ

1
1(t0) .

The collection of functions tφ1, φ2u is called a fundamental set of the initial value problem (4.6)
if W [φ1, φ2](t) ‰ 0 for some t in the interval of interest.

Moreover, we also establish the following

Theorem 4.5. Suppose that y = φ1 and y = φ2 are two solutions of the initial value problem (4.6).
Then for any arbitrarily given (y0, y1), the solution to the ODE

L[y] = y 11 + py 1 + qy = 0 with initial condition y(t0) = y0 and y 1(t0) = y1 ,

can be written as a linear combination of φ1 and φ2 if and only if the Wronskian of φ1 and φ2 at t0
does not vanish.

Theorem 4.6. Let φ1 and φ2 be solutions to the differential equation (4.6) satisfying the initial
conditions

(
φ1(t0), φ

1
1(t0)

)
= (1, 0) and

(
φ2(t0), φ

1
2(t0)

)
= (0, 1). Then tφ1, φ2u is a fundamental set

of equation (4.6), and for any (y0, y1), the solution to (4.4) can be written as y = y0φ1 + y1φ2.

Next, suppose that φ1, φ2 are solutions to (4.6) and W [φ1, φ2](t0) ‰ 0. We would like to know if
tφ1, φ2u can be used to construct solutions to the differential equation

L[y] = y2 + py1 + qy = 0 with initial condition y(t1) = y0 and y 1(t1) = y1 (4.7)

for some t1 ‰ t0. In other words, we would like to know if W [φ1, φ2](t1) vanishes or not. This
question is answered by the following



Theorem 4.7 (Abel). Let φ1 and φ2 be two solutions of (4.6) in which p, q are continuous in an
open interval I, and the Wronskian W [φ1, φ2] does not vanish at t0 P I. Then

W [φ1, φ2](t) = W [φ1, φ2](t0) exp
(

´

ż t

t0

p(s)ds
)
.

In particular, W [φ1, φ2](t) is never zero for all t P I.

Proof. Since φ1 and φ2 are solutions to (4.6), we have

φ 11
1 (t) + p(t)φ 1

1(t) + q(t)φ1(t) = 0 , (4.8a)
φ 11
2 (t) + p(t)φ 1

2(t) + q(t)φ2(t) = 0 . (4.8b)

Computing (4.8b) ˆ φ1 ´ (4.8a) ˆ φ2, we obtain that

(φ2φ
11
1 ´ φ1φ

11
2 ) + p(φ2φ

1
1 ´ φ1φ

1
2) = 0

Therefore, letting W = φ2φ
1
1 ´ φ1φ

1
2 be the Wronskian of φ1 and φ2. Then W 1 + pW = 0; thus

W (t) = W (t0) exp
(

´

ż t

t0

p(s)ds
)
.

Since p is continuous on [t0, t] (or [t, t0]), the integral
ż t

t0

p(s)ds is finite; thus W (t) ‰ 0. ˝

4.2 Homogeneous Equations with Constant Coefficients: The General
Solution

In this section, we consider homogeneous second order linear ODE with constant coefficients

Py2 +Qy1 +Ry = 0 ,

where P,Q,R are independent of t. Since P ‰ 0, the ODE reduces to

y2 + by1 + cy = 0 . (4.9)

Consider the equation λ2 + bλ+ c = 0.

1. Suppose that there are two distinct real roots λ1 and λ2. Then( d
dt

´ λ1

)( d
dt

´ λ2

)
y = 0 .

Therefore, if z =
( d

dt
´ λ2

)
y, then

( d

dt
´ λ1)z = 0 which further implies that z = c1e

λ1t for
some constant c1. Then

y1 ´ λ2y = c1e
λ1t ñ (e´λ2ty

)1
= c1e

(λ1´λ2)t ñ e´λ2ty =
c1

λ1 ´ λ2
e(λ1´λ2)t + c2

ñ y =
c1

λ1 ´ λ2
eλ1t + c2e

λ2t .

In other words, a solution to the ODE (4.9) is a linear combination of eλ1t and eλ2t if λ1 and
λ2 are distinct real roots of λ2 + bλ+ c = 0, and is called the general solution to (4.9).



2. Suppose that there is a real double root λ. Then the argument show that y satisfies

y1 ´ λy = c1e
λt ñ (e´λty)1 = c1 ñ e´λty = c1t+ c2 ñ y = c1te

λt + c2e
λt .

In other words, a solution to the ODE (4.9) is a linear combination of teλt and eλt if λ is the
real double root of λ2 + bλ+ c = 0, and is called the general solution to (4.9).

Example 4.8. Find the general solution to y 11 + 5y 1 ´ 6y = 0. Answer: y(t) = C1e
t + C2e

´6t.

Example 4.9. Solve the initial value problem

y 11 + 2y 1 ´ y = 0 , y(0) = 0, y 1(0) = ´1 .

Answer: y(t) = ´

?
2

4
e(´1+

?
2)t +

?
2

4
e(´1´

?
2)t.

Example 4.10. Find the solution to the initial value problem

y 11 + 4y 1 + 4y = 0 , y(0) = 1, y 1(0) = 3 .

Answer: y(t) = 3te´2t.

Question: What happened if there are complex roots for λ2 + bλ+ c = 0?

Definition 4.11. The equation λ2 + bλ+ c = 0 is called the characteristic equation associated with
the ODE (4.9).

Another way to derive the characteristic equations: Consider y 11 + by 1 + cy = 0. Let y 1 = z.
Then

d

dt

[
y
z

]
=

[
0 1

´c ´b

] [
y
z

]
.

Write x = [y, z]T and A =

[
0 1

´c ´b

]
. Then x 1 = Ax.

Suppose that A = PΛP´1 for some diagonal matrix Λ; that is, A is diagonalizable (with eigenvec-
tors of A form the columns of P and eigenvalues forms the diagonal entry of Λ), then P´1x 1 = ΛP´1x.
Letting u = P´1x, then u 1 = Λu or equivalently,

d

dt

[
u1
u2

]
=

[
λ1 0
0 λ2

] [
u1
u2

]
.

Therefore, u 1
1 = λ1u1 and u 1

2 = λ2u2 that further imply that u1 = c1e
λ1t and u2 = c2e

λ2t. Since
x = Pu, we conclude that y is a linear combination of eλ1t and eλ2t.
What are eigenvalues of A? Let λ be an eigenvalue of A. Then

ˇ

ˇ

ˇ

ˇ

´λ 1
´c ´b ´ λ

ˇ

ˇ

ˇ

ˇ

= 0 ñ λ2 + bλ+ c = 0

which is the characteristic equation. Therefore, eigenvalues of A are the roots of the characteristic
equation for the ODE (4.9).



4.3 Characteristic Equations with Complex Roots

Consider again the 2nd order linear homogeneous ordinary differential equation

y2 + by1 + cy = 0 (4.9)

where b and c are both constants. Suppose that the characteristic equation r2 + br + c = 0 has two
complex roots λ˘ iµ. We expect that the solution to (4.9) can be written as a linear combination of
e(λ+iµ)t and e(λ´iµ)t.
What is eiµt? The Euler identity says that eiθ = cos θ + i sin θ; thus

e(λ˘iµ)t = eλt
[

cos(µt) ˘ i sin(µt)
]
.

Considering the real and imaginary parts of eλt˘µt, we expect that φ1(t) = eλt cos(µt) and eλt sin(µt)
are solutions to (4.9).
φ1 and φ2 are solutions: left as an exercise.
Linear independence of φ1 and φ2: Computing the Wronskian of φ1 and φ2, we find that

W [φ1, φ2](t) =

ˇ

ˇ

ˇ

ˇ

eλt cos(µt) eλt sin(µt)
eλt

(
λ cos(µt) ´ µ sin(µt)

)
eλt

(
λ sin(µt) + µ cos(µt)

)ˇˇˇ
ˇ

= µeλt

which is non-zero if µ ‰ 0. Therefore, Theorem 4.6 implies that any solution to (4.9) can be written
as a linear combination of φ1 and φ2 if b2 ´ 4c ă 0 and is called the general solution to (4.9).

Example 4.12. Find the general solution of y 11 + 2y 1 + 4y = 0. Answer: y(t) = C1e
´t cos

?
3t +

C2e
´t sin

?
3t.

Example 4.13. Consider the motion of an object attached to a spring. The dynamics is described
by the 2nd order ODE:

mẍ = ´kx ´ rẋ , (4.10)

where m is the mass of the object, k is the Hooke constant of the spring, and r is the friction/
damping coefficient.

1. If r2 ´ 4mk ą 0: There are two distinct negative roots ´r ˘
?
r2 ´ 4mk

2m
to the characteristic

equation, and the solution of (4.10) can be written as

x(t) = C1 exp
(

´r +
?
r2 ´ 4mk

2m
t
)
+ C2 exp

(
´r ´

?
r2 ´ 4mk

2m
t
)
.

The solution x(t) approaches zero as t Ñ 8.

2. If r2 ´ 4mk = 0: There is one negative double root ´r

2m
to the characteristic equation, and the

solution of (4.10) can be written as

x(t) = C1 exp
(

´rt

2m

)
+ C2t exp

(
´rt

2m

)
.

The solution x(t) approaches zero as t Ñ 8.



3. If r2 ´ 4mk ă 0: There are two complex roots ´r ˘ i
?
4mk ´ r2

2m
to the characteristic equation,

and the solution of (4.10) can be written as

x(t) = C1e
´ rt

2m cos
(?

4mk ´ r2

2m
t
)
+ C2e

´ rt
2m sin

(?
4mk ´ r2

2m
t
)
.

(a) If r = 0, the motion of the object is periodic with period 4mπ
?
4mk ´ r2

, and is called simple
harmonic motion.

(b) If r ą 0, the object oscillates about the equilibrium point (x = 0) but approaches to zero
exponentially.

4.4 Nonhomogeneous Equations

In this section, we focus on the second order nonhomogeneous ODE

y 11 + p(t)y 1 + q(t)y = g(t) . (4.11)

Definition 4.14. A particular solution to (4.11) is a twice differentiable function validating
(4.11). In other words, a particular solution is a solution of (4.11). The space of complementary
solutions to (4.11) is the collection of solutions to the corresponding homogeneous equation

y 11 + p(t)y 1 + q(t)y = 0 . (4.12)

Let y = Y (t) be a particular solution to (4.11). If y = φ(t) is another solution to (4.11), then
y = φ(t)´Y (t) is function in the space of complementary solutions to (4.11). By Theorem 4.6, there
exist two function φ1 and φ2 such that y = φj(t), j = 1, 2, are linearly independent solutions to
(4.12), and φ(t) ´ Y (t) = C1φ1(t) + C2φ2(t) for some constants C1 and C2. This observation shows
the following

Theorem 4.15. The general solution of the nonhomogeneous equation (4.11) can be written in the
form

y = φ(t) = C1φ1(t) + C2φ2(t) + Y (t) ,

where tφ1, φ2u is a fundamental set of (4.12), C1 and C2 are arbitrary constants, and y = Y (t) is a
particular solution of the nonhomogeneous equation (4.11).

General strategy of solving nonhomogeneous equation (4.11):

1. Find the space of complementary solution to (4.11); that is, find the general solution y =

C1φ1(t) + C2φ2(t) of the homogeneous equation (4.12).

2. Find a particular solution y = Y (t) of the nonhomogeneous equation (4.11).

3. Apply Theorem 4.15.



4.5 The Method of Undetermined Coefficients

In this sub-section, we focus on solving

y 11 + by 1 + cy = g(t) . (4.13)

Suppose that λ1 and λ2 are two roots of r2 + br + c = 0 (λ1 and λ2 could be identical or complex-
valued). Then (4.13) can be written as( d

dt
´ λ1

)( d
dt

´ λ2

)
y(t) = g(t) .

Letting y 1 ´ λ2y = z, we have z1 ´ λ1z = g(t); thus

z(t) = eλ1t

ż

e´λ1tg(t) dt .

Solving for y we obtain that

y(t) = eλ2t

ż (
e(λ1´λ2)t

ż

e´λ1tg(t) dt
)
dt . (4.14)

Consider the following three types of forcing function g:

1. g(t) = pn(t)e
αt for some polynomial pn(t) = ant

n + ¨ ¨ ¨ + a1t+ a0 of degree n: note that

ż

eγttk dt =

$

’

&

’

%

1

γ
eγttk ´

k

γ

ż

eγttk´1dt if γ ‰ 0 ,

1

k + 1
tk+1 + C if γ = 0 .

(4.15)

Therefore, in this case a particular solution is of the form

Y (t) = ts(Ant
n + ¨ ¨ ¨ + A1t+ A0)e

αt

for some unknown s and coefficients A1
is, and we need to determine the values of these un-

knowns.

(a) If λ1 ‰ α and λ2 ‰ α, then s = 0.

(b) If λ1 = α but λ2 ‰ α, then s = 1.

(c) If λ1 = λ2 = α, then s = 2.

2. g(t) = pn(t)e
αt cos(βt) or g(t) = pn(t)e

αt sin(βt) for some polynomial pn of degree n and β ‰ 0:
note that (4.15) also holds for γ P C. Therefore, in this case we assume that a particular
solution is of the form

Y (t) = ts
[
(Ant

n + ¨ ¨ ¨ + A1t+ A0)e
αt cos(βt) + (Bnt

n + ¨ ¨ ¨ +B1t+B0)e
αt sin(βt)

]
for some unknown s and coefficients A1

is, B1
is, and we need to determine the values of these

unknowns.



(a) If λ1, λ2 P R, then s = 0.

(b) If λ1, λ2 R R; that is, λ1 = γ + iδ and λ2 = γ ´ iδ for some δ ‰ 0:

(1) If λ1 = γ + iδ and λ2 = γ ´ iδ for some γ ‰ α or δ ‰ ˘β, then s = 0.
(2) If λ1 = α + iβ and λ2 = α ´ iβ, then s = 1.

Example 4.16. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 3e2t.
Since the roots of the characteristic equation r2 ´ 3r ´ 4 are different from ´1, we expect that a

particular solution to the ODE above is of the form Ae2t. Solving for A, we find that A = ´
1

2
; thus

a particular solution is Y (t) = ´
1

2
e2t.

Example 4.17. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 2 sin t.
Since the roots of r2 ´ 3r ´ 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = A cos t+B sin t for some constants A,B to be determined. In other words, we look for A,B
such that

(A cos t+B sin t) 11 ´ 3(A cos t+B sin t) 1 ´ 4(A cos t+B sin t) = 2 sin t .

By expanding the derivatives and comparing the coefficients, we find that (A,B) satisfies
"

3A ´ 5B = 2 ,
5A+ 3B = 0 ,

and the solution to the equation above is (A,B) =
( 3

17
,

´5

17

)
. Therefore, a particular solution is

Y (t) =
3

17
cos t ´

5

17
sin t .

Example 4.18. Find a particular solution of y 11 ´ 3y 1 ´ 4y = ´8et cos 2t.
Since the roots of r2 ´ 3r ´ 4 = 0 are real, we expect that a particular solution is of the form

Y (t) = Aet cos 2t+Bet sin 2t for some constants A,B to be determined. In other words, we look for
A,B such that

(Aet cos 2t+Bet sin 2t) 11 ´ 3(Aet cos 2t+Bet sin 2t) 1 ´ 4(Aet cos 2t+Bet sin 2t) = ´8et cos 2t .

By expanding the derivatives,

(et cos 2t) 11 (et sin 2t) 11 (et cos 2t) 1 (et sin 2t) 1 et cos 2t et sin t
et cos 2t ´3 4 1 2 1 0
et sin 2t ´4 ´3 ´2 1 0 1

thus

´3A+ 4B ´ 3A ´ 6B ´ 4A = ´8 ,

´4A ´ 3B + 6A ´ 3B ´ 4B = 0 .

Therefore, (A,B) = (
10

13
,
2

13
); thus a particular solution is

Y (t) =
10

13
et cos 2t+ 2

13
et sin 2t .



Example 4.19. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 2e´t.
Since one of the roots of the characteristic equation r2 ´ 3r´ 4 is ´1, we expect that a particular

solution to the ODE above is of the form Ate´t for some constant A to be determined. In other
words, we look for A such that

(Ate´t) 11 ´ 3(Ate´t) 1 ´ 4Ate´t = 2e´t .

By expanding the derivatives, we find that ´5A = 2 which implies that A = ´
2

5
. Therefore, a

particular solution is given by Y (t) = ´
2

5
te´t.

How about if we forget what s is? - By trial and error! Starting from s = 0. If a particular of
the form with s = 0 cannot be found, then try s = 1, and so on.

Example 4.20. Find a particular solution of y 11 ´ 4y 1 + 5y = ´2e2t sin t.
We first look for a particular solution of the form Y (t) = Ae2t cos t+Be2t sin t, and find that this

leads to that 0 = e2t sin t which is impossible. Therefore, we look for a particular solution of the form
Y (t) = t(Ae2t cos t+Be2t sin t). Note that

(te2t cos t) 11 (te2t sin t) 11 (te2t cos t) 1 (te2t sin t) 1 te2t cos t te2t sin t
te2t cos t 3 4 2 1 1 0

te2t sin t ´4 3 ´1 2 0 1

e2t cos t 4 2 1 0 0 0

e2t sin t ´2 4 0 1 0 0

thus by assuming this form of particular solutions we find that

3A+ 4B ´ 8A ´ 4B + 5A = 0 ,

´4A+ 3B + 4A ´ 8B + 5B = 0 ,

4A+ 2B ´ 4A = 0 ,

´2A+ 4B ´ 4B = ´2 .

Therefore, (A,B) = (1, 0), and a particular solution is Y (t) = tet cos t.

If the forcing g is the sum of functions of different types, the construction of a particular solution
relies on the following

Theorem 4.21. If y = φj(t) is a particular solution to the ODE

y 11 + p(t)y 1 + q(t)y = gj(t)

for all j = 1, ¨ ¨ ¨n, then the function y =
n
ř

j=1

φj(t) is a particular to the ODE

y 11 + p(t)y 1 + q(t)y = g(t) ”

n
ÿ

j=1

gj(t) .

Example 4.22. Find a particular solution of y 11 ´ 3y 1 ´ 4y = 3e2t ´ 8et cos 2t+ 2e´t.
By Example 4.16, 4.18 and 4.19, a particular solution to the ODE above is

Y (t) = ´
1

2
e2t +

10

13
et cos 2t+ 2

13
et sin 2t ´

2

5
te´t .



4.6 Repeated Roots; Reduction of Order

In Section 4.2 we have discussed the case that the characteristic equation of the homogeneous equation
with constant coefficients

y 11 + by 1 + cy = 0 (4.9)

has one double root. We recall that in such case b2 = 4c, and φ1(t) = exp
(´bt

2

)
, φ2(t) = t exp

(´bt

2

)
together form a fundamental set of (4.9).

Suppose that we are given a solution φ1(t). Since (4.9) is a second order equation, there should
be two linearly independent solutions. One way of finding another solution, using information that
φ1 provides, is the variation of constant: suppose another solution is given by φ2(t) = v(t)φ1(t).
Then

v 11φ1 + 2v 1φ 1
1 + vφ 11

1 + b
(
v 1φ1 + vφ 1

1

)
+ cvφ1 = 0 .

Since y = φ1(t) verifies (4.9), we find that

v 11φ1 + 2v 1φ 1
1 + bv 1φ1 = 0 ;

thus using φ1(t) = exp
(´bt

2

)
we obtain v 11φ1 = 0. Since φ1 never vanishes, v 11(t) = 0 for all t.

Therefore, v(t) = C1t+ C2 for some constant C1 and C2. Therefore, another solution to (4.9), when

b2 = 4c, is φ2(t) = t exp
(´bt

2

)
.

The idea of the variation of constant can be generalize to homogeneous equations with variable
coefficients. Suppose that we have found a solution y = φ1(t) to the second order homogeneous
equation

y 11 + p(t)y 1 + q(t)y = 0 . (4.16)

Assume that another solution is given by y = v(t)φ1(t). Then v satisfies

v 11φ1 + 2v 1φ 1
1 + vφ 11

1 + p(v 1φ1 + vφ 1
1) + qvφ1 = 0 .

By the fact that φ1 solves (4.16), we find that v satisfies

v 11φ1 + 2v 1φ 1
1 + pv 1φ1 = 0 or equivalently, v 11φ1 + v 1(2φ 1

1 + pφ1) = 0 . (4.17)

The equation above can be solved (for v1) using the method of integrating factor, and is essentially
a first order equation.

Let P be an anti-derivative of p. If φ1(t) ‰ 0 for all t P I, then (4.17) implies that(
φ2
1(t)e

P (t)v 1(t)
)1
= 0 ñ φ2

1(t)e
P (t)v 1(t) = C ñ φ2

1(t)v
1(t) = Ce´P (t) @ t P I .

As a consequence,

W [φ1, φ2](t) =

ˇ

ˇ

ˇ

ˇ

φ1(t) v(t)φ1(t)

φ 1
1(t) v 1(t)φ1(t) + v(t)φ 1

1(t)

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

φ1(t) 0

φ 1
1(t) v 1(t)φ1(t)

ˇ

ˇ

ˇ

ˇ

= φ2
1(t)v

1(t) = Ce´P (t) ‰ 0

which implies that tφ1, vφ1u is indeed a fundamental set of (4.16).



Example 4.23. Given that y = φ1(t) =
1

t
is a solution of

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 , (4.18)

find a fundamental set of the equation.
Suppose another solution is given by y = v(t)φ1(t) = v(t)/t. Then (4.17) implies that v satisfies

v 11(t)
1

t
+ v 1(´

2

t2
+

3

2t

1

t
) = 0 .

Therefore, v 11 =
v 1

2t
; thus v1(t) = C1

?
t which further implies that v(t) = 2

3
C1t

3
2 +C2. Therefore, one

solution to (4.18) is
y =

2

3
C1

?
t+ C2

1

t

which also implies that y = φ2(t) =
?
t is a solution to (4.18). Note that the Wronskian

W [φ1, φ2](t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

t

?
t

´
1

t2
1

2
?
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
3

2
t´

3
2 ‰ 0 for t ą 0 ; (4.19)

thus tφ1, φ2u is indeed a fundamental set of (4.18).

4.6.1 Method of Variation of Parameters

This method can be used to solve a nonhomogeneous ODE when one solution to the corresponding
homogeneous equation is known.

Consider
y 11 + p(t)y 1 + q(t)y = g(t) . (4.11)

Suppose that we are given one solution y = φ1(t) to the corresponding homogeneous euqation

y 11 + p(t)y 1 + q(t)y = 0 . (4.12)

Using the procedure in Section 4.6, we can find another solution y = φ2(t) to (4.12) so that tφ1, φ2u

forms a fundamental set of (4.12). Our goal next is to obtain a particular solution to (4.11).
Suppose a particular solution y = Y (t) can be written as the product of two functions u and φ1;

that is, Y (t) = u(t)φ1(t). Then similar computations as in Section 4.6 show that

u 11φ1 + u 1(2φ 1
1 + pφ1) = g ñ (φ2

1e
Pu 1)1 = φ1e

Pg ,

where P is an anti-derivative of p. Therefore,

φ2
1(t)e

P (t)u 1(t) =

ż

φ1(t)e
P (t)g(t) dt ,

and further computations yield that

u(t) =

ż

ż

φ1(t)e
P (t)g(t) dt

φ2
1(t)e

P (t)
dt .



Therefore, a particular solution is of the form

Y (t) = φ1(t)

ż

ż

φ1(t)e
P (t)g(t) dt

φ2
1(t)e

P (t)
dt . (4.20)

Example 4.24. As in Example 4.23, let y = φ1(t) =
1

t
be a given solution to

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 , (4.18)

Suppose that we are looking for solutions to

2t2y 11 + 3ty 1 ´ y = 2t2 for t ą 0 . (4.21)

Using (4.20) (noting that in this case g(t) = 1), we know that a particular solution is given by

Y (t) =
1

t

ż

ż

t´1e3/2 log tdt

t´2e3/2 log t
dt =

1

t

ż (
t
1
2

ż

t
1
2dt

)
dt =

2

9
t2 .

Therefore, combining with the fact that φ2(t) =
?
t is a solution to (4.18), we find that a general

solution to (4.21) is given by
y =

C1

t
+ C2

?
t+

2

9
t2 .

Let tφ1, φ2u be a fundamental set of (4.12) (here φ2 is either given or obtained using the procedure
in previous section), we can also look for a particular solution to (4.11) of the form

Y (t) = c1(t)φ1(t) + c2(t)φ2(t) .

Plugging such Y in (4.11)), we find that

c 11
1φ1 + c 1

1(2φ
1
1 + pφ1) + c 11

2φ2 + c 1
2(2φ

1
2 + pφ2) = g . (4.22)

Since we increase the degree of freedom (by adding another function c2), we can impose an additional
constraint. Assume that the additional constraint is

c 1
1φ1 + c 1

2φ2 = 0 . (4.23)

Then c 11
1φ1 + c 11

2φ2 = ´c 1
1φ

1
1 ´ c 1

2φ
1
2; thus (4.22) reduces to

c 1
1φ

1
1 + c 1

2φ
1
2 = g . (4.24)

Solving (4.23) and (4.24), we find that

c 1
1 =

´gφ2

W [φ1, φ2]
and c 1

2 =
gφ1

W [φ1, φ2]
.

The discussion above establishes the following



Theorem 4.25. If the function p, q and g are continuous in an open interval I, and tφ1, φ2u be a
fundamental set of the ODE (4.12). Then a particular solution to (4.11) is

Y (t) = ´φ1(t)

ż t

t0

g(s)φ2(s)

W [φ1, φ2](s)
ds+ φ2(t)

ż t

t0

g(s)φ1(s)

W [φ1, φ2](s)
ds , (4.25)

where t0 P I can be arbitrarily chosen, and the general solution to (4.11) is

y = C1φ1(t) + C2φ2(t) + Y (t) .

Example 4.26. Given two solutions φ1(t) =
1

t
and φ2(t) =

?
t to the ODE

2t2y 11 + 3ty 1 ´ y = 0 for t ą 0 . (4.18)

To solve
2t2y 11 + 3ty 1 ´ y = 2t2 for t ą 0 , (4.21)

we use (4.25) and (4.19) to obtain that a particular solution to (4.21) is given by

Y (t) = ´
1

t

ż

?
t

3
2
t´3/2

dt+
?
t

ż

t´1

3
2
t´3/2

dt =
2

9
t2 .

Therefore, a general solution to (4.21) is given by

y =
C1

t
+ C2

?
t+

2

9
t2 .

4.7 Mechanical Vibrations

We have been discussing the motion of an object attached to a spring without external force in
Example 4.13. Now we explain what if there are presence of external forcings. We consider

mẍ = ´kx ´ rẋ+ g(t) , (4.26)

where m, k, r are positive constants. We remark that the term ´rẋ is sometimes called a damping
or resistive force, and r is called the damping coefficient.

1. Undamped Free Vibrations: This case refers to that g ” 0 and r = 0. The solution to
(4.26) is then

x(t) = C1 cosω0t+ C2 sinωt = R cos(ω0t ´ ϕ) ,

where R =
a

C2
1 + C2

2 is called the amplitude, ω0 =

c

k

m
is called the natural frequency

and ϕ = arctan C2

C1
is called the phase angle. The period of this vibration is T =

2π

ω0
.

2. Dampled Free Vibrations: This case refers to that g ” 0 and r ą 0. The solution to (4.26)
is then

x(t) = C1e
´ rt

2m cosµt+ C2e
´ rt

2m sinµt = Re´ rt
2m cos(µt ´ ϕ) ,



where R =
a

C2
1 + C2

2 , µ =

?
4km ´ r2

2m
, and ϕ = arctan C2

C1
. Here µ is called the quasi

frequency, and we note that

µ

ω0

=
(
1 ´

r2

4km

) 1
2

« 1 ´
r2

8km
,

where the last approximation holds if r2

4km
! 1. The period of this vibration 2π

µ
is called the

quasi period.

(a) Critical damped: In this case, r2 = 4km.

(b) Overdamped: This case refers to that r2 ą 4km, and in this case the attached object
pass the equilibrium at most once and does not oscillate about equilibrium.

3. Forced Vibrations with Damping: We only consider

mẍ+ rẋ+ kx = F0 cosωt (4.27)

for some non-zero r, F0 and ω. Let tφ1, φ2u be a fundamental set of the corresponding ho-
mogeneous equation of (4.27). From the discussion above, φ1 and φ2 both decay to zero (die
out) as t Ñ 8. Using what we learn from the method of undetermined coefficients, the general
solution to (4.27) is

x = C1φ1(t) + C2φ2(t)
loooooooooomoooooooooon

”xc(t)

+A cosωt+B sinωt
loooooooooomoooooooooon

”X(t)

,

where C1 and C2 are chosen to satisfy the initial condition, and A and B are some constants so
that X(t) = A cosωt + B sinωt is a particular solution to (4.27). The part xc(t) is called the
transient solution and it decays to zero (die out) as t Ñ 8; thus as t Ñ 8, one sees that
only a steady oscillation with the same frequency as the external force remains in the motion.
x = X(t) is called the steady state solution or the forced response.

Since x = X(t) is a particular solution to (4.27), (A,B) satisfies

(k ´ ω2m)A+ rωB = F0 ,

´rωA+ (k ´ ω2m)B = 0 ;

thus with ω0 denoting the natural frequency; that is, ω0 =
k

m
, we have

(A,B) =
(

F0m(ω2
0 ´ ω2)

m2(ω2
0 ´ ω2)2 + r2ω2

,
F0rω

m2(ω2
0 ´ ω2)2 + r2ω2

)
.

Let α =
ω

ω0
, and Γ =

r2

mk
. Then

(A,B) =
F0

k

( 1 ´ α2

(1 ´ α2)2 + Γα2
,

?
Γα

(1 ´ α2)2 + Γα2

)
;



thus
X(t) = R cos(ωt ´ ϕ) ,

where with ∆ denoting the number
a

(1 ´ α2)2 + Γα2, we have

R =
?
A2 +B2 =

F0

k∆
and ϕ = arccos 1 ´ α2

∆
.

Then if α ! 1, R «
F0

k
and ϕ « 0, while if α " 1, R ! 1 and ϕ « π.

In the intermediate region, some α, called αmax, maximize the amplitude R. Then αmax

minimize (1 ´ α2)2 + Γα2 which implies that αmax satisfies

α2
max = 1 ´

Γ

2

and, when Γ ă 1, the corresponding maximum amplitude Rmax is

Rmax =
F0

k

1
?
Γ
a

1 ´ Γ/4
«

F0

k
?
Γ

(
1 +

Γ

8

)
,

where the last approximation holds if Γ ! 1. If Γ ą 2, the maximum of R occurs at α = 0 (and
the maximum amplitude is Rmax =

F0

k
).

For lightly damped system; that is, r ! 1 (which implies that Γ ! 1), the maximum am-

plitude Rmax is closed to a very large number F0

k
?
Γ

. In this case αmax « 1, and this implies

that the frequency ωmax, where the maximum of R occurs, is very close to ω0. We call such a
phenomena (that Rmax " 1 when ω « ω0) resonance. In such a case, αmax « 1; thus ϕ =

π

2
which means the response occur π

2
later than the peaks of the excitation.

4. Forced Vibrations without Damping:

(a) When r = 0, if ω ‰ ω0, then general solution to (4.27) is

x = C1 cosω0t+ C2 sinω0t+
F0

m(ω2
0 ´ ω2)

cosωt ,

where C1 and C2 depends on the initial data. We are interested in the case that x(0) =
x 1(0) = 0. In this case,

C1 = ´
F0

m(ω2
0 ´ ω2)

and C2 = 0 ,

so the solution to (4.27) (with initial condition x(0) = x 1(0) = 0) is

x =
F0

m(ω2
0 ´ ω2)

(
cosωt ´ cosω0t

)
=

2F0

m(ω2
0 ´ ω2)

sin ω0 ´ ω

2
t sin ω0 + ω

2
t .

When ω « ω0, R =
2F0

m(ω2
0 ´ ω2)

sin ω0 ´ ω

2
t presents a slowly varying sinusoidal amplitude.

This type of motion, possessing a periodic variation of amplitude, is called a beat.
(b) When r = 0 and ω = ω0, the general solution to (4.27) is

x = C1 cosω0t+ C2 sinω0t+
F0

2mω0

t sinω0t .



5 Theory of Higher Order Linear Differential Equations
5.1 Basic Theory of Linear Differential Equations

An n-th order linear ordinary differential equations is an equation of the form

Pn(t)
dny

dtn
+ Pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + P1

dy

dt
+ P0(t)y = G(t) ,

where Pn is never zero in the time interval of interest. Divide both sides by Pn(t), we obtain

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = g(t) . (5.1)

Suppose that pj ” 0 for all 0 ď j ď n ´ 1. Then to determine y, it requires n times integration and
each integration produce an arbitrary constant. Therefore, we expect that to determine the solution
y to (5.1) uniquely, it requires n initial conditions

y(t0) = y0, y 1(t0) = y1, ¨ ¨ ¨ , y(n´1)(t0) = yn´1 , (5.2)

where t0 is some point in an open interval I, and y0, y1, ¨ ¨ ¨ , yn´1 are some given constants.

Definition 5.1. Equation (5.1) is called homogeneous if g ” 0.

Similar to Theorem 4.1, we have the following

Theorem 5.2. If the functions p0, ¨ ¨ ¨ , pn´1 and g are continuous on an open interval I, then there
exists exactly one solution y = φ(t) of the differential equation (5.1) with initial condition (5.2),
where t0 is any point in I. This solution exists throughout the interval I.

Definition 5.3. Let tφ1, ¨ ¨ ¨ , φnu be a collection of n differentiable functions defined on an open
interval I. The Wronskian of φ1, φ2, ¨ ¨ ¨ , φn at t0 P I, denoted by W [φ1, ¨ ¨ ¨ , φn](t0), is the number

W [φ1, ¨ ¨ ¨ , φn](t0) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1(t0) φ2(t0) ¨ ¨ ¨ φn(t0)

φ 1
1(t0) φ 1

2(t0) ¨ ¨ ¨ φ 1
n(t0)

... ... . . . ...
φ
(n´1)
1 (t0) φ

(n´1)
2 (t0) ¨ ¨ ¨ φ

(n´1)
n (t0)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

The following theorem can be viewed as a generalization of Theorem 4.7.

Theorem 5.4. Let y = φ1(t), y = φ2(t), ¨ ¨ ¨ , y = φn(t) be solutions to the homogeneous equation

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = 0 . (5.3)

Then the Wronskian of φ1, φ2, ¨ ¨ ¨ , φn satisfies

d

dt
W [φ1, ¨ ¨ ¨ , φn](t) + pn´1(t)W [φ1, ¨ ¨ ¨ , φn](t) = 0 .



Proof. By the differentiation of the determinant, we find that

d

dt
W [φ1, ¨ ¨ ¨ , φn] =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2(t0) ¨ ¨ ¨ φ 1
n

... ... ...
φ
(n´2)
1 φ

(n´2)
2 ¨ ¨ ¨ φ

(n´2)
n

φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2(t0) ¨ ¨ ¨ φ 1
n

... ... ...
φ
(n´2)
1 φ

(n´2)
2 ¨ ¨ ¨ φ

(n´2)
n

´pn´1φ
(n´1)
1 ´ ¨ ¨ ¨ ´ p0φ1 ´pn´1φ

(n´1)
2 ´ ¨ ¨ ¨ ´ p0φ2 ¨ ¨ ¨ ´pn´1φ

(n´1)
n ´ ¨ ¨ ¨ ´ p0φn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´pn´1W [φ1, ¨ ¨ ¨ , φn] . ˝

Theorem 5.5. Suppose that the functions p0, ¨ ¨ ¨ , pn´1 are continuous on an open interval I. If
y = φ1(t), y = φ2(t), ¨ ¨ ¨ , y = φn(t) are solutions to the homogeneous equation (5.3) and the
Wronskian W [φ1, ¨ ¨ ¨ , φn](t) ‰ 0 for at least one point t P I, then every solution of (5.3) can be
expressed as a linear combination of φ1, ¨ ¨ ¨ , φn.

Proof. Let y = φ(t) be a solution to (5.3), and suppose that W [φ1, ¨ ¨ ¨ , φn](t0) ‰ 0. Define
(y0, y1, ¨ ¨ ¨ , yn´1) =

(
φ(t0), φ

1(t0), ¨ ¨ ¨ , φ(n´1)(t0)
)
, and let C1, ¨ ¨ ¨ , Cn P R be the solution to

φ1(t0) φ2(t0) ¨ ¨ ¨ φn(t0)

φ 1
1(t0) φ 1

2(t0) ¨ ¨ ¨ φ 1
n(t0)

... ... . . . ...
φ
(n´1)
1 (t0) φ

(n´1)
2 (t0) ¨ ¨ ¨ φ

(n´1)
n (t0)



C1

C2

...
Cn

 =


y0

y1
...

yn´1

 .

We note that the system above has a unique solution since W [φ1, ¨ ¨ ¨ , φn](t0) ‰ 0.
Claim: φ(t) = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t).
Proof of Claim: Note that y = φ(t) and y = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t) are both solutions to (5.3)
satisfying the same initial condition. Therefore, by Theorem 5.2 the solution is unique, so the claim
is concluded. ˝

Definition 5.6. A collection of solutions tφ1, ¨ ¨ ¨ , φnu to (5.3) is called a fundamental set of equation
(5.3) if W [φ1, ¨ ¨ ¨ , φn](t) ‰ 0 for some t in the interval of interest.

5.1.1 Linear Independence of Functions

Recall that in a vector space (V ,+, ¨) over scalar field F, a collection of vectors tv1, ¨ ¨ ¨ , vnu is called
linearly dependent if there exist constants c1, ¨ ¨ ¨ , cn in F such that

n
ś

i=1

ci ” c1 ¨ c2 ¨ ¨ ¨ ¨ ¨ cn´1 ¨ cn ‰ 0

and
c1 ¨ v1 + ¨ ¨ ¨ + cn ¨ vn = 0 .



If no such c1, ¨ ¨ ¨ , cn exists, tv1, ¨ ¨ ¨ , vnu is called linearly independent. In other words, tv1, ¨ ¨ ¨ , vnu Ď

V is linearly independent if and only if

c1 ¨ v1 + ¨ ¨ ¨ + cn ¨ vn = 0 ô c1 = c2 = ¨ ¨ ¨ = cn = 0 .

Now let V denote the collection of all (n ´ 1)-times differentiable functions defined on an open
interval I. Then (V ,+, ¨) clearly is a vector space over R. Given tf1, ¨ ¨ ¨ , fnu Ď V , we would like to
determine the linear dependence or independence of the n-functions tf1, ¨ ¨ ¨ , fnu. Suppose that

c1f1(t) + ¨ ¨ ¨ + cnfn(t) = 0 @ t P I .

Since each fj are (n ´ 1)-times differentiable, we have for 1 ď k ď n ´ 1,

c1f
(k)
1 (t) + ¨ ¨ ¨ + cnf

(k)
n (t) = 0 @ t P I .

In other words, c1, ¨ ¨ ¨ , cn satisfy
f1(t) f2(t) ¨ ¨ ¨ fn(t)
f 1
1(t) f 1

2(t) ¨ ¨ ¨ f 1
n(t)

... ...
f
(n´1)
1 (t) f

(n´1)
2 (t) ¨ ¨ ¨ f

(n´1)
n (t)



c1
c2
...
cn

 =


0
0
...
0

 @ t P I .

If there exists t0 P I such that the matrix


f1(t0) f2(t0) ¨ ¨ ¨ fn(t0)
f 1
1(t0) f 1

2(t0) ¨ ¨ ¨ f 1
n(t0)

... ...
f
(n´1)
1 (t0) f

(n´1)
2 (t0) ¨ ¨ ¨ f

(n´1)
n (t0)

 is non-singular,

then c1 = c2 = ¨ ¨ ¨ = cn = 0. Therefore, a collection of solutions tφ1, ¨ ¨ ¨ , φnu is a fundamental set of
equation (5.3) if and only if tφ1, ¨ ¨ ¨ , φnu is linearly independent.

5.1.2 The Homogeneous Equations - Reduction of Orders

Suppose that y = φ1(t) is a solution to (5.3). Now we look for a function v such that y = v(t)φ1(t) is
also a solution to (5.3). The derivative of this v satisfies an (n ´ 1)-th order homogeneous ordinary
differential equation.

Example 5.7. Suppose that we are given y = φ1(t) = et as a solution to

(2 ´ t)y 12 + (2t ´ 3)y 11 ´ ty 1 + y = 0 for t ă 2 . (5.4)

Suppose that y = v(t)et is also a solution to (5.4). Then

(2 ´ t)(v 12et + 3v 11et + 3v 1et + vet) + (2t ´ 3)(v 11et + 2v 1et + vet) ´ t(v 1et + vet) + vet = 0

which implies that v satisfies

(2 ´ t)v 12 +
[
3(2 ´ t) + (2t ´ 3)

]
v 11 +

[
3(2 ´ t) + 2(2t ´ 3) ´ t

]
v 1 = 0



or equivalently, with u denoting v 11,

(2 ´ t)u 1 + (3 ´ t)u = 0 .

Solving the ODE above, we find that u(t) = C1(2 ´ t)e´t for some constant C1; thus

v(t) = C3 + C2t+ C1e
´t ´ C1(t+ 1)e´t = C3 + C2t ´ C1te

´t .

Therefore, a fundamental set of (5.4) is tet, tet, tu.

Example 5.8. Suppose that we are given y = φ1(t) = t2 as a solution to

t2(t+ 3)y 12 ´ 3t(t+ 2)y 11 + 6(1 + t)y 1 ´ 6y = 0 for t ą 0 . (5.5)

Suppose that y = v(t)t2 is also a solution to the ODE above. Then

t2(t+ 3)(v 12t2 + 6v 11t+ 6v 1) ´ 3t(t+ 2)(v 11t2 + 4v 1t+ 2v) + 6(1 + t)(v 1t2 + 2vt) ´ 6vt2 = 0

which implies that v satisfies

t4(t+ 3)v 12 +
[
6t3(t+ 3) ´ 3t3(t+ 2)

]
v 11 +

[
6t2(t+ 3) ´ 12t2(t+ 2) + 6t2(1 + t)

]
v 1 = 0

or equivalently, with u denoting v 11,

t(t+ 3)u 1 + 3(t+ 4)u = 0 .

Solving the ODE above, we find that u(t) = C1t
´4(t+ 3) for some constant C1; thus

v(t) =
C1

2
(t´2 + t´1) + C2t+ C3

for some constants C2 and C2. Therefore, the general solution to (5.5) is given by y(t) = C1(1 + t) +

C2t
3 + C3t

2 which implies that tt2, t3, 1 + tu is a fundamental set of the ODE.

5.1.3 The Nonhomogeneous Equations

Let y = Y1(t) and y = Y2(t) be solutions to (5.1). Then y = Y1(t) ´ Y2(t) is a solution to the
homogeneous equation (5.3); thus if tφ1, ¨ ¨ ¨ , φnu is a fundamental set of (5.3), then

Y1(t) ´ Y2(t) = C1φ1(t) + ¨ ¨ ¨ + Cnφn(t) .

Therefore, we establish the following theorem which is similar to Theorem 4.15.

Theorem 5.9. The general solution of the nonhomogeneous equation (5.1) can be written in the
form

y = φ(t) = C1φ1(t) + C2φ2(t) + ¨ ¨ ¨ + Cnφn(t) + Y (t) ,

where tφ1, ¨ ¨ ¨ , φnu is a fundamental set of (5.3), C1, ¨ ¨ ¨ , Cn are arbitrary constants, and y = Y (t)

is a particular solution of the nonhomogeneous equation (5.1).

In general, in order to solve (5.1), we follow the procedure listed below:

1. Find the space of complementary solution to (5.3); that is, find the general solution y =

C1φ1(t) + C2φ2(t) + ¨ ¨ ¨ + Cnφn of the homogeneous equation (5.3).

2. Find a particular solution y = Y (t) of the nonhomogeneous equation (5.1).

3. Apply Theorem 5.9.



5.2 Homogeneous Linear Equations with Constant Coefficients

We now consider the n-th order linear homogeneous ODE with constant coefficients

L[y] = y(n) + an´1y
(n´1) + ¨ ¨ ¨ + a1y

1 + a0y = 0 , (5.6)

where aj’s are constants for all j P t0, 1, ¨ ¨ ¨ , n ´ 1u. Suppose that r1, r2, ¨ ¨ ¨ , rn are solutions to the
characteristic equation of (5.6)

rn + an´1r
n´1 + ¨ ¨ ¨ + a1r + a0 = 0 .

Then (5.6) can be written as ( d
dt

´ r1

)( d
dt

´ r2

)
¨ ¨ ¨

( d
dt

´ rn

)
y = 0

1. If the characteristic equation of (5.6) has distinct roots, then

y(t) = C1e
r1t + C2e

r2t + ¨ ¨ ¨ + Cne
rnt . (5.7)

Reason: Let z1 =
( d

dt
´ r2

)
¨ ¨ ¨

( d

dt
´ rn

)
y. Then z 1

1 ´ r1z1 = 0; thus z1(t) = c1e
r1t.

Let z2 =
( d

dt
´ r3

)
¨ ¨ ¨

( d

dt
´ rn

)
y. Then z 1

2 ´ r2z2 = c1z1; thus using the method of integrating
factors, we find that

d

dt

(
e´r2tz2

)
= c1e

(r1´r2)t ñ z2(t) =
c1

r1 ´ r2
er1t + c2e

r2t . (5.8)

Repeating the process, we conclude (5.7).

How about if there are complex roots? Suppose that r1 = a + bi and r2 = a ´ bi, then
the Euler identity implies that, by choosing complex c1 and c2 in (5.8), we find that

z2(t) = c1e
at cos bt+ c2e

at sin bt

for some constants c1 and c2. Therefore, suppose that we have complex roots ak ˘ bki for
k = 1, ¨ ¨ ¨ , ℓ and real roots r2ℓ+1, ¨ ¨ ¨ , rn. Then the general solution to (5.7) is

y(t) = C1e
a1t cos b1t+ C2e

a1t sin b1t+ ¨ ¨ ¨ + C2ℓ´1e
aℓt cos bℓt+ C2ℓe

aℓt sin bℓt
+ C2ℓ+1e

r2ℓ+1t + ¨ ¨ ¨ + Cne
rnt .

2. If the characteristic equation of (5.6) has repeated roots, we group the roots in such a way that
r1 = r2 = ¨ ¨ ¨ = rℓ and so on; that is, repeated roots appear in a successive order. Then the
implication in (5.8) is modified to

d

dt

(
e´r2tz2

)
= c1e

(r1´r2)t = c1 ñ z2(t) = (c1t+ c2)e
r1t .



(a) Suppose that r3 = r2 = r1 = r. Letting z3 =
( d

dt
´ r4

)
¨ ¨ ¨

( d

dt
´ rn

)
y, we find that

z 1
3 ´ rz3 = (c1t+ c2)e

rt ;

thus the method of integrating factor implies that

d

dt

(
e´rtz3

)
= c1t+ c2 ñ z3(t) =

(c1
2
t2 + c2t+ c3)e

rt .

(b) Suppose that r1 = r2 = r and r3 ‰ r2. Letting z3 =
( d

dt
´ r4

)
¨ ¨ ¨

( d

dt
´ rn

)
y, we find that

z 1
3 ´ r3z3 = (c1t+ c2)e

rt ;

thus the method of integrating factor implies that

d

dt

(
e´r3tz3

)
= (c1t+ c2)e

(r´r3)t ñ z3(t) =
(
rc1t+ rc2)e

rt + c3e
r3t .

From the discussion above, we “conjecture” that if rj’s are roots of the characteristic equation of
(5.6) with multiplicity nj (so that n1 + ¨ ¨ ¨ + nk = n), then the general solution to (5.6) is

y(t) =
k
ÿ

j=1

pj(t)e
rjt ,

where pj(t)’s are some polynomials of degree nj ´ 1. Note that in each pj there are nj constants to
be determined by the initial conditions.

If there are repeated complex roots, say r1 = a+ bi and r2 = a´ bi with n1 = n2. Then p1 and p2
are polynomials of degree n1; thus by adjusting constants in the polynomials properly, we find that

p1(t)e
r1t + p2(t)e

r2t = rp1(t)e
at cos bt+ rp2(t)e

at sin bt .

In other words, if rj are real roots of the characteristic equation of (5.6) with multiplicity nj and
ak ˘ ibk are complex roots of the characteristic equation of (5.6) with multiplicity mk (so that
ř

j

nj +
ř

k

2mk = n), then the general solution to (5.6) is

y(t) =
ÿ

j

pj(t)e
rjt +

ÿ

k

eakt
(
q1k(t) cos bkt+ q2k(t) sin bkt

)
,

where pj(t)’s are some polynomials of degree nj ´1 and q1k, q2k’s are some polynomials of degree mk´1.

Example 5.10. Find the general solution of

y(4) + y 12 ´ 7y 11 ´ y 1 + 6y = 0 .

The roots of the characteristic equation is r = ˘1, r = 2 and r = ´3; thus the general solution to
the ODE above is

y = C1e
t + C2e

´t + C3e
2t + C4e

´3t .



If we are looking for a solution to the ODE above satisfying the initial conditions y(0) = 1, y 1(0) = 0,
y 11(0) = ´1 and y 12(0) = ´1, then C1, C2, C3, C4 have to satisfy

1 1 1 1
1 ´1 2 ´3
1 1 4 9
1 ´1 8 ´27



C1

C2

C3

C4

 =


1
0

´1
´1

 .

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

y =
11

8
et +

5

12
e´t ´

2

3
e2t ´

1

8
e´3t .

Example 5.11. Find the general solution of

y(4) ´ y = 0 .

Also find the solution that satisfies the initial condition

y(0) =
7

2
, y 1(0) = ´4 , y 11(0) =

5

2
, y 12(0) = ´2 .

The roots of the characteristic equation are r = ˘1 and r = ˘i. Therefore, the general solution
to the ODE above is

y = C1e
t + C2e

´t + C3 cos t+ C4 sin t .

To satisfy the initial condition, C1, ¨ ¨ ¨ , C4 has to satisfy


1 1 1 0
1 ´1 0 1
1 1 ´1 0
1 ´1 0 ´1



C1

C2

C3

C4

 =


7

2
´4
5

2
´2

 .

Solving the linear system above, we find that the solution solving the ODE with the given initial
data is

y = 3e´t +
1

2
cos t ´ sin t .

Example 5.12. Find the general solution of y(4) + y = 0 .

The roots of the characteristic equation are r = ˘
(?

2

2
˘

?
2

2
i
)
. Therefore, the general solution

to the ODE above is

y = exp
(?

2

2
t
)(
C1 cos

?
2

2
t+ C2 sin

?
2

2
t
)
+ exp

(
´

?
2

2
t
)(
C2 cos

?
2

2
t+ C4 sin

?
2

2
t
)
.

5.3 Undetermined coefficients and the Annihilator Method

Definition 5.13. A linear differential operator L is a linear map sending smooth (meaning infinitely
many times differentiable) function y to a function L[y] given by

L[y](t) = pn(t)
dny

dtn
(t) + pn´1(t)

dn´1y

dtn´1
(t) + ¨ ¨ ¨ + p1(t)

dy

dt
(t) + p0(t)y(t)



for some coefficient functions p0, p1, ¨ ¨ ¨ , pn, where n is called the order of L if pn ‰ 0. In this case,
L is usually expressed as

L = pn(t)
dn

dtn
+ pn´1(t)

dn´1

dtn´1
+ ¨ ¨ ¨ + p1(t)

d

dt
+ p0(t) .

A linear differential operator L is said to annihilate a function y if L[y] = 0.

Theorem 5.14. Let L1 and L2 be two differential operators with constant coefficients. Then L1, L2

commute; that is L1L2 = L2L1 or equivalently, for any smooth function y,

L1

[
L2[y]

]
= L2

[
L1[y]

]
.

Example 5.15. Find a differentiable operator that annihilates y(t) = 6te´4t + 5et sin 2t.

Note that L1 =
d2

dt2
+ 8

d

dt
+ 16 annihilates the function ϕ1(t) = te´4t and L2 =

d2

dt2
´ 2

d

dt
+ 5

annihilates the function ϕ2(t) = et sin 2t. Let L = L1L2; that is, for a given function ϕ, L[ϕ] =
L1

[
L2[ϕ]

]
. Then L = L2L1 and

L[ϕ1] = L2

[
L1[ϕ1]

]
= L2[0] = 0 and L[ϕ2] = L1

[
L2[ϕ2]

]
= L1[0] = 0 .

Therefore, the differential operator

L = L1L2 =
(
d2

dt2
+ 8

d

dt
+ 16

)(
d2

dt2
´ 2

d

dt
+ 5

)
=

d4

dt4
+ 6

d3

dt3
+ 5

d2

dt2
+ 8

d

dt
+ 80

annihilates y.

5.3.1 Method of annihilator

Example 5.16. Find a general solution to

y 11 ´ y = tet + sin t . (5.9)

As in the previous example, we find that( d2
dt2

´ 2
d

dt
+ 1

)( d2
dt2

+ 1
)
=

d4

dt4
´ 2

d3

dt3
+ 2

d2

dt2
´ 2

d

dt
+ 1

is an annihilator of the function ϕ(t) = tet + sin t. Therefore,( d4
dt4

´ 2
d3

dt3
+ 2

d2

dt2
´ 2

d

dt
+ 1

)( d2
dt2

´ 1
)
y = 0

which implies that y is of the form

y(t) =
(
C1t

2 + C2t+ C3)e
t + C4e

´t + C5 cos t+ C6 sin t (5.10)

since the characteristic equation has roots

λ = 1 (triple roots),´1,˘i .



Substituting (5.10) into (5.9), we find that

y 11 ´ y = 2C1e
t + 2(2C1t+ C2)e

t ´ 2C5 cos t ´ 2C6 sin t = tet + sin t ;

thus C1 =
1

4
, C2 = ´

1

4
, C5 = 0 and C6 = ´

1

2
. Therefore, the general solution to (5.9) is

y(t) =
1

4
(t2 ´ t)et ´

1

2
sin t+ Aet +Be´t .

Example 5.17. Find a general solution, using the annihilator method, to

y 12 ´ 3y 11 + 4y = te2t .

Since
(
d2

dt2
´ 4

d

dt
+4

)
annihilates the function ϕ(t) = te2t, we find that the general solution y to the

ODE above satisfies (
d2

dt2
´ 4

d

dt
+ 4

)(
d3

dt3
´ 3

d2

dt2
+ 4

)
y = 0 . (5.11)

Since the characteristic equation of (5.11) has zeros 2 (with multiplicity 4) and the general solution
y to (5.11) can be written as

y(t) = (C1t
3 + C2t

2 + C3t+ C4)e
2t + C5e

´t . (5.12)

Substituting (5.12) into (5.11), we find that

y(t) =
1

18
(t3 ´ t2)e2t + (At+B)e2t + Ce´t .

5.3.2 Method of undetermined coefficients

A particular solution to the constant-coefficient differential equation L[y] = Ctmert, where m is a
non-negative integer, has the form

yp(t) = ts
(
Amt

m + ¨ ¨ ¨ + A1t+ A0

)
ert ,

where s = 0 if r is not a root of the associated characteristic equation or s equals the multiplicity of
this root.

A particular solution to the constant-coefficient differential equation L[y] = Ctmeαt cos βt or
L[y] = Ctmeαt sin βt, where β ‰ 0, has the form

yp(t) = ts
(
Amt

m + ¨ ¨ ¨ + A1t+ A0

)
eαt cos βt+ ts

(
Bmt

m + ¨ ¨ ¨ +B1t+B0

)
eαt sin βt ,

where s = 0 if α+iβ is not a root of the associated characteristic equation or s equals the multiplicity
of this root.



5.4 Method of Variation of Parameters

To solve a non-homogeneous ODE

L[y] =
dny

dt
+ pn´1(t)

dn´1y

dtn´1
+ ¨ ¨ ¨ + p1(t)

dy

dt
+ p0(t)y = g(t) , (5.1)

often times we apply the method of variation of parameters to find a particular solution. Suppose that
tφ1, ¨ ¨ ¨ , φnu is a fundamental set of the homogeneous equation (5.3), we assume that a particular
solution can be written as

y = Y (t) = u1(t)φ1(t) + ¨ ¨ ¨ + un(t)φn(t) .

Assume that u1, ¨ ¨ ¨ , un satisfy
u 1
1φ

(j)
1 + ¨ ¨ ¨ + u 1

nφ
(j)
n = 0

for j = 0, ¨ ¨ ¨ , 1, n ´ 2. Then

Y 1 = u1φ
1
1 + ¨ ¨ ¨ + unφ

1
n ,

Y 11 = u1φ
11
1 + ¨ ¨ ¨ + unφ

11
n ,

...
Y (n´1) = u1φ

(n´1)
1 + ¨ ¨ ¨ + unφ

(n´1)
n ,

and
Y (n) = u 1

1φ
(n´1)
1 + ¨ ¨ ¨ + u 1

nφ
(n´1)
n + u1φ

(n)
1 + ¨ ¨ ¨ + unφ

(n)
n .

Since y = Y (t) is assumed to be a particular solution of (5.1), we have

u 1
1φ

(n´1)
1 + ¨ ¨ ¨ + u 1

nφ
(n´1)
n = g(t) .

Therefore, u1, ¨ ¨ ¨ , un satisfy
φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2 ¨ ¨ ¨ φ 1
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n



u 1
1

u 1
2
...
u 1
n

 =


0
...
0
g

 .

Let Wm denote the Wronskian of tφ1, ¨ ¨ ¨ , φm´1, φm+1, ¨ ¨ ¨ , φnu; that is,

Wm =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 ¨ ¨ ¨ φm´1 φm+1 ¨ ¨ ¨ φn

φ 1
1 ¨ ¨ ¨ φ 1

m´1 φ 1
m+1 ¨ ¨ ¨ φ 1

n
... ... ... ...

φ
(n´2)
i ¨ ¨ ¨ φ

(n´2)
m´1 φ

(n´2)
m+1 ¨ ¨ ¨ φ

(n´2)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Then u 1
i = (´1)n+i Wi

W [φ1, ¨ ¨ ¨ , φn]
which implies that

Y (t) =
n
ÿ

i=1

(´1)n+iφi(t)

ż t

t0

Wi(s)g(s)

W [φ1, ¨ ¨ ¨ , φn](s)
ds . (5.13)



Example 5.18. Find the general solution to

y 12 ´ y 11 ´ y 1 + y = g(t) . (5.14)

Note the the roots of the characteristic equation r3 ´ r2 ´ r+1 = 0 of the homogeneous equation

y 12 ´ y 11 ´ y 1 + y = 0 (5.15)

are r = 1 (double) and r = ´1; thus we have a fundamental set tet, tet, e´tu of equation (5.15). Let
φ1(t) = et, φ2(t) = tet and φ3(t) = e´t. Then

W [φ1, φ2, φ3](t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et tet e´t

et (t+ 1)et ´e´t

et (t+ 2)et e´t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
[
(t+ 1) + (t+ 2) ´ t ´ (t+ 1) ´ t+ (t+ 2)

]
et = 4et ,

and W1(t) = ´2t ´ 1, W2(t) = ´2 and W3(t) = e2t. Therefore, a particular solution is

Y (t) = et
ż t

0

(´2s ´ 1)

4es
g(s)ds ´ tet

ż s

0

´2

4es
g(s)ds+ e´t

ż t

0

e2s

4es
g(s)ds

=
1

4

ż t

0

[
2(t ´ s) ´ 1)et´s + es´t

]
g(s)ds ,

and the general solution to (5.14) is

y = C1e
t + C2te

t + C3e
´t + Y (t) .

Example 5.19. Recall that in Example 5.8 we have found a fundamental set tt2, t3, t + 1u to the
ODE

t2(t+ 3)y 12 ´ 3t(t+ 2)y 11 + 6(1 + t)y 1 ´ 6y = 0 for t ą 0 .

Now we consider the inhomogeneous equation

t2(t+ 3)y 12 ´ 3t(t+ 2)y 11 + 6(1 + t)y 1 ´ 6y = t2(t+ 3)2 for t ą 0 .

Let φ1(t) = t2, φ2(t) = t3 and φ3(t) = t+ 1. Then

W [φ1, φ2, φ3](t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t2 t3 1 + t
2t 3t2 1
2 6t 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= 12t2(1 + t) + 2t3 ´ 6t2(1 + t) ´ 6t3 = 2t2(t+ 3) .

and

W1(t) =

ˇ

ˇ

ˇ

ˇ

t3 1 + t
3t2 1

ˇ

ˇ

ˇ

ˇ

= ´2t3 ´ 3t2 , W2(t) =

ˇ

ˇ

ˇ

ˇ

t2 1 + t
2t 1

ˇ

ˇ

ˇ

ˇ

= ´t2 ´ 2t , W3(t) =

ˇ

ˇ

ˇ

ˇ

t2 t3

2t 3t2

ˇ

ˇ

ˇ

ˇ

= t4 .

Rewrite the initial value problem as

y 12 ´
3t(t+ 2)

t2(t+ 3)
y 11 +

6(1 + t)

t2(t+ 3)
y 1 ´

6

t2(t+ 3)
y = (t+ 3) .



Let g(t) = t+3. Using formula (5.13), we find that the general solution to the inhomogeneous ODE
is given by

y(t) = ´φ1(t)

ż

(2t3 + 3t2)g(t)

2t2(t+ 3)
dt+ φ2(t)

ż

(t2 + 2t)g(t)

2t2(t+ 3)
dt+ φ3(t)

ż

t4g(t)

2t2(t+ 3)
dt

= ´φ1(t)
(1
2
t2 +

3

2
t
)
+ φ2(t)

( t
2
+ ln t

)
+ φ3(t)

t3

6
+ C1φ1(t) + C2φ2(t) + C3φ3(t)

= C1φ1(t) + C2φ2(t) + C3φ3(t) +
1

6
t4 ´

4

3
t3 + t3 ln t .

6 The Laplace Transform
6.1 Definition of the Laplace Transform

Definition 6.1 (Integral transform). An integral transform is a relation between two functions
f and F of the form

F (s) =

ż β

α

K(s, t)f(t) dt , (6.1)

where K(¨, ¨) is a given function, called the kernel of the transformation, and the limits of integration
α, β are also given (here α, β could be 8 and in such cases the integral above is an improper integral).
The relation (6.1) transforms function f into another function F called the transformation of f .

Proposition 6.2. Every integral transform is linear; that is, for all functions f and g (defined on
(α, β)) and constant a,

ż β

α

K(s, t)
(
af(t) + g(t)

)
dt = a

ż β

α

K(s, t)f(t) dt+

ż β

α

K(s, t)g(t) dt .

Example 6.3. Let f : R Ñ R be a function such that
ż 8

´8

|f(x)| dx ă 8. The Fourier transform
of f , denoted by F (f), is defined by

F (f)(s) =
1

?
2π

ż 8

´8

e´istf(t) dt
(
= lim

α,βÑ8

ż β

´α

e´istf(t)dt
)
,

where the kernel K is a complex function (i.e., the value of K is complex). We will discuss the
Fourier transform later.

Definition 6.4 (Laplace transform). Let f : [0,8] Ñ R be a function. The Laplace transform
of f , denoted by L (f), is defined by

L (f)(s) =

ż 8

0

e´stf(t) dt
(
= lim

RÑ8

ż R

0

e´stf(t)dt
)
,

provided that the improper integral exists.

Example 6.5. Let f : [0,8) Ñ R be defined by f(t) = eat, where a P R is a constant. Since the
improper integral

ż 8

0

e(a´s)t dt = lim
RÑ8

ż R

0

e(a´s)t dt
(s‰a)
= lim

RÑ8

(
´

e(a´s)t

(s ´ a)

ˇ

ˇ

ˇ

t=R

t=0

)
= lim

RÑ8

1 ´ e(a´s)R

s ´ a



exists for s ą a, we find that
L (f)(s) =

1

s ´ a
@ s ą a .

Example 6.6. Let f : [0,8) Ñ R be given by f(t) = sin(at). Note that
ż R

0

e´st
loomoon

”u

sin(at) dt
looomooon

”dv

= ´e´st cos(at)
a

ˇ

ˇ

ˇ

t=R

t=0
+

ż R

0

(´s)e´st cos(at)
a

dt

=
1

a

(
1 ´ e´Rs cos(aR)

)
´
s

a

ż R

0

e´st cos(at) dt (6.2)

=
1

a

(
1 ´ e´Rs cos(aR)

)
´
s

a

(
e´st sin(at)

a

ˇ

ˇ

ˇ

t=R

t=0
+
s

a

ż R

0

e´st sin(at) dt
)

=
1

a

(
1 ´ e´Rs cos(aR)

)
´

s

a2
e´Rs sin(aR) ´

s2

a2

ż R

0

e´st sin(at) dt ;

thus we obtain that(
1 +

s2

a2

) ż R

0

e´st sin(at) dt = 1

a

(
1 ´ e´Rs cos(aR)

)
´

s

a2
e´Rs sin(aR) .

Therefore, the improper integral
ż 8

0

e´st sin(at) dt = lim
RÑ8

ż R

0

e´st sin(at) dt

= lim
RÑ8

[ a

s2 + a2

(
1 ´ e´Rs cos(aR)

)
´

s

s2 + a2
e´Rs sin(aR)

]
exists for all s ą 0 which implies that

L (f)(s) =
a

s2 + a2
@ s ą 0 .

Moreover, (6.2) further implies that
ż 8

0

e´st cos(at) dt = a

s

(1
a

´
a

s2 + a2

)
=

s

s2 + a2
.

Example 6.7. Let f : [0,8) Ñ R be defined by

f(t) =

$

’

&

’

%

1 if 0 ď t ă 1 ,

k if t = 1 ,

0 if t ą 1 ,

where k is a given constant. Since the improper integral
ż 8

0

e´stf(t) dt =

ż 1

0

e´stdt =
1 ´ e´s

s

exists as long as s ‰ 0, we find that

L (f)(s) =
1 ´ e´s

s
@ s ‰ 0 .

We note that the Laplace transform in this case is independent of the choice of k; thus the Laplace
transform is not one-to-one (in the classical/pointwise sense).



Example 6.8. Let f : [0,8) Ñ R be defined by

f(t) =

$

’

&

’

%

2 if 0 ă t ă t ,

0 if 5 ă t ă 10 ,

e4t if t ą 10 .

Then for R ą 10 and s ‰ 0, 4,
ż R

0

e´stf(t) dt =

ż 5

0

2e´st dt+

ż R

10

e´ste4t dt = ´
2e´st

s

ˇ

ˇ

ˇ

t=5

t=0
+
e(4´s)t

4 ´ s

ˇ

ˇ

ˇ

t=R

t=10

=
2(1 ´ e´5s)

s
+
e(4´s)R ´ e10(4´s)

4 ´ s
.

Therefore, if s ą 4, passing to the limit as R Ñ 8,

L (f)(s) = lim
RÑ8

ż R

0

e´stf(t) dt =
2(1 ´ e´5s)

s
+
e´10(s´4)

s ´ 4
.

One can verify that L (f)(s) does not exist for s ď 4. Therefore,

L (f)(s) =
2

s
´
e´5s

s
+
e´10(s´4)

s ´ 4
for s ą 4 .

Theorem 6.9 (Linearity of the Laplace transform). Let f, g : [0,8) Ñ R be functions whose Laplace
transform exist for s ą α and c be a constant. Then for s ą α,

1. L (f + g)(s) = L (f)(s) + L (g)(s). 2. L (cf)(s) = cL (f)(s).

Example 6.10. Find the Laplace transform of the function f(t) = 11 + 5e4t ´ 6 sin 2t.
By Example 6.5, 6.6 and the linearity of the Laplace transform,

L (f)(s) =
11

s
+

5

s ´ 4
´

12

s2 + 4
for s ą 4 .

6.1.1 Existence of the Laplace transform

There are functions whose Laplace transform does not exist for any s. For example, the function
f(t) = et

2 does not have Laplace transform since it grows too rapidly as t Ñ 8.

Definition 6.11. A function f : [a, b] Ñ R is said to have a jump discontinuity at t0 P (a, b) if
f is discontinuous at t0 but lim

tÑt+0

f(t) and lim
tÑt´

0

f(t) both exist. A function f is said to be piecewise

continuous on a finite interval [a, b] if f is continuous on [a, b], except possibly for a finite number
points at which f has jump discontinuities. A function f is said to be piecewise continuous on [0,8)

if f is piecewise continuous on [0, N ] for all N ą 0.

Definition 6.12. A function f is said to be of exponential order α if there exists M such that
ˇ

ˇf(t)
ˇ

ˇ ď Meαt @ t ě 0 .

Proposition 6.13. Let f : [0,8) Ñ R be a function. Suppose that



1. f is piecewise continuous on [0,8), and

2. f is of exponential order α.

Then the Laplace transform of f exists for s ą α, and lim
sÑ8

L (f)(s) = 0, where L (f) is the Laplace
transform of f .

Proof. Since f is piecewise continuous on [0, R], the integral
ż R

0
e´stf(t) dt exists. By the fact that

|f(t)| ď Meαt for t ě 0 for some M and α, we find that for R2 ą R1 ą 0,
ˇ

ˇ

ˇ

ż R2

R1

e´stf(t) dt
ˇ

ˇ

ˇ
ď

ż R2

R1

e´stMeαt dt =M
e(α´s)R2 ´ e(α´s)R1

α ´ s

which converges to 0 as R1, R2 Ñ 8 if s ą α. Therefore, the improper integral
ż 8

0
e´stf(t) dt exists.

Finally,
ˇ

ˇL (f)(s)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż 8

0

e´stf(t) dt
ˇ

ˇ

ˇ
ď

ż 8

0

e´st
ˇ

ˇf(t)
ˇ

ˇ dt ď

ż 8

0

e´stMeαt dt

=M

ż 8

0

e(α´s)t dt ď
M

s ´ α
@ s ą α .

As s Ñ 8, the Sandwich lemma implies that lim
sÑ8

L (f)(s) = 0. ˝

Example 6.14. Let f : [0,8) Ñ R be given by f(t) = tp for some p ą ´1. Recall that the Gamma
function Γ : (0,8) Ñ R is defined by

Γ(x) =

ż 8

0

e´ttx´1 dt .

We note that if ´1 ă p ă 0, f is not of exponential order a for all a P R; however, the Laplace
transform of f still exists. In fact, for s ą 0,

L (f)(s) = lim
RÑ8

ż R

0

e´sttp dt = lim
RÑ8

ż sR

0

e´t
( t
s

)pdt

s
=

Γ(p+ 1)

sp+1
.

In particular, if p = n P N Y t0u, then

L (f)(s) =
n!

sn+1
@ s ą 0 .

6.1.2 The Inverse Laplace Transform

Even though Example 6.7 shows that the Laplace transform is not one-to-one in the classical sense,
we are still able to talk about the “inverse” of the Laplace transform because of the following

Theorem 6.15 (Lerch). Suppose that f, g : [0,8) Ñ R are continuous and of exponential order a.
If L (f)(s) = L (g)(s) for all s ą a, then f(t) = g(t) for all t ě 0.

Remark 6.16. The inverse Laplace transform of a function F is given by

L ´1(F )(t) =
1

2πi
lim
RÑ8

ż γ+iR

γ´iR

estF (s) ds ,

where the integration is done along the vertical line Re(s) = γ in the complex plane such that γ is
greater than the real part of all singularities of F .



6.2 Properties of the Laplace Transform

Theorem 6.17. Let f : [0,8) Ñ R be a function whose Laplace transform exists for s ą α. If
g(t) = eβtf(t), then

L (g)(s) = L (f)(s ´ β) @ s ą α + β .

Proof. By the definition of the Laplace transform,

L (g)(s) =

ż 8

0

e´steβtf(t) dt =

ż 8

0

e´(s´β)tf(t) dt = L (f)(s ´ β) ,

where the Laplace transform of g exists for s ´ β ą α or equivalently, s ą α + β. ˝

Example 6.18. By Theorem 6.17 and Example 6.6, the Laplace transform of the function f(t) =

eat sin(bt) is
L (f)(s) =

b

(s ´ a)2 + b2
@ s ą a .

Theorem 6.19. Suppose that f : [0,8) Ñ R is continuous with piecewise continuous derivative, and
f is of exponential order α. Then the Laplace transform of f 1 exist for s ą α, and

L (f 1)(s) = sL (f)(s) ´ f(0) .

Proof. Since f is of exponential order, the Laplace transform of f exists. Since f is continuous,
integrating by parts we find that

ż R

0

e´stf 1(t) dt = e´stf(t)
ˇ

ˇ

ˇ

t=R

t=0
´

ż R

0

(´s)e´stf(t) dt = e´Rsf(R) ´ f(0) + s

ż R

0

e´stf(t) dt .

Since f is of exponential order α, e´Rsf(R) Ñ 0 as s Ñ 8; thus

L (f 1)(s) = lim
RÑ8

ż R

0

e´stf 1(t) dt = ´f(0) + s lim
RÑ8

ż R

0

e´stf(t) dt = sL (f)(s) ´ f(0) . ˝

Corollary 6.20. Suppose that f : [0,8) Ñ R is a function such that f, f 1, f 11, ¨ ¨ ¨ , f (n´1) are
continuous of exponential order α, and f (n) is piecewise continuous. Then L (f (n))(s) exists for all
s ą α, and

L (f (n))(s) = snL (f)(s) ´ sn´1f(0) ´ sn´2f 1(0) ´ ¨ ¨ ¨ ´ sf (n´2)(0) ´ f (n´1)(0) . (6.3)

Proof. Theorem implies that (6.3) holds for n = 1. Suppose that (6.3) holds for n = k. Then

L (f (k+1))(s) = L ((f 1)(k))(s)

= skL (f 1)(s) ´ sk´1f 1(0) ´ sk´2(f 1) 1(0) ´ ¨ ¨ ¨ ´ s(f 1)(k´2)(0) ´ (f 1)(k´1)(0)

= sk
[
sL (f)(s) ´ f(0)

]
´ sk´1f 1(0) ´ sk´2f 11(0) ´ ¨ ¨ ¨ ´ sf (k´1)(0) ´ f (k)(0)

= sk+1L (f)(s) ´ skf(0) ´ sk´1f 1(0) ´ ¨ ¨ ¨ ´ sf (k´1)(0) ´ f (k)(0)

which implies that (6.3) holds for n = k+1. By induction, we conclude that (6.3) holds for all n P N.
˝



Example 6.21. Let f : [0,8) Ñ R be continuous such that the Laplace transform of f exists.

Define F (t) =
ż t

0
f(τ) dτ . The fundamental theorem of calculus implies that F 1 = f ; thus Theorem

6.19 implies that
L (f)(s) = L (F 1)(s) = sL (F )(s) ´ F (0) = sL (F )(s)

which shows that L (F )(s) =
1

s
L (f)(s). On the other hand, we can also compute L (F ) directly as

follows: by the Fubini theorem,

L (F )(s) =

ż 8

0

e´st
( ż t

0

f(τ) dτ
)
dt =

ż 8

0

f(τ)
( ż 8

τ

e´st dt
)
dτ

=

ż 8

0

f(τ)
´e´st

s

ˇ

ˇ

ˇ

t=8

t=τ
dτ =

1

s

ż 8

0

f(τ)e´sτ dτ =
1

s
L (f)(s) .

Theorem 6.22. Let f : [0,8) Ñ R be piecewise continuous of exponential order α, and gn(t) =

(´t)nf(t). Then
L (gn)(s) =

dn

dsn
L (f)(s) @ s ą α .

The proof of Theorem 6.22 requires the dominated convergence theorem (in which the integrability
is equivalent to the existence of the improper integral) stated below

Let fn : [0,8) Ñ R be a sequence of integrable functions such that tfnu8
n=1 converges

pointwise to some integrable function f on [0,8). Suppose that there is an integrable

function g such that |fn(x)| ď g(x) @x P [0,8). Then lim
nÑ8

ż 8

0
fn(x) dx =

ż 8

0
f(x) dx.

We will not prove the dominated convergence theorem. The proof of the dominated convergence
theorem can be found in all real analysis textbook.

Proof of Theorem 6.22. First we note that

1 ´ t ď e´t ď 1 ´ t+
t2

2
@ t P R ;

thus
´
h

|h|
t ď

e´ht ´ 1

|h|
ď ´

h

|h|
t+

|h|t2

2
@h P R and t ą 0 .

Therefore,
ˇ

ˇ

ˇ

e´(s+h)t ´ e´st

h

ˇ

ˇ

ˇ
= e´st

ˇ

ˇ

ˇ

e´ht ´ 1

h

ˇ

ˇ

ˇ
ď

(
t+

t2

2

)
e´st @ |h| ď 1 and t ą 0 .

Now, since f is piecewise continuous and of exponential order α, there exists M ą 0 such that

|f(t)| ď Meat for all t ą 0. Let g(t) = Me(α´s)t
(
t +

t2

2

)
. Then for s ą α, g is integrable (that is,

ż 8

0
g(t) dt ă 8) and

ˇ

ˇ

ˇ

e´(s+h)t ´ e´st

h
f(t)

ˇ

ˇ

ˇ
ď g(t); thus the dominated convergence theorem implies



that for s ą α,

F 1(s) = lim
hÑ0

ż 8

0

e´(s+h)t ´ e´st

h
f(t) dt =

ż 8

0

lim
hÑ0

e´(s+h)t ´ e´st

h
f(t) dt =

ż t

0

B

Bs
e´stf(t) dt

=

ż t

0

(´t)e´stf(t) dt = L (´tf(t))(s) = L (g1)(s) .

Moreover, g1 is of exponential order β as long as β ą α; thus for s ą α, s ą β for some β ą α

and using what we just established we find that

d2

ds2
F (s) =

d

ds
L (g1)(s) = L (´tg1(t))(s) = L (g2)(s) .

By induction, we conclude that F (n)(s) = L (gn)(s) for s ą α. ˝

Example 6.23. Find the Laplace transform of the function f(t) = tet cos t.
Instead of computing the Laplace transform directly, we apply Theorem 6.17 and 6.22 to obtain

that

L (f)(s) = ´
d

ds
L (et cos t)(s) = ´

d

ds

s ´ 1

(s ´ 1)2 + 1
= ´

(s ´ 1)2 + 1 ´ 2(s ´ 1)(s ´ 1)[
(s ´ 1)2 + 1

]2
=

(s ´ 1)2 ´ 1[
(s ´ 1)2 + 1

]2 =
s2 ´ 2s[

(s ´ 1)2 + 1
]2 .

Example 6.24. Let f : R Ñ 8 be defined by

f(t) =

# sin t

t
if t ‰ 0 ,

1 if t = 1 .

Then tf(t) = sin t; thus ´
d

ds
L (f)(s) =

1

s2 + 1
. This implies that L (f)(s) = ´ tan´1 s+C for some

constant C. Since
ż π

0

sin t

t
dt =

π

2
, we have L (f)(0) =

π

2
. Therefore,

L (f)(s) =
π

2
´ tan´1 s = tan´1 1

s
.

Example 6.25. Find the inverse Laplace transform of F (s) = log s+ 2

s ´ 5
.

Suppose that L (f) = F . Since F 1(s) =
1

s+ 2
´

1

s ´ 5
, by Theorem 6.22 we find that

L
(

´tf(t)
)
(s) = F 1(s) =

1

s+ 2
´

1

s ´ 5
= L (e´2t)(s) ´ L (e5t)(s) ;

thus f(t) = e5t ´ e´2t

t
.

6.3 Solution of Initial Value Problems

Theorem 6.19 provides a way of solving of an ODE with constant coefficients. Suppose that we are
looking for solutions to

y 11 + by 1 + cy = f(t) .



Then taking the Laplace transform of the equation above (here we assume that y and y 1 are of
exponential order a for some a P R), we find that

s2L (y)(s) ´ sy(0) ´ y 1(0) + b
(
sL (y)(s) ´ y(0)

)
+ cL (y)(s) = L (f)(s)

which implies that the Laplace transform of the solution y satisfies

L (y)(s) =
(s+ b)y(0) + y 1(0)

s2 + bs+ c
+

L (f)(s)

s2 + bs+ c
. (6.4)

The ODE is then solved provided that we can find the function y = φ(t) whose Laplace transform is
the right-hand side of (6.4).

Example 6.26. Consider the ODE
y 11 ´ y 1 ´ 2y = 0 .

If the solution y and its derivative y 1 are of exponential order a for some a P R, then by taking the
Laplace transform of the equation above we find that[

s2L (y) ´ sy(0) ´ y 1(0)
]

´
[
sL (y) ´ y(0)

]
´ 2L (y) = 0 ;

thus

L (y)(s) =
sy(0) + y 1(0) ´ y(0)

s2 ´ s ´ 2
=
sy(0) + y 1(0) ´ y(0)

(s ´ 2)(s+ 1)

=
y(0)

s+ 1
+

y 1(0) + y(0)

(s ´ 2)(s+ 1)
=

y(0)

s+ 1
+
y 1(0) + y(0)

3

( 1

s ´ 2
´

1

s+ 1

)
.

By Example 6.5 and Theorem 6.15, we find that

y(t) = y(0)e´t +
y 1(0) + y(0)

3

(
e2t ´ e´t

)
.

Example 6.27. Find the solution of the ODE y 11 + y = sin 2t with initial condition y(0) = 2 and
y 1(0) = 1. If y is the solution to the ODE and y, y 1 are of exponential order a for some a P R, then
(6.4) and Example 6.6 imply that the Laplace transform of y is given by

L (y)(s) =
2s+ 1

s2 + 1
+

2

(s2 + 1)(s2 + 4)
.

Using partial fractions, we expect that

2

(s2 + 1)(s2 + 4)
=
as+ b

s2 + 1
+
cs+ d

s2 + 4
=

(a+ c)s3 + (b+ d)s2 + (4a+ c)s+ (4b+ d)

(s2 + 1)(s2 + 4)
.

Therefore, a+ c = b+ d = 4a+ c = 0 and 4b+ d = 2; thus a = c = 0 and b = ´d =
2

3
. This provides

that
L (y)(s) =

2s+ 1

s2 + 1
+

2

3

1

s2 + 1
´

2

3

1

s2 + 4
=

2s

s2 + 1
+

5

3

1

s2 + 1
´

1

3

2

s2 + 4
.

By Proposition 6.2 and Example 6.6, we find that

y(t) = 2 cos t+ 5

3
sin t ´

1

3
sin 2t .



Example 6.28. Find the solution of the ODE y(4) ´ y = 0 with initial condition y(0) = y 11(0) =

y 12(0) = 0 and y 1(0) = 1 and y, y 1 are of exponential order a for some a P R. If y is the solution to
the ODE, then Corollary 6.20 implies that the Laplace transform of y satisfies

s4L (y)(s) ´ s3y(0) ´ s2y 1(0) ´ sy 11(0) ´ y 12(0) ´ L (y)(s) = 0 ;

thus
L (y)(s) =

s2

s4 ´ 1
=

s2

(s ´ 1)(s+ 1)(s2 + 1)
.

Using partial fractions, we assume that

L (y)(s) =
s2

s4 ´ 1
=

a

s ´ 1
+

b

s+ 1
+
cs+ d

s2 + 1
=

(a+ b)s+ (a ´ b)

s2 ´ 1
+
cs+ d

s2 + 1

=
(a+ b+ c)s3 + (a ´ b+ d)s2 + (a+ b ´ c)s+ (a ´ b ´ d)

s4 ´ 1
.

Therefore, a + b + c = a + b ´ c = a ´ b ´ d = 0 and a ´ b + d = 1; thus a =
1

4
, b = ´

1

4
, c = 0 and

d =
1

2
. This provides that

L (y)(s) =
1

4

1

s ´ 1
´

1

4

1

s+ 1
+

1

2

1

s2 + 1
.

By Example 6.5 and 6.6, we conclude that the solution to the ODE is

y(t) =
1

4
et ´

1

4
e´t +

1

2
sin t .

‚ Advantages of the Laplace transform method:

1. Converting a problem of solving a differential equation to a problem of solving an algebraic
equation.

2. The dependence on the initial data is automatically build in. The task of determining values
of arbitrary constants in the general solution is avoided.

3. Non-homogeneous equations can be treated in exactly the same way as the homogeneous ones,
and it is not necessary to solving the corresponding homogeneous equation first.

‚ Difficulties of the Laplace transform method: Need to find the function whose Laplace
transform is given - the inverse Laplace transform has to be performed in general situations.

It is also possible to consider the ODE with variable coefficient using the Laplace transform. We
use to following two examples to illustrate the idea.

Example 6.29. Find the solution to the initial value problem

y 11 + ty 1 ´ y = 0 , y(0) = 0 , y 1(0) = 3 .

Assume that y is continuously differentiable of exponential order α for some α ą 0, and y 11 is piecewise
continuous on [0,8). Let Y (s) = L (y)(s). By Corollary 6.20 and Theorem 6.22,

s2Y (s) ´ 3 ´
[
sY (s)

] 1
´ Y (s) = 0 @ s ą α ;



thus
Y 1(s) +

(2
s

´ s
)
Y (s) = ´

3

s
@ s ą α .

Using the integrating factor s2e´ s2

2 , we find that[
s2e´ s2

2 Y (s)
] 1

= ´3se´ s2

2

which shows that
s2e´ s2

2 Y (s) = 3e´ s2

2 + C .

Therefore, Y (s) =
3

s2
+ Ce

s2

2 . By Proposition 6.13, lim
sÑ8

Y (s) = 0; thus C = 0. This implies that
y(t) = 3t.

Example 6.30. Find the solution to the initial value problem

ty 11 ´ ty 1 + y = 2 , y(0) = 2 , y 1(0) = ´1 .

Assume that y is continuously differentiable of exponential order α for some α ą 0, and y 11 is piecewise
continuous on [0,8). Let Y (s) = L (y)(s). Then

´
[
s2Y (s) ´ 2s+ 1

] 1
+
[
sY (s) ´ 2

] 1
+ Y (s) =

2

s
@ s ą α .

Further computations shows that

(s2 ´ s)Y 1(s) + (2s ´ 2)Y (s) = 2 ´
2

s
@ s ą α

which can be reduced to
s2Y 1(s) + 2sY (s) = 2 .

Therefore, (s2Y ) 1 = 2 which implies that s2Y (s) = 2s+ C; thus we find that

Y (s) =
2

s
+
C

s2
.

Taking the inverse Laplace transform, we obtain that the general solution to the ODE is given by

y(t) = 2 + Ct .

To validate the initial condition, we find that C = ´1, so the solution to the initial value problem is
y(t) = 2 ´ t.

6.4 Transforms of Discontinuous and Periodic Functions

In the following two sections we are concerned with the Laplace transform of discontinuous functions
with jump discontinuities.

Definition 6.31. The unit step function is the function

u(t) =

"

0 if t ă 0 ,
1 if t ą 0 .



Example 6.32.

1. For c P R, we define uc(t) = u(t ´ c). Then the graph of uc jumps up from 0 to 1 at t = c.

2. The graph of ´uc jumps down from 0 to ´1 at t = c.

3. Let a ă b. The characteristic/indicator function 1(a,b) can be expressed by

1(a,b)(t) = ua(t) ´ ub(t) .

The function 1(a,b) is called the rectangular window function (and is denoted by Πa,b in
the textbook).

4. Let 0 = c0 ă c1 ă ¨ ¨ ¨ ă cn ă cn+1 = 8. The step function

f(t) =
n
ÿ

i=0

fi1(ci,ci+1)(t) (6.5)

can be expressed by

f(t) = f01(0,c1)(t) +
n
ÿ

k=0

(fk+1 ´ fk)uck(t) .

Example 6.33. We can write the function f : (0,8) Ñ R defined by

f(t) =

$

’

’

&

’

’

%

3 if t ă 2 ,
1 if 2 ă t ă 5 ,
t if 5 ă t ă 8 ,

t2/10 if 8 ă t

in terms of window and step functions as

f(t) = 31(0,2)(t) + 1(2,5)(t) + t1(5,8)(t) +
t2

10
u8(t) .

‚ The Laplace transform of uc: Next, we compute the Laplace transform of the step function f

given by (??). We note that even though f is not defined on [0,8) so in principle L (f) does not
exists. However, if g, h : [0,8) Ñ R are identical to f on the domain of f , then L (g) = L (h). This
means any “extension” of f has the same Laplace transform, and the Laplace transform of one of
such extensions is viewed as the Laplace transform of f .

To compute the Laplace transform of the step function f given by (??), by Proposition 6.2 it
suffices to find the Laplace transform of uc.

1. If c ď 0, then
L (uc)(s) =

ż 8

0

e´st dt =
1

s
@ s ą 0 .

2. If c ą 0, then
L (uc)(s) =

ż 8

c

e´st dt =
e´cs

s
@ s ą 0 .



Therefore,

L (uc)(s) =
e´ maxtc,0us

s
.

Theorem 6.34. Let f : [0,8) Ñ R be a function such that the Laplace transform L (f)(s) of f
exists for s ą α. If c is a positive constant and g(t) = uc(t)f(t ´ c), then

L (g)(s) = e´csL (f)(s) for s ą α .

Conversely, if G(s) = e´csL (f)(s), then L ´1(G)(t) = uc(t)f(t ´ c) .

Proof. If c ą 0 and g(t) = uc(t)f(t ´ c), then the change of variable formula implies that

L (g)(s) = lim
RÑ8

ż R

c

e´stf(t ´ c) dt = lim
RÑ8

ż R´c

0

e´s(t+c)f(t) dt

= e´cs lim
RÑ8

ż R´c

0

e´stf(t) dt = e´csL (f)(s) . ˝

Example 6.35. Let f : [0,8) Ñ R be defined by

f(t) =

$

&

%

sin t if 0 ď t ă
π

4
,

sin t+ cos
(
t ´

π

4

)
if t ě

π

4
.

Then f(t) = sin t+ uπ
4
(t) cos

(
t ´

π

4

)
; thus by Example 6.6 and Theorem 6.34 we find that

L (f)(s) =
1

s2 + 1
+ e´π

4
s s

s2 + 1
=

1 + se´π
4
s

s2 + 1
.

Example 6.36. Let f : [0,8) Ñ R be defined by f(t) = t2u1(t). Then

f(t) = (t ´ 1 + 1)2u1(t) = (t ´ 1)2u1(t) + 2(t ´ 1)u1(t) + u1(t) ;

thus the Laplace transform of f is given by

L (f)(s) =
2e´s

s3
+

2e´s

s2
+
e´s

s
= e´s

(
2

s3
+

2

s2
+

1

s

)
.

Example 6.37. Find the inverse Laplace transform of F (s) = 1 ´ e´2s

s2
.

By Example 6.14, the inverse Laplace transform of s´2 is t

Γ(1 + 1)
= t; thus Theorem 6.34 implies

that
L ´1(F )(t) = t ´ u2(t)(t ´ 2) .

Definition 6.38. A function f : R Ñ R is said to be periodic of period T (‰ 0) if

f(t+ T ) = f(t) @ t P R .

Theorem 6.39. Let f : R Ñ R be periodic of period T , and FT (s) =
ż T

0
e´stf(t) dt. Then

L (f)(s) =
FT (s)

1 ´ e´sT
.



Proof. By the periodicity of f , f(t) = f(t ´ T ) for all t P R; thus

FT (s) =

ż 8

0

e´stf(t)1(0,T )(t) dt =

ż 8

0

e´stf(t)
(
1 ´ uT (t)

)
dt

= L (f)(s) ´

ż 8

0

e´stf(t ´ T )uT (t) dt = L (f)(s) ´ e´sTL (f)(s) ,

where we have used Theorem 6.34 to conclude the last equality. ˝

6.5 Differential Equations with Discontinuous Forcing Functions

In this section, we consider solving the ODE

y 11 + by 1 + cy = f(t) t ą 0 (6.6)

with constant coefficients b, c and piecewise continuous forcing function f .
Suppose that f : [0,8) Ñ R is a function defined by

f(t) =

$

’

&

’

%

f1(t) if 0 ă t ă c ,

f2(t) if t ą c ,

d if t = c ,

where f1, f2 are continuous functions on [0,8), d P R is a given number, and lim
tÑc+

f2(t)´ lim
tÑc´

f1(t) =

A ‰ 0; that is, c is a jump discontinuity of f . Define

g(t) =

$

’

&

’

%

f1(t) if 0 ă t ă c ,

limtÑc´ f1(t) if t = c ,

f2(t) ´ Auc(t) if t ą c .

Then g : [0,8) Ñ R is continuous, and f = g+Auc. Similarly, if f is a piecewise continuous function
has jump discontinuities tc1, c2, ¨ ¨ ¨ , cnu, then f is continuous on (ck, ck+1) for all k P t1, ¨ ¨ ¨ , n ´ 1u

and by introducing c0 = 0, cn+1 = 8, and Ak ” lim
tÑc+k

(f1(ck,ck+1)))(t)´ lim
tÑc´

k

(f1(ck´1,ck))(t), the function

g : [0,8) Ñ F defined by

g(t) =

$

’

’

&

’

’

%

f(t) ´
n
ř

k=1

Akuck(t) if t R tc1, ¨ ¨ ¨ , cnu

lim
tÑcj

(
f(t) ´

n
ř

k=1

Akuck(t)
)

if t P tc1, ¨ ¨ ¨ , cnu

is continuous on R, and f = g +
n
ř

k=1

Akuck . Therefore, in order to understand the solution of (6.6)

with piecewise continuous function f , it suffices to consider the case f = Aud for some constants A
and d.

Before proceeding, let us consider the ODE

y 11 = uc(t) t ą 0 (6.7)



for some c ą 0. Intuitively, a solution of such an ODE can be obtained by integrating the ODE twice
directly, and we find that

y 1(t) =

"

y 1(0) if 0 ď t ă c ,

y 1(0) + t ´ c if t ě c ,

and

y(t) =

#

y(0) + y 1(0)t if 0 ď t ă c ,

y(0) + y 1(0)t+
t ´ c

2
(2y 1(0) + t ´ c) if t ě c .

We note that such y does not possess second derivative at c, and this fact indicates that it seems
impossible to find a twice differentiable function y such that (6.7) for all t ą 0. Therefore, to
solve ODE with piecewise discontinuous forcing function, it requires that we modify the concept of
solutions. We have the following

Definition 6.40. Let f : [0,8) Ñ R be a function. A function y is said to be a solution to the
initial value problem

y 11 + by 1 + cy = f(t) y(0) = y0, y 1(0) = y1

if y is continuously differentiable and satisfies the initial condition, y 1 1 exists at every continuity of
f , and the ODE holds at every continuity of f .

Now suppose that we are looking for a solution to

y 11 + by 1 + cy = f(t) , (6.8)

where f is a piecewise continuous function on [0,8) and has jump discontinuities only at tc1, c2, ¨ ¨ ¨ , cnu

as described above. We note that the existence theorem (Theorem 1.24) cannot be applied due to
the discontinuity of the forcing function, so in general we do not know if a solution exists. However,
if there indeed exists a twice differentiable function y validating (6.8), then the solution must be
unique since if y1 and y2 are two solutions with the same initial condition, then y = y1 ´ y2 is a
solution to y 11 + by 1 + cy = 0 with y(0) = y 1(0) = 0; thus y must be zero. On the other hand, if (6.8)
has a solution y, then y 11 must be piecewise continuous. If in addition y and y 1 are of exponential
order α for some α P R, we can apply Theorem 6.20 to find the Laplace transform of the solution
y as introduced in Section 6.3 which in principle provides information of how the solution can be
found.

Now we focus on solving the ODE

y 11 + by 1 + cy = Fuα(t) , y(0) = y0 , y 1(0) = y1 , (6.9)

where F is a constant and α ą 0. We only consider the case that c ‰ 0 for otherwise the ODE can
reduced to a first order ODE (by integrating the ODE).

If y is a twice differentiable solution to (6.9), taking the Laplace transform of the ODE we find
that

s2L (y)(s) ´ sy0 ´ y1 + b
[
sL (y)(s) ´ y0

]
+ cL (y)(s) = F

e´αs

s
;



thus
L (y)(s) =

(s+ b)y0 + y1
s2 + bs+ c

+ F
e´αs

s(s2 + bs+ c)
.

Using partial fractions, we obtain that 1

s(s2 + bs+ c)
=

1

c

[
1

s
´

s+ b

s2 + bs+ c

]
; thus with z denoting the

solution to the ODE
z 11 + bz 1 + cz = 0 , z(0) = 1 , z 1(0) = 0 , (6.10)

we find that
e´αs

s(s2 + bs+ c)
=
e´αs

c
L (1 ´ z)(s) .

Therefore, Theorem 6.34 implies that

y(t) = Y (t) +
F

c
uα(t)

[
1 ´ z(t ´ α)

]
, (6.11)

here Y is the solution to (6.9) with F = 0. We note that even though uα is not defined at t = α,
the function y given in (6.11) is continuous for all t since z(0) = 1. Moreover, the function y clearly
satisfies the initial condition y(0) = y0.

‚ The first derivative of y: It is clear that y 1(t) exists for t ‰ α and can be computed by

y 1(t) = Y 1(t) ´
F

c
uα(t)z

1(t ´ α) @ t ą 0, t ‰ α . (6.12)

Therefore, y 1(0) = Y 1(0) = y1. Now we check the differentiability of y at t = α by looking at the
limits

lim
hÑ0´

y(α + h) ´ y(α)

h
and lim

hÑ0+

y(α + h) ´ y(α)

h
.

By the differentiability of Y ,

lim
hÑ0´

y(α + h) ´ y(α)

h
= Y 1(α) +

F

c
lim
hÑ0´

uα(α + h)
(
1 ´ z(h)

)
h

= Y 1(α)

and

lim
hÑ0+

y(α + h) ´ y(α)

h
= Y 1(α) +

F

c
lim
hÑ0+

uα(α + h)
(
1 ´ z(h)

)
h

= Y 1(α) +
F

c
lim
hÑ0+

1 ´ z(h)

h
= Y 1(α) ´

F

c

z(h) ´ z(0)

h

= Y 1(α) ´
F

c
z 1(0) = Y 1(α) .

Therefore, y 1 exists at t = α and y 1(α) = Y 1(α) which also validates (6.12) for t = α; thus (6.12)
holds for all t ą 0. We note that y 1 given by (6.12) is continuous since

lim
yÑα

y 1(t) = Y 1(α) = y 1(α) .

‚ The second derivative of y: Now we turn our attention to the second derivative of y. It is clear
that

y 11(t) = Y 11(t) ´
F

c

[
uα(t)z

11(t ´ α)
]

@ t ą 0 , t ‰ α . (6.13)



Therefore, the second derivative of y exists at every continuity of the forcing function Fuα.

‚ The validity of the ODE: Using (6.11), (6.12) and (6.13), we find that for t ą 0 and t ‰ α,

(y 11 + by 1 + cy)(t) = (Y 11 + bY 1 + cY )(t) ´
F

c
uα(t)(z

11 + bz 1 + cz)(t ´ α) + Fuα(t) = Fuα(t) ;

thus the function y satisfies the ODE at every continuity of the forcing function Fuα. Therefore, y
given by (6.11) is indeed the solution to (6.9).

‚ Summary: The Laplace transform method may be used to find the solution to second ODE with
constant coefficients and discontinuous forcing. In particular, the solution to the IVP

y 11 + by 1 + cy = F1(α,β)(t) , y(0) = y0 , y 1(0) = y1

can be expressed as

y(t) = Y (t) +
F

c

[
uα(t)

[
1 ´ z(t ´ α)

]
´ uβ(t)

[
1 ´ z(t ´ β)

]]
, (6.14)

where Y is the solution to (6.9) with F = 0 and z is the solution to (6.10).

Example 6.41. Find the solution of the ODE 2y 11 + y 1 + 2y = g(t) with initial condition y(0) =

y 1(0) = 0, where
g(t) = u5(t) ´ u20(t) = 1(5,20)(t)

If y is the solution to the ODE, taking the Laplace transform of the ODE we find that

2
[
s2L (y)(s) ´ sy(0) ´ y 1(0)

]
+
[
sL (y)(s) ´ y(0)

]
+ 2L (y)(s) =

e´5t ´ e´20s

s
;

thus
L (y)(s) =

e´5t ´ e´20t

s(2s2 + s+ 2)
.

Using partial fractions, we obtain that

1

s(2s2 + s+ 2)
=

1

2
¨
1

s
´

1

2

[ s+ 1
4

(s+ 1
4
)2 +

(?
15
4

)2 +
1

?
15

?
15
4

(s+ 1
4
)2 +

(?
15
4

)2] .
Let h(t) =

1

2
´

1

2
e´ 1

4
t
[

cos
(?

15

4
t
)
+

1
?
15

sin
(?

15

4
t
)]

. Then Example 6.6 and Theorem 6.17 show
that

L (y)(s) =
(
e´5s ´ e´20s

)
L (h)(s) ;

thus Theorem 6.34 further implies that

y(t) = u5(t)h(t ´ 5) ´ u20(t)h(t ´ 20)

=
1

2

[
u5(t) ´ u20(t)

]
´

1

2

[
u5(t)e

´ 1
4
(t´5) cos

(?
15

4
(t ´ 5)

)
´ u20(t)e

´ 1
4
(t´20) cos

(?
15

4
(t ´ 20)

)]
´

1

2
?
15

[
u5(t)e

´ 1
4
(t´5) sin

(?
15

4
(t ´ 5)

)
´ u20(t)e

´ 1
4
(t´20) sin

(?
15

4
(t ´ 20)

)]
.



Example 6.42. Find the solution of the ODE y 11 + 4y = g(t) with initial data y(0) = y 1(0) = 0,
where the forcing function g is given by

g(t) =

$

’

’

&

’

’

%

0 if 0 ă t ă 5 ,
t ´ 5

5
if 5 ă t ă 10 ,

1 if t ą 10 .

We note that g(t) = 1

5

[
u5(t)(t´5)´u10(t)(t´10)

]
; thus Example 6.14 and Theorem 6.34 imply that

L (g)(s) =
1

5

1

s2
(e´5s ´ e´10s) =

e´5s ´ e´10s

5s2
.

We also remark that g 1(t) =
1

5
(u5(t) ´ u10(t)) if t ‰ 5, 10. Since the value at g 1 at two points does

not affect the Laplace transform, we can use Corollary 6.20 to compute the Laplace transform of g:

sL (g)(s) = sL (g)(s) ´ g(0) = L (g 1)(s) =
e´5s ´ e´10s

5s
;

thus L (g)(s) =
e´5s ´ e´10s

5s2
.

Assume that a solution y to the ODE under consideration exists such that y, y 1 are continuous
and y 11 are of exponential order a for some a P R. Then the Laplace transform implies that

s2L (y)(s) ´ sy(0) ´ y 1(0) + 4L (y)(s) =
e´5s ´ e´10s

5s2
.

Therefore,
L (y)(s) =

e´5s ´ e´10s

5s2(s2 + 4)
.

Using partial fractions, we assume that 1

s2(s2 + 4)
=

as+ b

s2
+

cs+ d

s2 + 4
, where a, b, c, d satisfy a+ c = 0,

b+ d = 0, 4a = 0 and 4b = 1; thus

L (y)(s) =
e´5s ´ e´10s

20

[ 1

s2
´

1

2

2

s2 + 4

]
.

By Theorem 6.17, we find that

y(t) =
1

20

[
u5(t)(t ´ 5) ´ u10(t)(t ´ 10) ´

1

2

(
u5(t) sin

(
2(t ´ 5)

)
´ u10(t) sin

(
2(t ´ 10)

))]
.

Remark 6.43. The Laplace transform picks up solutions whose derivative of the highest order
(which is the same as the order of the ODE under consideration) is of exponential order a for some
a P R.

6.6 Convolution

Definition 6.44. Let f, g be piecewise continuous on [0,8). The convolution of f and g, denoted
by f ˙ g, is defined by

(f ˙ g)(t) =

ż t

0

f(t ´ τ)g(τ) dτ . (6.15)



Proposition 6.45. Let f, g, h be piecewise continuous on [0,8). Then

(a) f ˙ g = g ˙ f ;

(b) f ˙ (g + h) = (f ˙ g) + (f ˙ h);

(c) (f ˙ g) ˙ h = f ˙ (g ˙ h);

(d) (f ˙ 0) = 0.

Proof. It is clear that (b) and (d) hold, so we only prove (a) and (c). To see (a), we make a change
of variable and find that

(f ˙ g)(t) =

ż t

0

f(t ´ τ)g(τ) dτ =

ż 0

t

f(u)g(t ´ u)(´du) =

ż t

0

g(t ´ u)f(u)du = (g ˙ f)(t) .

To see (c), using (a) and the Fubini theorem,[
(f ˙ g) ˙ h

]
(t) =

ż t

0

(g ˙ f)(t ´ τ)h(τ) dτ =

ż t

0

( ż t´τ

0

g(t ´ τ ´ u)f(u) du
)
h(τ) dτ

=

ż t

0

( ż t´τ

0

g(t ´ τ ´ u)f(u)h(τ) du
)
dτ

=

ż t

0

( ż t´u

0

g(t ´ τ ´ u)f(u)h(τ) dτ
)
du

=

ż t

0

f(u)
( ż t´u

0

g(t ´ u ´ τ)h(τ) dτ
)
du

=

ż t

0

f(u)(g ˙ h)(t ´ u) du =
[
(g ˙ h) ˙ f

]
(t) =

[
f ˙ (g ˙ h)

]
(t)

which completes the proof of (d). ˝

Theorem 6.46. Let f and g be piecewise continuous on [0,8) and are of exponential order α. Then

L (f ˙ g)(s) = L (f)(s)L (g)(s) @ s ą α .

Proof. Since f is of exponential order α, for some M1 ą 0, |f(t)| ď M1e
αt for all t ą 0. Therefore,

for s ą α,
ˇ

ˇ

ˇ
L (f)(s) ´

ż R

0

e´stf(t) dt
ˇ

ˇ

ˇ
ď

ż 8

R

e´st
ˇ

ˇf(t)
ˇ

ˇ dt ď M1

ż 8

R

e´(s´α)tdt ď
M1

s ´ α
e(α´s)R .

Similarly, for some M2 ą 0, |g(t)| ď M2e
αt for all t ą 0 and

ˇ

ˇ

ˇ
L (g)(s) ´

ż R

0
e´stg(t) dt

ˇ

ˇ

ˇ
ď

M2

s ´ α
e(α´s)R @ s ą α .

By the Fubini theorem,
ż R

0

e´st
( ż t

0

f(t ´ τ)g(τ) dτ
)
dt =

ż R

0

( ż R

τ

f(t ´ τ)g(τ)e´st dt
)
dτ

=

ż R

0

e´sτg(τ)
( ż R

τ

f(t ´ τ)e´s(t´τ) dt
)
dτ =

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt
)
dτ ;



thus for s ą α,
ˇ

ˇ

ˇ

ż R

0

e´st
( ż t

0

f(t ´ τ)g(τ) dτ
)
dt ´ L (f)(s)L (g)(s)

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt
)
dτ ´ L (f)(s)L (g)(s)

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

ż R

0

e´sτg(τ)
( ż R´τ

0

f(t)e´st dt ´ L (f)(s)
)
dτ + L (f)(s)

( ż R

0

e´sτg(τ) dτ ´ L (g)(s)
)ˇ
ˇ

ˇ

ď
M1M2

s ´ α

ż R

0

e´sτeατe(α´s)(R´τ) dτ +
M2

s ´ α

ˇ

ˇL (f)(s)
ˇ

ˇe(α´s)R

=
M1M2

s ´ α
Re(α´s)R +

M2

s ´ α

ˇ

ˇL (f)(s)
ˇ

ˇe(α´s)R

which converges to 0 as R Ñ 8. ˝

Example 6.47. Find the inverse Laplace transform of H(s) =
a

s2(s2 + a2)
.

Method 1: Using the partial fractions,
a

s2(s2 + a2)
=

1

a

[ 1

s2
´

1

s2 + a2

]
=

1

a
¨
1

s2
´

1

a2
a

s2 + a2
;

thus Example 6.6 and 6.14 imply

L ´1(H)(t) =
t

a
´

1

a2
sin at .

Method 2: By Theorem 6.46, with F,G denoting the functions F (s) = 1

s2
and G(s) =

a

s2 + a2
,

L ´1(H)(t) =
(
L ´1(F ) ˙ L ´1(G)

)
(t) =

ż t

0

(t ´ τ) sin(aτ) dτ

= t

ż t

0

sin aτ dτ ´

ż t

0

τ sin aτ dτ

= ´
t

a
cos(aτ)

ˇ

ˇ

ˇ

τ=t

τ=0
´

[
´
τ

a
cos(aτ)

ˇ

ˇ

ˇ

τ=t

τ=0
+

1

a

ż t

0

cos(aτ) dτ
]

=
t

a
´

1

a

ż t

0

cos(aτ) dτ =
t

a
´

sin aτ
a2

ˇ

ˇ

ˇ

τ=t

τ=0
=
t

a
´

sin at
a2

.

Example 6.48. Find the solution of the initial value problem

y 11 + 4y = g(t) , y(0) = 3 , y 1(0) = ´1 .

Taking the Laplace transform of the equation above, we find that

L (y)(s) =
3s ´ 1

s2 + 4
+

L (g)(s)

s2 + 4
=

3s

s2 + 4
´

1

2

2

s2 + 4
+

L (g)(s)

2

2

s2 + 4
.

Therefore, by Example 6.6 and Theorem 6.46,

y(t) = 3 cos(2t) ´
1

2
sin(2t) + 1

2

ż t

0

g(t ´ τ) sin 2τ dτ

= 3 cos(2t) ´
1

2
sin(2t) + 1

2

ż t

0

g(τ) sin 2(t ´ τ) dτ .



In general, we can consider the second order ODE

y 11 + by 1 + cy = g(t) , y(0) = y0 , y 1(0) = y1 .

As discussed before, we find that if y is a solution to the ODE above,

L (y)(s) =
(s+ b)y0 + y1
s2 + bs+ c

+
L (g)(s)

s2 + bs+ c
.

Therefore,

1. if r2 + br + c = 0 has two distinct real roots r1 and r2, then the solution y is

y(t) =
y1 ´ r2y0
r1 ´ r2

er1t +
r1y0 ´ y1
r1 ´ r2

er2t +

ż t

0

g(t ´ τ)
er1τ ´ er2τ

r1 ´ r2
dτ .

2. if r2 + br + c = 0 has a double root r1, then the solution y is

y(t) = y0e
r1t + (y1 ´ r1y0)te

r1t +

ż t

0

g(t ´ τ)er1ττ dτ .

3. if r2 + br + c = 0 has two complex roots λ ˘ iµ, then the solution y is

y(t) = y0e
λt cosµt+ y1 ´ λy0

µ
eλt sinµt+

ż t

0

g(t ´ τ)eλτ
sinµτ
µ

dτ .

6.7 Impulse and the Dirac Delta Function

In this section, we are interested in what happens if a moving object in a spring-mass system is
hit by an external force which only appears in a very short amount of time period (you can think
of hitting an object in a spring-mass system using a hammer in a very short amount of time). In
practice, we do not know the exact time period [α, β] (with |β ´ α| ! 1) during which the force hits
the system, but can assume that the total amount of force which affects the system is known. This
kind of phenomena usually can be described by the system

y 11 + by 1 + cy = f(t) , y(0) = y0 , y 1(0) = y1

for some special kind of functions f which has the following properties:

1. f is sign-definite; that is, f(t) ě 0 for all t ą 0 or f(t) ď 0 for all t ă 0;

2. f is and is supported in [t0 ´ τ, t0 + τ ] for some t0 ą 0 and some very small τ ą 0;

3.
ż t0+τ

t0´τ
f(t) dt = F , where F is a constant independent of τ .

This kind of force is called an impulse.



Example 6.49. Let dτ : R Ñ R be a step function defined by

dτ (t) =

$

&

%

1

2τ
if t P (´τ, τ) ,

0 otherwise .
(6.16)

Figure 1: The graph of y = dτ (t) as τ Ñ 0+.

Then f(t) = Fdτ (t) is an impulse function. We note that with d denoting the function 1

2
1(´1,1),

then dτ (t) =
1

τ
d
( t
τ

)
. Moreover, if φ : R Ñ R is continuous in an open interval containing 0, we must

have
lim
τÑ0+

ż 8

´8

dτ (t)φ(t) dt = φ(0) . (6.17)

Example 6.50. Let

η(t) =

$

&

%

C exp
( 1

t2 ´ 1

)
if |t| ă 1 ,

0 if |t| ě 1 ,

where C is chosen so that the integral of η is 1. Then the sequence tητuτą0 defined by

ητ (t) =
1

τ
η
( t
τ

)
(6.18)

also has the property that
lim
τÑ0

ż 8

´8

ητ (t)φ(t) dt = φ(0) (6.19)

for all φ : R Ñ R which is continuous in an open interval containing 0. To see this, we notice that
ητ is supported in [´τ, τ ] and the integral of ητ is still 1. Suppose that φ : R Ñ R is continuous on
(a, b) for some a ă 0 ă b. Then there exists 0 ă δ ă mint´a, bu such that

ˇ

ˇφ(t) ´ φ(0)
ˇ

ˇ ă
ε

2
whenever |t| ă δ .

Therefore, if 0 ă τ ă δ, by the non-negativity of ητ we find that
ˇ

ˇ

ˇ

ż 8

´8

ητ (t)φ(t) ´ φ(0)
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż τ

´τ

ητ (t)φ(t) dt ´ φ(0)

ż τ

´τ

ητ (t) dt
ˇ

ˇ

ˇ

=

ż τ

´τ

ητ (t)
[
φ(t) ´ φ(0)

]
dt

ď

ż τ

´τ

ητ (t)
ˇ

ˇφ(t) ´ φ(0)
ˇ

ˇ dt ď
ε

2

ż τ

´τ

ητ (t) dt ă ε



which validates (6.19).

Figure 2: The graph of ητ for τ = 1,
1

2
,
1

4
,
1

8
.

Definition 6.51. A sequence of functions tζτuτą0, where ζτ : R Ñ R for all τ ą 0, is called an
approximation of the identity if tζτuτą0 satisfies

1. ζτ (t) ě 0 for all t P R.

2. lim
τÑ0+

ż 8

´8

ζτ (t) dt = 1.

3. For all δ ą 0, lim
τÑ0+

ż

|t|ąδ
ζτ (t) dt = 0.

In particular, tdτuτą0 and tητuτą0 are approximations of identity.

Using the same technique of establishing (6.19), one can also prove that if tζτuτą0 is an approxi-
mation of the identity, then

lim
τÑ0

ż 8

´8

ζτ (t)φ(t) dt = φ(0) .

Remark 6.52. An approximation of identities does not have to be compactly supported. For
example, let n(t) = 1

?
2π
e´ t2

2 be the probability density function of the normal distribution N(0, 1),

then nτ (t) ”
1

?
2πτ

e´ t2

2τ constitutes an approximation of the identity tnτuτą0.

For t0 ą 0 and 0 ă τ ă t0, let yτ denote the solution to the IVP

y 11
τ + by 1

τ + cyτ = Fdτ (t ´ t0) , yτ (0) = y0 , y 1
τ (0) = y1 . (6.20)

Using (6.14) we find that

yτ (t) = Y (t) +
F

2cτ

[
ut0´τ (t)

[
1 ´ z(t ´ t0 + τ)

]
´ ut0+τ (t)

[
1 ´ z(t ´ t0 ´ τ)

]]
,

where Y is the unique C 2-function solving

Y 11 + bY 1 + cY = 0 , Y (0) = y0 , Y 1(0) = y1 .



and z is the unique C 2-function solving

z 11 + bz 1 + cz = 0 , z(0) = 1 , z(0) = 0 .

We remark here that Y , Y 1, z 1 and z 11 are of exponential order α for some α ą 0; that is, there exists
M ą 0 such that

ˇ

ˇY (t)
ˇ

ˇ+
ˇ

ˇY 1(t)
ˇ

ˇ+ |z(t)| + |z 1(t)| ď Meαt @ t ą 0 . (6.21)

We also recall that the discussion in Section 6.5 shows that yτ is continuously differentiable, and
y 11
τ is piecewise continuous. Our “goal” here is to find a function y which is independent of τ but

|y ´ yτ | ! 1 when τ ! 1. In other words, our goal is to show that tyτuτą0 converges and find the
limit of tyτuτą0. We rely on the following theorem:

Let a, b P R and fn : [a, b] Ñ R be a sequence of differentiable functions such that tfnu8
n=1

and tf 1
nu8

n=1 are both uniformly bounded; that is, there exists M such that
ˇ

ˇfn(x)
ˇ

ˇ+
ˇ

ˇf 1
n(x)

ˇ

ˇ ď M for all x P [a, b] and n P N;

Then there is a subsequence
␣

fnj

(8

j=1
and a continuous function f : [a, b] Ñ R such that

lim
jÑ8

sup
xP[a,b]

ˇ

ˇfnj
(x) ´ f(x)

ˇ

ˇ = 0. (‹)

The convergence in (‹) is called the uniform convergence. To be more precise, we say that a
sequence of functions tgku8

k=1 converges uniformly to g on A if lim
kÑ8

sup
tPA

|gk(t) ´ g(t)| = 0; thus (‹) is

the same as saying that
␣

fnj

(8

j=1
converges uniformly to f on [a, b]. The theorem above is a direct

consequence of the Arzelà-Ascoli theorem, and the proof of the Arzelà-Ascoli theorem can be
found in most of textbooks of Elementary Analysis.

We claim that tyτuτą0 and ty 1
τuτą0, viewing as functions defined on [0, T ] for some T ą 0, are

uniformly bounded (so that we can extract a uniformly convergent subsequence due to the Arzelà-
Ascoli theorem). Let T ą 0 be given such that t0 + τ ă T .

1. If 0 ă t ă t0 ´ τ , then yτ (t) = Y (t); thus

|yτ (t)| + |y 1
τ (t)| ď max

tP[0,T ]

ˇ

ˇY (t)
ˇ

ˇ+ max
tP[0,T ]

ˇ

ˇY 1(t)
ˇ

ˇ @ t P (0, t0 ´ τ) . (6.22)

2. If t0 ´ τ ă t ă t0 + τ , then

yτ (t) = Y (t) +
F

2cτ

[
1 ´ z(t ´ t0 + τ)

]
and y 1

τ (t) = Y 1(t) ´
F

2cτ
z 1(t ´ t0 + τ) .

The mean value theorem implies that there exists ξ1, ξ2 P (t ´ t0 + τ) such that

1 ´ z(t ´ t0 + τ) = z(0) ´ z(t ´ t0 + τ) = ´z 1(ξ1)(t ´ t0 + τ) ,

z 1(t ´ t0 + τ) = z 1(t ´ t0 + τ) ´ z 1(0) = z 11(ξ2)(t ´ t0 + τ) .



Since t0 ´ τ ă t ă t0 + τ , we must have |t ´ t0 + τ | ă 2τ ; thus

|yτ (t)| ď
ˇ

ˇY (t)
ˇ

ˇ+
|F |

2|c|τ
|z 1(ξ1)||t ´ t0 + τ |

ď max
tP[0,T ]

ˇ

ˇY (t)
ˇ

ˇ+
|F |

|c|
max
tP[0,T ]

|z 1(t)| @ t P (0, t0 ´ τ) , (6.23a)

and similarly,

|y 1
τ (t)| ď max

tP[0,T ]

ˇ

ˇY 1(t)
ˇ

ˇ+
|F |

|c|
max
tP[0,T ]

ˇ

ˇz 11(t)
ˇ

ˇ @ t P (0, t0 ´ τ) . (6.23b)

3. If t0 + τ ă t ă T , then

yτ (t) = Y (t) ´
F

2cτ

[
z(t ´ t0 + τ) ´ z(t ´ t0 ´ τ)

]
,

y 1
τ (t) = Y 1(t) ´

F

2cτ

[
z 1(t ´ t0 + τ) ´ z 1(t ´ t0 ´ τ)

]
.

Similar to the argument in the previous case, the mean value theorem provides η1, η2 P (t ´

t0 ´ τ, t ´ t0 + τ) such that

z(t ´ t0 + τ) ´ z(t ´ t0 ´ τ) = z 1(η1) ¨ (2τ) ,

z 1(t ´ t0 + τ) ´ z 1(t ´ t0 ´ τ) = z 11(η2) ¨ (2τ) ;

thus

|yτ (t)| ď max
tP[0,T ]

ˇ

ˇY (t)
ˇ

ˇ+
|F |

|c|
max
tP[0,T ]

|z 1(t)| @ t P (t0 + τ, T ) (6.24a)

|y 1
τ (t)| ď max

tP[0,T ]

ˇ

ˇY 1(t)
ˇ

ˇ+
|F |

|c|
max
tP[0,T ]

|z 11(t)| @ t P (t0 + τ, T ) . (6.24b)

Noting that there exist M ą 0 and α ą 0 such that
ˇ

ˇY (t)
ˇ

ˇ+
ˇ

ˇY 1(t)
ˇ

ˇ+ |z 1(t)| + |z 11(t)| ď Meαt @ t ą 0 ,

combining (6.22), (6.23) and (6.24) we find that
ˇ

ˇyτ (t)
ˇ

ˇ+
ˇ

ˇy 1
τ (t)

ˇ

ˇ ď 2M
(
1 +

|F |

|c|

)
eαT @ t P (0, T )ztt0 ´ τ, t0 + τu .

Let ĂM = 2M
(
1 +

|F |

|c|

)
. By the continuity of yτ and y 1

τ , the inequality above shows that

ˇ

ˇyτ (T )
ˇ

ˇ+
ˇ

ˇy 1
τ (T )

ˇ

ˇ ď ĂMeαT .

Since the inequality above holds for all T ą 0, we conclude that
ˇ

ˇyτ (t)
ˇ

ˇ+
ˇ

ˇy 1
τ (t)

ˇ

ˇ ď ĂMeαt @ t ą 0 . (6.25)

Therefore, tyτuτą0 and ty 1
τuτą0 are uniformly bounded on [0, T ] for all T ą 0.

Let T ą 0 be fixed again. By the Arzelà-Ascoli theorem, there exists a subsequence
␣

yτj
(8

j=1



which converges to y uniformly on [0, T ] as j Ñ 8. We note that y is a function defined on [0, T ].
Now, by the uniform boundedness of

␣

yτj
(8

j=1
and

␣

y 1
τj

(8

j=1
on [0, 2T ], there exists a subsequence

␣

yτjℓ
(8

ℓ=1
which converges to y˚ uniformly on [0, 2T ]. Same procedure provides a further subsequence

␣

yτjℓk

(8

k=1
which converges to y˚˚ uniformly on [0, 3T ]. We note that y˚˚ = y˚ on [0, T + 1] and

y˚˚ = y on [0, T ]). We continue this process and obtain a sequence, still denoted by
␣

yτj
(8

j=1
, and a

continuous function y : [0,8) Ñ R such that

lim
jÑ8

sup
tP[0,T ]

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇ = 0 @T ą 0 . (6.26)

We note that (6.25) implies that y satisfies

|y(t)| ď ĂMeαt @ t ą 0 ;

thus the limit function y is of exponential order α for some α ą 0. On the other hand, we also note
that it is still possible that there is another convergent subsequence which converges to another limit
function, but we will show that there is only one possible limit function.

Note that in Section 6.5 we use the Laplace transform to solve the IVP (6.20) and obtain that

(s2 + bs+ c)L (yτ )(s) = (s+ b)y0 + y1 + F

ż 8

0

dτ (t ´ t0)e
´st dt @ s ą α ,

where α is chosen so that yτ and y are of exponential order α. In particular,

(s2 + bs+ c)

ż 8

0

yτj(t)e
´st dt = (s+ b)y0 + y1 + F

ż 8

0

dτj(t ´ t0)e
´st dt @ s ą α . (6.27)

Let ε ą 0 and s ą α be given. Since there exists M ą 0 such that |yτ (t)| + |y(t)| ď Meαt for all
t ą 0, we can choose T ą 0 such that

ż 8

T

e(α´s)t dt =
1

s ´ α
e(α´s)T ă

ε

2M
.

Then by the convergence (6.26),there is N ą 0 such that if j ě N ,

sup
tP[0,T ]

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇ ă
sε

2(1 + e´sT )
.

Then for j ě N ,
ˇ

ˇ

ˇ

ż 8

0

[
yτj(t) ´ y(t)

]
e´st dt

ˇ

ˇ

ˇ
ď

ż 8

0

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇe´st dt

=

ż T

0

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇe´st dt+

ż 8

T

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇe´st dt

ď

ż T

0

sup
tP[0,T ]

ˇ

ˇyτj(t) ´ y(t)
ˇ

ˇe´st dt+M

ż 8

T

eαte´st dt

ď
sε

2(1 + e´sT )

ż T

0

e´st dt+
ε

2
ă ε



which implies that

lim
jÑ8

ż 8

0

yτj(t)e
´st dt =

ż 8

0

y(t)e´st dt = L (y)(s) @ s ą α .

On the other hand, the change of variables formula shows that
ż 8

0

dτj(t ´ t0)e
´st dt =

ż 8

´8

dτj(t ´ t0)e
´st dt =

ż 8

´8

dτj(t)e
´s(t+t0) dt

so (6.17) implies that
lim
jÑ8

ż 8

0

dτj(t ´ t0)e
´st dt = e´st0 .

As a consequence, passing to the limit as j Ñ 8 in (6.27), we find that

(s2 + bs+ c)L (y)(s) = (s+ b)y0 + y1 + Fe´st0 @ s ą α . (6.28)

Since any possible limit of tyτuτą0 has to satisfy the equation above, by Theorem 6.15 we conclude
that there is only one uniform limit of tyτuτą0; thus tyτuτą0 converges to y uniformly on [0, T ] for
every T ą 0; that is,

lim
τÑ0

sup
tP[0,T ]

ˇ

ˇyτ (t) ´ y(t)
ˇ

ˇ = 0 @T ą 0 . (6.29)

The uniform convergence of tyτuτą0 to y implies that if the support of the impulse is really small,
even though we might not know the precise value of τ , the solution to (6.20) is very closed to the
unique limit function y. We note that the three possible y’s given above are continuous but have
discontinuous derivatives, and are not differentiable at t0.

By Theorem 6.34 and 6.17, identity (6.28) implies the following:

1. if r2 + br + c = 0 has two distinct real roots r1 and r2, then the solution y to (6.28) is

y(t) = Y (t) +
F

r1 ´ r2
ut0(t)

[
er1(t´t0) ´ er2(t´t0)

]
=
y1 ´ r2y0
r1 ´ r2

er1t +
r1y0 ´ y1
r1 ´ r2

er2t +
F

r1 ´ r2
ut0(t)

[
er1(t´t0) ´ er2(t´t0)

]
. (6.30)

2. if r2 + br + c = 0 has a double root r1, then the solution y to (6.28) is

y(t) = Y (t) + Fut0(t)(t ´ t0)e
r1(t´t0)

= y0e
r1t + (y1 ´ r1y0)te

r1t + Fut0(t)(t ´ t0)e
r1(t´t0) . (6.31)

3. if r2 + br + c = 0 has two complex roots λ ˘ iµ, then the solution y to (6.28) is

y(t) = Y (t) +
F

µ
ut0(t)e

λ(t´t0) sinµ(t ´ t0)

= y0e
λt cosµt+ y1 ´ λy0

µ
eλt sinµt+ F

µ
ut0(t)e

λ(t´t0) sinµ(t ´ t0) . (6.32)



6.7.1 The Dirac delta function

Even though we can stop our discussion about second order ODEs with impulse forcing functions
here, we would like to go a little bit further by introducing the so-called “Dirac delta function”.

Definition 6.53 (Informal definition of the Dirac delta function). For t0 ą 0, the Dirac delta
function at t0, denoted by δt0 , is the function whose Laplace transform is the function G(s) = e´st0 .

Given the definition above, (6.4) and (6.28) imply that y satisfies the ODE

y 11 + by 1 + cy = Fδt0(t) , y(0) = y0, y 1(0) = y1 . (6.33)

However, there is no such δt0 for the following reasons:

1. Using (6.30), (6.31) or (6.32), we find that y 11 + by 1 + cy = 0 for all t ‰ t0. If such δt0 exists (as
a function), then δt0(t) = 0 for all t ‰ t0 which makes L (δt0) = 0. In other words, if δt0 is a
function of non-negative real numbers, no matter what value is assigned to δt0(t0), the Laplace
transform of δt0 cannot be e´st0 .

2. Rewriting e´st0 as s ¨
e´st0

s
, by Theorem 6.19 we find that

e´st0 = s
e´st0

s
= sL (ut0) = L

( d

dt
ut0

)
(s) + ut0(0) = L

( d

dt
ut0

)
(s) .

Therefore, δt0(t) =
d

dt
ut0(t) which vanishes as long as t ‰ t0.

‚ What does y 11+by 1+cy = Fδt0(t) really mean? Recall that our goal is to find a “representative”
of solutions of the sequence of ODEs (6.20). The discussion above shows that such a representative
has to satisfies (6.28) which, under the assumption that

L (y 11 + by 1 + cy)(s) = (s2 + bs+ c)L (y) ´ sy(0) ´ y 1(0) . (6.34)

implies the equation y 11 + by 1 + cy = Fδt0(t). As we can see from the precise form of the function y

in (6.30), (6.31) and (6.32), y 1 is not even continuous; thus (6.34) is in fact a false assumption.
The way that the ODE y 11 + by 1 + cy = Fδt0(t) is understood is through the distribution theory,

in which both sides of the ODE are treated as “functions of functions”. Let φ : [0,8) Ñ R be a
twice continuously differentiable function which vanishes outside [0, T ] for some T ą t0. Multiplying
both sides of (6.20) by φ and then integrating on [0, T ], we find that

ż T

0

(y 11
τj
+ by 1

τj
+ cyτj

)
φ(t) dt = F

ż T

0

dτj(t ´ t0)φ(t) dt .

Integrating by parts (twice if necessary) and making a change of variable on the right-hand side,

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

yτj(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = F

ż 8

´8

dτj(t)φ(t+ t0) dt (6.35)



for all twice continuously differentiable functions φ vanishing outside some interval [0, T ]. We note
that the integral in (6.35) is not an improper integral but indeed an integral on a bounded interval.
Passing to the limit as j Ñ 8 in (6.35), the uniform convergence of

␣

yτj
(8

j=1
to y on any closed

interval [0, T ] and (6.17) imply that

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = Fφ(t0) (6.36)

for all twice continuously differentiable functions φ vanishing outside some interval [0, T ].

Definition 6.54. The collection of all k-times continuously differentiable function defined on [0,8

and vanishing outside some interval [0, T ] for some T ą 0 is denoted by C k
c ([0,8)). A function

f : [0,8) Ñ R is said to belong to the space C 8
c ([0,8)) if f P C k

c ([0,8)) for all k P N. In other
words,

C 8
c ([0,8)) ”

!

f : [0,8) Ñ R
ˇ

ˇ

ˇ
f P C k

c ([0,8) @ k P N
)

.

Definition 6.55. Let f : [0,8) be a piecewise continuous function. The linear functional induced
by f , denoted by xf, ¨y, is a function on C 8

c ([0,8)) given by

xf, φy =

ż 8

0

f(t)φ(t) dt @φ P C 8
c ([0,8)) .

Consider the following simple ODE

y 11 + by 1 + cy = f(t) , y(0) = y0 , y 1(0) = y1 , (6.37)

where f is a continuous function of exponential order a for some a P R. The existence theory
implies that there exists a unique twice continuously differentiable solution y to (6.37). Moreover, if
φ P C 2

c ([0,8)),
ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt , y(0) = y0 , y
1(0) = y1 . (6.38)

Since y is twice continuously differentiable on [0,8), we can integrate by parts and find that the
solution y to (6.37) also satisfies

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = xf, φy @φ P C 2

c ([0,8)) . (6.39)

On the other hand, if y is a twice continuously differentiable function satisfying (6.39), we can
integrate by parts (to put the derivatives on φ back to y) and find that y satisfies(

y0 ´ y(0)
)
φ 1(0) ´

[
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0)

+

ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt
@φ P C 2

c ([0,8)) .

In particular,
ż 8

0

[
y 11(t) + by 1(t) + cy(t)

]
φ(t) dt =

ż 8

0

f(t)φ(t) dt @φ P C 2
c ([0,8)) satisfying φ(0) = φ 1(0) = 0 .



Therefore, y 11 + by 1 + cy must be identical to f since they are both continuous. Having established
this, we find that(

y0 ´ y(0)
)
φ 1(0) ´

[
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0) = 0 @φ P C 2

c ([0,8)) .

Choose φ P C 2
c ([0,8)) such that φ(0) = 0 and φ 1(0) = 1, we conclude that y0 = y(0); thus we arrive

at the equality [
y1 + by0 ´ y 1(0) ´ by(0)

]
φ(0) = 0 @φ P C 2

c ([0,8)) .

The identity above clearly shows that y1 = y 1(0). In other words, if y is twice continuously differen-
tiable and satisfies (6.39), then y satisfies (6.37); thus we establish that given a continuous forcing
function f ,

y is a solution to (6.37) if and only if y satisfies (6.39).

Thus we change the problem of solving an ODE “in the pointwise sense” to a problem of solving
an integral equation which holds “in the sense of distribution” (a distribution means a function of
functions). We note that there is one particular advantage of defining solution to (6.37) using (6.39)
instead of (6.38): if f is discontinuous somewhere in [0,8) (for example, f = F1(α,β) as in the
previous section), (6.39) provides a good alternative even if y 11 does not always exist.

The discussion above motivates the following

Definition 6.56 (Weak Solutions). Let f : [0,8) Ñ R be a function of exponential order a for some
a P R. A function y : [0,8) Ñ R is said to be a weak solution to (6.37) if y satisfies the integral
equation (6.39). The integral equation (6.39) is called the weak formulation of (6.37).

We remark that the discussion above shows that if f : [0,8) Ñ R is continuous and of exponential
order a for some a P R, the unique C 2-solution y to (6.37) is also a weak solution.

In view of (6.39), if we define L : C 2
c ([0,8)) Ñ R by

L(φ) = y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt , (6.40)

then the integral equation (6.37) is equivalent to that “the two linear functionals L and xf, ¨y are the
same on the space C 2

c ([0,8))”. We also note that

L(φ) = xy 11 + by 1 + cy, φy if y 11 is piecewise continuous, and (y(0), y 1(0)) = (y0, y1) ;

thus if y 11 is piecewise continuous, the statement “L = xf, ¨y on C 2
c ([0,8))” is the same as saying that

“the linear functional induced by y 11 + by 1 + cy and the linear functional induced by f are identical”.
This is what it means by y 11 + by 1 + cy = f in the sense of distribution.

If the right-hand side xf, ¨y is replaced by a general linear functional ℓ, we can still talk about
the possibility of finding an integrable function y validating the integral equation (6.39), or more
precisely, L = ℓ on C 2

c ([0,8)). In particular, for F P R and t0 ą 0, it is reasonable to ask whether
or not there exists an integrable function y such that

y0φ
1(0) ´

(
y1 + by0

)
φ(0) +

ż 8

0

y(t)
(
φ 11(t) ´ bφ 1(t) + cφ(t)

)
dt = Fφ(t0) @φ P C 2

c ([0,8)) , (6.36)



where the linear functional ℓ : C 2
c ([0,8)) Ñ R is given by

ℓ(φ) = Fφ(t0) @φ P C 2
c ([0,8)) . (6.41)

This is exactly the integral equation (6.36); thus the ODE y 11 + by 1 + cy = Fδt0(t) is understood as
L = ℓ on C 2

c ([0,8)), where L and ℓ are defined by (6.40) and (6.41), respectively.
The definition of ℓ motivates the following

Definition 6.57 (Dirac Delta Function). For t0 ą 0, the Dirac delta function at t0 is a map
δt0 : C 2

c ([0,8)) Ñ R defined by
δt0(φ) = φ(t0) .

Because of Definition 6.55, one often write δt0(φ) =
ż 8

0
δt0(t)φ(t) dt for t0 ą 0.

Under this definition, the ODE y 11 + by 1 + cy = Fδt0 is understood as “the functional induced by
y 11 + by 1 + cy (given by (6.40)) is the same as the functional induced by Fδt0”. The function y given
by (6.30), (6.31) or (6.32) is then a weak solution to (6.33).

‚ Summary:
1. The limit y of the solution yτ to the IVP (6.20) is the weak solution to the IVP (6.33); that is,
y solves (6.33) in the sense of distribution or equivalently, y satisfies (6.36).

2. The limit y can be obtained by solving (6.33) formally using the Laplace transform (by treating
that L (δt0)(s) = e´st0) and are given by (6.30), (6.31) or (6.32).

Example 6.58. In this example, we would like to find the “anti-derivative” of the Dirac delta
function at t0 ą 0. In other words, we are looking for a solution to

y 1 = δt0(t) , y(0) = 0 .

Taking the Laplace transform, we find that

sL (y)(s) = e´st0 or equivalently, L (y)(s) =
e´st0

s
. (6.42)

As a consequence, by Example 6.5 and Theorem 6.34 we conclude that the (weak) solution to the
ODE above is

y(t) = ut0(t) .

We again emphasize that in principle we are not allowed to use Theorem 6.19 or Corollary 6.20 to
compute the Laplace transform of y 1; however, the functional induced by y 1 (by assuming that y is

ż 8

0

y 1(t)φ(t) dt = y(0)φ(0) ´

ż 8

0

y(t)φ 1(t) dt @φ P C 1
c ([0,8))

so we are in fact solving y 1 = δt0(t) in the sense of distribution; that is, we look for y satisfying

´

ż 8

0

y(t)φ 1(t) dt = φ(t0) @φ P C 1
c ([0,8)) .

Letting φ(t) = e´st leads to (6.42).



7 Series Solutions of Differential Equations
7.1 Properties of Power Series

Definition 7.1. A power series about c is a series of the form
8
ř

k=0

ak(x ´ c)k for some sequence

taku8
k=0 Ď R (or C) and c P R (or C).

Proposition 7.2. If a power series centered at c is convergent at some point b ‰ c, then the power
series converges absolutely for all points in (c ´ |b ´ c|, c+ |b ´ c|).

Proof. Since the series
8
ř

k=0

ak(b ´ c)k converges, |ak||b ´ c|k Ñ 0 as k Ñ 8; thus there exists M ą 0

such that |ak||b ´ c|k ď M for all k. Then if x P (c ´ |b ´ c|, c + |b ´ c|), the series
8
ř

k=0

ak(x ´ c)k

converges absolutely since
8
ÿ

k=0

|ak(x ´ c)k| =
8
ÿ

k=0

|ak||x ´ c|k =
8
ÿ

k=0

|ak||b ´ c|k
|x ´ c|k

|b ´ c|k
ď M

8
ÿ

k=0

( |x ´ c|

|b ´ c|

)k

which converges (because of the geometric series test or ratio test). ˝

Definition 7.3. A number R is called the radius of convergence of the power series
8
ř

k=0

ak(x´c)k

if the series converges for all x P (c ´ R, c + R) but diverges if x ą c + R or x ă c ´ R. In other
words,

R = sup
␣

r ě 0
ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k converges in [c ´ r, c+ r]
(

.

The interval of convergence or convergence interval of a power series is the collection of all
x at which the power series converges.

We remark that Proposition 7.2 implies that a power series converges absolutely in the interior
of the interval of convergence.

Proposition 7.4. A power series is continuous in the interior of the convergence interval; that is, if
R ą 0 is the radius of convergence of the power series

8
ř

k=0

ak(x´ c)k, then
8
ř

k=0

ak(x´ c)k is continuous

in (c ´ R, c+R).

Proof. W.L.O.G., we prove that the power series is continuous at x0 P [c, c+R). Let ε ą 0 be given.
Define r = c+R ´ x0

2
. Then x0 + r P (c ´ R, c+R); thus there exists N ą 0 such that

8
ÿ

k=N+1

|ak||x0 + r ´ c|k ă
ε

3
.

Moreover, since
N
ř

k=0

ak(x ´ c)k is continuous at x0, there exists 0 ă δ ă r such that

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
ă
ε

3
@ |x ´ x0| ă δ .



Therefore, if |x ´ x0| ă δ, we have

ˇ

ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k ´

8
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ

+
8
ÿ

k=N+1

|ak||x0 + r ´ c|k
|x ´ c|k

|x0 + r ´ c|k
+

8
ÿ

k=N+1

|ak||x0 + r ´ c|k
|x0 ´ c|k

|x0 + r ´ c|k

ď

ˇ

ˇ

ˇ

N
ÿ

k=0

ak(x ´ c)k ´

N
ÿ

k=0

ak(x0 ´ c)k
ˇ

ˇ

ˇ
+ 2

8
ÿ

k=N+1

|ak|rk ă ε

which implies that
8
ř

k=0

ak(x ´ c)k is continuous at x0. ˝

Theorem 7.5. Let R ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k. Then

ż x

c

8
ÿ

k=0

ak(t ´ c)kdt =
8
ÿ

k=0

ż x

c

ak(t ´ c)kdt =
8
ÿ

k=0

ak
k + 1

(x ´ c)k+1 @x P (c ´ R, c+R) .

Proof. W.L.O.G., we assume that x P (c, c+R). Let ε ą 0 be given. Choose x0 P (c´R, c+R) such
that |x ´ c| ă |x0 ´ c|. Then for t P [c, x], |t ´ c|

|x0 ´ c|
ď 1. Moreover, since

8
ř

k=1

ak(x0 ´ c)k converges
absolutely, there exists N ě 0 such that

8
ÿ

k=N+1

|ak||x0 ´ c|k ď
ε

|x0 ´ c|
.

Since
ż x

c

8
ÿ

k=0

ak(t ´ c)kdt =

ż x

c

n
ÿ

k=0

ak(t ´ c)kdt+

ż x

c

8
ÿ

k=N+1

ak(t ´ c)kdt

=
n
ÿ

k=0

ak
k + 1

(x ´ c)k+1 +

ż x

c

8
ÿ

k=n+1

ak(t ´ c)kdt ,

we have for n ě N ,
ˇ

ˇ

ˇ

ż x

c

8
ÿ

k=0

ak(t ´ c)kdt ´

n
ÿ

k=0

ak
k + 1

(x ´ c)k+1
ˇ

ˇ

ˇ
ď

ż x

c

8
ÿ

k=n+1

|ak||x0 ´ c|k
(t ´ c)k

|x0 ´ c|k
dt

ď

ż x

c

8
ÿ

k=N+1

|ak||x0 ´ c|kdt ď |x0 ´ c|
8
ÿ

k=N+1

|ak||x0 ´ c|k ă ε .

In other words, lim
nÑ8

n
ř

k=0

ak
k + 1

(x ´ c)k+1 =
ż x

c

8
ř

k=0

ak(t ´ c)kdt which concludes the corollary. ˝

Theorem 7.6. Let R ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k. Then

d

dx

8
ÿ

k=0

ak(x ´ c)k =
8
ÿ

k=0

d

dx
ak(x ´ c)k =

8
ÿ

k=1

kak(x ´ c)k´1 @x P (c ´ R, c+R) .



Proof. We first show that the series
8
ř

k=1

kak(x ´ c)k´1 also converges for all x P (c ´ R, c + R). Let

x P (c´R, c+R). Choose x0 P (c´R, c+R) such that |x´ c| ă |x0 ´ c|. Then lim
kÑ8

k
|x ´ c|k

|x0 ´ c|k
= 0.

Therefore, there exists M ą 0 such that

k
|x ´ c|k

|x0 ´ c|k
ď M @ k P N Y t0u ;

thus
8
ÿ

k=0

k|ak||x ´ c|k´1 =
8
ÿ

k=0

|ak||x0 ´ c|k´1k
|x ´ c|k´1

|x0 ´ c|k´1
ď

M

|x0 ´ c|

8
ÿ

k=0

|ak||x0 ´ c|k ă 8 .

Let bk = (k + 1)ak+1. The absolute convergence above implies that the power series
8
ř

k=0

bk(x ´ c)k

converges absolutely in (c ´ R, c+R) since
8
ÿ

k=0

bk(x ´ c)k =
8
ÿ

k=1

kak(x ´ c)k´1 @x P (c ´ R, c+R) . (7.1)

Now, Theorem 7.5 implies that for all x P (c ´ R, c+R),
ż x

c

8
ÿ

k=0

bk(t ´ c)kdt =
8
ÿ

k=0

ż x

c

bk(t ´ c)kdt =
8
ÿ

k=0

ak+1(x ´ c)k+1 =
8
ÿ

k=1

ak(x ´ c)k ;

thus by the fact (due to Proposition 7.4) that the power series
8
ř

k=0

bk|x ´ c|k is continuous in (c ´

R, c+R), the fundamental theorem of Calculus implies that
8
ÿ

k=0

bk(x ´ c)kdt =
d

dx

8
ÿ

k=0

ak(x ´ c)k @x P (c ´ R, c+R) .

The theorem is then concluded because of (7.1). ˝

Definition 7.7. A function f : (a, b) Ñ R is said to be analytic at c P (a, b) if f is infinitely many
times differentiable at c and there exists R ą 0 such that

f(x) =
8
ÿ

k=0

ak(x ´ c)k @x P (c ´ R, c+R) Ď (a, b)

for some sequence taku8
k=0.

Remark 7.8. If f : (a, b) Ñ R is analytic at c P (a, b), then Theorem 7.6 implies that

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P (c ´ R, c+R) Ď (a, b)

for some R ą 0.
A function which is infinitely many times differentiable at a point c might not be analytic at c.

For example, consider the function

f(x) =

#

exp
(

´
1

x2

)
if x ‰ 0 ,

0 if x = 0 .

Then f (k)(0) = 0 for all k P N which implies that f cannot be analytic at 0.



7.1.1 Product of Power Series

Definition 7.9. Given two series
8
ř

n=0

an and
8
ř

n=0

bn, the series
8
ř

n=0

cn, where cn =
n
ř

k=0

akbn´k for all

n P N Y t0u, is called the Cauchy product of
8
ř

n=0

an and
8
ř

n=0

bn.

Theorem 7.10. Suppose that the two series
8
ř

n=0

an and
8
ř

n=0

bn converge absolutely. Then the Cauchy

product of
8
ř

n=0

an and
8
ř

n=0

bn converges absolutely to
( 8
ř

n=0

an

)( 8
ř

n=0

bn

)
; that is,

8
ÿ

n=0

( n
ÿ

k=0

akbn´k

)
=

( 8
ÿ

n=0

an

)( 8
ÿ

n=0

bn

)
.

Proof. Claim: If
8
ř

n=0

an converges absolutely and π : N Ñ N is bijective (that is, one-to-one and

onto), then
8
ř

n=0

aπ(n) converges absolutely to
8
ř

n=0

an.

Proof of claim: Let
8
ř

n=0

an = a and ε ą 0 be given. Since
8
ř

n=0

an converges absolutely, there exists
N ą 0 such that 8

ÿ

n=N+1

|an| ă
ε

2
.

Let K = max
␣

π´1(1), ¨ ¨ ¨ , π´1(N)
(

+ 1. Then if k ě K, π(k) ě N + 1; thus if k ě K,

8
ÿ

n=k+1

|aπ(n)| ď

8
ÿ

n=N+1

|an| ă
ε

2

and
ˇ

ˇ

ˇ

k
ÿ

n=0

aπ(n) ´ a
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

k
ÿ

n=0

aπ(n) ´

N
ÿ

n=0

an

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

N
ÿ

n=0

an ´ a
ˇ

ˇ

ˇ
ď 2

8
ÿ

n=N+1

|an| ă ε .

Therefore,
8
ř

n=0

aπ(n) converges absolutely to a.

Claim: If
8
ř

n=0

an and
8
ř

n=0

bn converge absolutely, then
8
ř

n,m=1

anbm converges absolutely and

8
ÿ

n,m=1

anbm =
( 8
ÿ

n=1

an

)( 8
ÿ

m=1

bm

)
,

where
8
ř

n,m=1

anbm denotes the limit lim
N,MÑ8

N
ř

n=1

M
ř

m=1

anbm.

Proof of claim: If N1 ă N2 and M1 ă M2,

ˇ

ˇ

ˇ

( N1
ÿ

n=1

|an|

)( M1
ÿ

m=1

|bm|

)
´

( N2
ÿ

n=1

|an|

)( M2
ÿ

m=1

|bm|

)ˇ
ˇ

ˇ
ď

N1
ÿ

n=1

|an|

M2
ÿ

m=M1+1

|bm| +
N2
ÿ

n=N1+1

|an|

M2
ÿ

m=1

|bm|



which converges asN1,M1 Ñ 8. Therefore,
8
ř

n,m=1

anbm converges absolutely, and similar computation

shows that
ˇ

ˇ

ˇ

( N1
ÿ

n=1

an

)( M1
ÿ

m=0

bm

)
´

8
ÿ

n,m=1

anbm

ˇ

ˇ

ˇ

= lim
N2,M2Ñ8

ˇ

ˇ

ˇ

( N1
ÿ

n=1

an

)( M1
ÿ

m=0

bm

)
´

( N2
ÿ

n=1

an

)( M2
ÿ

m=0

bm

)ˇ
ˇ

ˇ

ď

( 8
ÿ

n=1

|an| +
8
ÿ

m=1

|bm|

)( 8
ÿ

n=N1+1

|an| +
8
ÿ

m=M1+1

|bm|

)
which converges to zero as N1,M1 Ñ 8. Therefore, we conclude that

8
ÿ

n,m=1

anbm =
( 8
ÿ

n=1

an

)( 8
ÿ

m=1

bm

)
.

The claim is then concluded by passing to the limit as M1 Ñ 8 and then N1 Ñ 8.
The theorem follows from the fact that the Cauchy product is a special rearrangement of the

series
8
ř

n,m=1

anbm. ˝

Corollary 7.11. Let R1, R2 ą 0 be the radius of convergence of the power series
8
ř

k=0

ak(x ´ c)k and
8
ř

k=0

bk(x ´ c)k, respectively. Then with R denoting mintR1, R2u, we have

( 8
ÿ

k=0

ak(x ´ c)k
)( 8

ÿ

k=0

bk(x ´ c)k
)
=

8
ÿ

n=0

( n
ÿ

k=0

akbn´k

)
(x ´ c)n @x P (c ´ R, c+R) .

7.2 Power Series Solutions to Linear Differential Equations

The discussion of the power series is for the purpose of solving ODE with analytic coefficients and
forcings.

Theorem 7.12 (Cauchy-Kowalevski, Special case). Let Ω Ď Rn be an open set, and f : Ω ˆ (t0 ´

h, t0 + h) Ñ Rn be an analytic function in some neighborhood (x0, t0) for some x0 P Ω; that is, for
some r ą 0,

f(y, t) = f(y0, t0) +
8
ÿ

k=1

ÿ

|α|+j=k

cα,j(y ´ y0)
α(t ´ t0)

j @ (y, t) P B
(
(y0, t0), r

)
,

where α = (α1, ¨ ¨ ¨ , αn) is a multi-index satisfying yα = yα1
1 ¨ ¨ ¨ yαn

n and |α| = α1 + ¨ ¨ ¨αn. Then there
exists 0 ă δ ă h such that the ODE y 1(t) = f(y, t) with initial condition y(t0) = y0 has a unique
analytic solution in the interval (t0 ´ δ, t0 + δ).

Remark 7.13. If f is continuous at (y0 ´ k, y0 + k) ˆ (t0 ´ h, t0 + h), then the general existence
and uniqueness theorem guarantees the existence of a unique solution of y 1(t) = f(y, t) with initial
condition y(t0) = y0 in some time interval (t0 ´ δ, t0 + δ). Theorem 7.12 further implies that the
solution is analytic if the “forcing” function f is analytic.



Example 7.14. Find a power series solution to y 1 + 2ty = 0.
Note that the ODE above can be written as y 1 = f(y, t), where f(y, t) = ´2ty. Since f is analytic

at any point (y0, t0), the Cauchy-Kowalevski theorem implies that the solution y is analytic at any
t0. Assume that y(t) =

8
ř

k=0

akt
k is the power series representation of the solution y at 0 with radius

of convergence R ą 0. Then Theorem 7.6 implies that

y 1(t) =
8
ÿ

k=1

kakt
k´1 =

8
ÿ

k=0

(k + 1)ak+1t
k ;

thus the ODE above shows that

0 =
8
ÿ

k=0

(k + 1)ak+1t
k + 2t

8
ÿ

k=0

akt
k =

8
ÿ

k=0

(k + 1)ak+1t
k + 2

8
ÿ

k=1

ak´1t
k

= a1 +
8
ÿ

k=1

[
(k + 1)ak+1 + 2ak´1

]
tk .

Therefore, a1 = 0 and (k+1)ak+1 +2ak´1 = 0 for all k P N; thus a1 = a3 = ¨ ¨ ¨ = a2k´1 = ¨ ¨ ¨ = 0 for
all k P N. Moreover, the fact that ak+1 = ´

2

k + 1
ak´1 implies that

a2k+2 = ´
1

k + 1
a2k @ k P N Y t0u ;

thus a2k =
(´1)k

k!
a0 for all k P N. As a consequence,

y(t) =
8
ÿ

k=0

a2kt
2k = a0

8
ÿ

k=0

(´1)k

k!
t2k

(
= a0

8
ÿ

k=0

(´t2)k

k!
= a0e

´t2
)
.

In the remaining chapter we focus on the second order linear homogeneous ODE

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0 , (7.2)

where P,Q,R are assumed to have no common factors. We note that we change the independent
variable from t to x.

Definition 7.15. A point x0 is said to be a ordinary point to ODE (7.2) if P (x0) ‰ 0, and the
two functions Q/P , R/P are analytic at x0. It is called a singluar point if it is not a regular point.
It is called a regular singular point if the two limits

lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and lim

xÑx0

(x ´ x0)
2R(x)

P (x)

both exist and are finite. Any singular point that is not a regular singular point is called an irregular
singular point.

Example 7.16. 1 is the only singular point for the ODE xy 11 + x(1 ´ x)´1y 1 + (sinx)y = 0.



If x0 is a regular point to ODE (7.2), then

y 11 + p(x)y 1 + q(x)y = 0 (7.3)

for some function p and q that are analytic at x0. Write y 1 = z. Then the vector w = (y, z) satisfies

w 1 =
d

dx

[
y
z

]
=

[
z

´p(x)z ´ q(x)y

]
” f(w, x) .

It is clear that f is analytic at x0 if p, q are analytic at x0; thus the Cauchy-Kowalevski theorem
implies that any solutions to (7.3) are analytic. To be more precise, we have the following

Theorem 7.17. Suppose x0 is an ordinary point for equation (7.2). Then equation (7.2) has two
linearly independent analytic solutions of the form

y(x) =
8
ÿ

k=0

ak(x ´ x0)
k .

Moreover, the radius of convergence of any power series solution of the form given above is at least
as large as the distance from x0 to the nearest singular point (possibly a complex number) of equation
(7.3).

Example 7.18. The radius of convergence of series solutions about any point x = x0 of the ODE

y 11 + (sinx)y 1 + (1 + x2)y = 0

is infinite; that is, for any x0 P R, series solutions about x = x0 of the ODE above converge for all
x P R.

Example 7.19. Find a lower bound for the radius of convergence of series solutions about x = 0 of
the Legendre equation

(1 ´ x2)y 11 ´ 2xy 1 + α(α + 1)y = 0 .

Since there are two singular points ˘1, the radius of convergence of the series solution about 0 of the
Legendre equation is at least 1. We also note that ˘1 are both regular singular point of the Legendre
equation.

Example 7.20. Find a lower bound for the radius of convergence of series solutions about x = 0 or
about x = ´

1

2
of the ODE

(1 + x2)y 11 + 2xy 1 + 4x2y = 0 .

Since there are two singular points, ˘i, of the ODE, the radius of convergence of the power series
solution about 0 of the ODE is at least 1.

Next, consider the power series solution about ´
1

2
. Since the distance between ´

1

2
and ˘i are

?
5

2
, the radius of convergence of a power series solution about ´

1

2
is at least

?
5

2
.



7.3 Series Solutions Near an Ordinary Point: Part I

In this section, we provide several examples showing how to apply the method of power series to
solve ODE (or IVP).

Example 7.21. Find the general solution to the ODE 2y 11 + xy 1 + y = 0 in the form of a power
series about the ordinary point x = 0.

Suppose that the solution can be written as y =
8
ř

k=0

akx
k. Then Theorem 7.6 implies that

y 1 =
8
ÿ

k=1

kakx
k´1 and y 11 =

8
ÿ

k=2

k(k ´ 1)akx
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2x
k ;

thus
8
ÿ

k=0

[
2(k + 2)(k + 1)ak+2 + kak + ak

]
xk = 0 .

Therefore, 2(k + 2)(k + 1)ak+2 + (k + 1)ak = 0 for all k P N Y t0u or equivalently,

ak+2 = ´
1

2(k + 2)
ak @ k P N Y t0u .

For even k = 2n,

a2n = ´
1

2n
a2n´2 =

1

22n(2n ´ 2)
a2n´4 = ¨ ¨ ¨ =

(´1)n

22nn!
a0 @n P N ,

while for odd k = 2n+ 1,

a2n+1 = ´
1

2(2n+ 1)
a2n´1 =

1

22(2n+ 1)(2n ´ 1)
a2n´3 = ¨ ¨ ¨ =

(´1)n

2n(2n+ 1)(2n ´ 1) ¨ ¨ ¨ 3
a1

=
(´1)nn!

(2n+ 1)!
a1 @n P N .

Therefore,

y = a0

8
ÿ

n=0

(´1)n

22nn!
x2n + a1

8
ÿ

n=0

(´1)nn!

(2n+ 1)!
x2n+1 .

The radius of convergence of the power series given above is also infinite and this coincides with the
conclusion in Theorem 7.17.

Note that the function
8
ř

n=0

(´1)n

22nn!
x2n is indeed the function exp

(
´
x2

4

)
; thus using the method of

reduction of order, we find that another linearly independent solution is exp
(

´
x2

4

) ż
exp

(x2
4

)
dx.

Example 7.22. Find the general solution to Airy’s equation y 11 ´ xy = 0 in the form of a power
series about the ordinary point x = 0.

Suppose that the solution can be written as y =
8
ř

k=0

akx
k. Then

y 11 =
8
ÿ

k=2

k(k ´ 1)akx
k´2 =

8
ÿ

k=0

(k + 2)(k + 1)ak+2x
k ;



and
xy =

8
ÿ

k=0

akx
k+1 =

8
ÿ

k=1

ak´1x
k .

Therefore,

a2 +
8
ÿ

k=1

[
(k + 2)(k + 1)ak+2 ´ ak´1

]
xk = 0

which implies that a2 = 0 and ak+2 =
ak´1

(k + 2)(k + 1)
for all k P N. The recurrence relation further

implies that a5 = a8 = a11 = ¨ ¨ ¨ = a3k´1 = ¨ ¨ ¨ = 0 for all k P N. Furthermore, we have

a3k =
a3k´3

(3k)(3k ´ 1)
=

a3k´6

(3k)(3k ´ 1)(3k ´ 3)(3k ´ 4)
= ¨ ¨ ¨

=
a0

(3k)(3k ´ 1)(3k ´ 3)(3k ´ 4) ¨ ¨ ¨ 3 ¨ 2
=

(3k ´ 2)(3k ´ 5) ¨ ¨ ¨ 4 ¨ 1a0
(3k)!

=
3k
(
k ´

2

3

)(
k ´

5

3

)
¨ ¨ ¨

1

3
a0

(3k)!
=

3kΓ(k + 1/3)

Γ(1/3)(3k)!
a0

and

a3k+1 =
a3k´2

(3k + 1)(3k)
=

a3k´5

(3k + 1)(3k)(3k ´ 2)(3k ´ 3)
= ¨ ¨ ¨

=
a1

(3k + 1)(3k)(3k ´ 2)(3k ´ 3) ¨ ¨ ¨ 4 ¨ 3
=

(3k ´ 1)(3k ´ 4) ¨ ¨ ¨ 2a1
(3k + 1)!

=
3k
(
k ´

1

3

)(
k ´

4

3

)
¨ ¨ ¨

2

3
a1

(3k + 1)!
=

3kΓ(k + 2/3)

Γ(2/3)(3k + 1)!
a1 .

Therefore, the solution of Airy’s equation is of the form

y = a0

8
ÿ

k=0

3kΓ(k + 1/3)

Γ(1/3)(3k)!
x3k + a1

8
ÿ

k=0

3kΓ(k + 2/3)

Γ(2/3)(3k + 1)!
x3k+1 .

Example 7.23. In this example, instead of considering a series solution of Airy’s equation y 11´xy = 0

of the form y =
8
ř

k=0

akx
k, we look for a solution of the form y =

8
ř

k=0

ak(x ´ 1)k.

Since
y 11 =

8
ÿ

k=2

k(k ´ 1)ak(x ´ 1)k´2 =
8
ÿ

k=0

(k + 2)(k + 1)ak+2(x ´ 1)k

and

xy = (x ´ 1)y + y =
8
ÿ

k=0

ak(x ´ 1)k+1 +
8
ÿ

k=0

ak(x ´ 1)k =
8
ÿ

k=1

ak´1(x ´ 1)k +
8
ÿ

k=0

ak(x ´ 1)k ,

we have

(2a2 ´ a0) +
[
6a3 ´ (a1 + a0)

]
(x ´ 1) +

8
ÿ

k=2

[
(k + 2)(k + 1)ak+2 ´ (ak´1 + ak)

]
(x ´ 1)k = 0 .

Therefore, 2a2 = a0, 6a3 = a1 + a0, 12a4 = a2 + a1, 20a5 = a3 + a2, and in general,

(k + 2)(k + 1)ak+2 = ak+1 + ak .



Solving for a few terms, we find that

a2 =
1

2
a0 , a3 =

1

6
a0 +

1

6
a1 , a4 =

1

24
a0 +

1

12
a1 , a5 =

1

30
a0 +

1

120
a1 , ¨ ¨ ¨

It seems not possible to find a general form the the series solution. Nevertheless, we have

y = a0

[
1 +

(x ´ 1)2

2
+

(x ´ 1)3

6
+

(x ´ 1)4

24
+

(x ´ 1)5

30
+ ¨ ¨ ¨

]
+ a1

[
(x ´ 1) +

(x ´ 1)3

6
+

(x ´ 1)4

12
+

(x ´ 1)5

120
+ ¨ ¨ ¨

]
.

7.4 Series Solution Near an Ordinary Point: Part II

There is another way to computed the coefficients ak of the series solution to ODE (7.2). The idea is
to differentiate the equation (7.2) k-times and then evaluate at an ordinary point x0 so that y(k+2)(x0)

can be obtained once y(j)(x0)’s are known for 0 ď j ď k + 1. To be more precise, we differentiate
(7.2) k-times and use the Leibniz rule to obtain that

P (x0)y
(k+2)(x0) +

k´1
ÿ

j=0

Ck
j P

(k´j)(x0)y
(j+2)(x0) +

k
ÿ

j=0

Ck
j

(
Q(k´j)(x0)y

(1+j)(x0) +R(k´j)(x0)y
(j)(x0)

)
= 0 ;

thus

P (x0)y
(k+2)(x0) = ´

k+1
ÿ

j=2

Ck
j´2P

(k´j+2)(x0)y
(j)(x0) ´

k+1
ÿ

j=1

Ck
j´1Q

(k´j+1)(x0)y
(j)(x0)

´

k
ÿ

j=0

Ck
jR

(k´j)(x0)y
(j)(x0)

= ´
[
kP 1(x0) +Q(x0)

]
y(k+1)(x0) ´

[
Q(k)(x0) + kR(k´1)(x0)

]
y 1(x0) ´ R(k)(x0)y(x0)

´

k
ÿ

j=2

[
Ck

j´2P
(k´j+2)(x0) + Ck

j´1Q
(k´j+1)(x0) + Ck

jR
(k´j)(x0)

]
y(j)(x0) .

The recurrence relation above can be used to obtain the coefficients ak+2 =
y(k+2)(x0)

(k + 2)!
of the series

solution y =
8
ř

k=0

ak(x ´ x0)
k to (7.2) once yk+1(x0), ¨ ¨ ¨ , f(x0) are known.

Example 7.24. Find the series solution about 1 of Airy’s equation y 11 ´ xy = 0.
Assume that the series solution is y =

8
ř

k=0

ak(x´1)k. First, we know that y 11(1)´ y(1) = 0. Since

y(1) = a0, we know that a2 =
y 11(1)

2
=

a0
2

. Differentiating Airy’s equation k-times, we find that

y(k+2) ´ xy(k) ´ ky(k´1) = 0 ;

thus

(k + 2)!ak+2 = y(k+2)(1) = y(k)(1) + ky(k´1) = k!ak + k(k ´ 1)!ak´1 = k!(ak + ak´1) .

Therefore, (k + 2)(k + 1)ak+2 = ak + ak´1 which is exactly what we use to obtain the series solution
about 1 to Airy’s equation.



7.5 Cauchy-Euler (Equi-Dimensional) Equations

In this section we consider the Cauchy-Euler (or simply Euler) equation

L[y](x) ” x2y 11 + αxy 1 + βy = 0 . (7.4)

Note that x0 = 0 is a regular singular point of (7.4).
Assume that we only consider the solution of the Euler equation in the region x ą 0. Let

z(t) = y(et). Then z 1(t) = y 1(et)et and z 11(t) = y 11(et)e2t + y 1(et)et which implies that y 11(et)e2t =

z 11(t) ´ z 1(t). Therefore,
z 11(t) + (α ´ 1)z 1(t) + βz(t) = 0 . (7.5)

This is a second order ODE with constant coefficients, and can be solved by looking at the multiplicity
and complexity of the roots of the characteristic equation

r2 + (α ´ 1)r + β = 0 . (7.6)

We note that (7.6) can also be written as r(r´1)+αr+β = 0, and is called the indicial equation.

1. Suppose the roots of the characteristic equation are distinct real numbers r1 and r2. Then the
solution to (7.5) is z(t) = C1e

r1t + C2e
r2t; thus the solution to the Euler equation is

y(x) = C1e
r1 logx + C2e

r2 logx = C1x
r1 + C2x

r2 .

2. Suppose the characteristic equation has a real double root r. Then the solution to (7.5) is
z(t) = (C1t+ C2)e

rt; thus the solution to the Euler equation is

y(x) = (C1 logx+ C2)e
r logx = (C1 logx+ C2)x

r .

3. Suppose the roots of the characteristic equation are complex numbers r1 = a+bi and r2 = a´bi.
Then the solution to (7.5) is z(t) = C1e

at cos(bt) + C2e
at sin(bt); thus the solution to the Euler

equation is

y(x) = C1e
a logx cos(b logx) + C1e

a logx sin(b logx) = C1x
a cos(b logx) + C2x

a sin(b logx) .

Now we consider the solution to (7.4) in the region x ă 0. We then let z(x) = y(´x) and find
that z satisfies also satisfies the same Euler equation; that is,

x2z 11 + αxz 1 + βz = 0 .

We can then solve for z by looking at the multiplicity and complexity of the roots of the characteristic
equation, and conclude that

1. Case 1 - Distinct real roots r1 and r2:

y(x) = C1|x|r1 + C2|x|r2 .

2. Case 2 - Double real root r:
y(x) = (C1|x| + C2)|x|r .

3. Case 3 - Complex roots a ˘ bi:

y(x) = C1|x|at cos(b log |x|) + C2|x|at sin(b log |x|) .



7.5.1 Another way to find solutions to the Cauchy-Euler equations

Assume that the solution is of the form y(x) = xr. Then

x2r(r ´ 1)xr´2 + αxrxr´1 + βxr = 0 .

Therefore, r satisfies the indicial equation (7.5).

1. If the indicial equation (7.5) has two distinct real roots r1 and r2, then xr1 and xr2 are linearly
independent solutions to the Euler equation. Therefore, the solution to the Euler equation
(when the indicial equation has two distinct real roots) is given by

y(x) = C1x
r1 + C2x

r2 .

2. If the indicial equation (7.5) has two distinct complex roots a ˘ bi, then xa+bi and xa´bi are
linearly independent solutions to the Euler equation. Using the Euler identity,

xa˘bi = e(a˘bi) logx = ea logx˘b logxi = xa
[

cos(b logx) ˘ i sin(b logx)
]
;

thus the general solution to the Euler equation (when the indicial equation has two comnplex
roots) is given by

y(x) = C1x
a cos(b logx) + C2x

a sin(b logx) .

3. Suppose that the indicial equation (7.5) has a double root r0. Then β =
(α ´ 1)2

4
, and x

1´α
2 is

a solution to the Euler equation. Suppose that β ‰ 0 (so that the equation does not reduces
to a first order one).

(a) The method of reduction of order: suppose that another linearly independent solution is
given by y(x) = u(x)x

1´α
2 for some function u. Then u satisfies

x2
[
u 11x

1´α
2 + (1 ´ α)u 1x

´1´α
2 +

1 ´ α

2

´1 ´ α

2
ux

´3´α
2

]
+ αx

[
u 1x

1´α
2 +

1 ´ α

2
ux

´1´α
2

]
+

(α ´ 1)2

4
ux

1´α
2 = 0

which can be simplified as
xu 11 + u 1 = 0 .

Therefore, u 1(x) =
C

x
which further implies that u(x) = C logx +D. Therefore, another

solution is given by x 1´α
2 logx.

(b) Let w(r, x) = xr. Then L[w(r, ¨)](x) = (r ´ r0)
2xr for all r ‰ 0. Taking the partial

derivative with respect to r variable, we find that

B

Br
L[w(r, ¨)](x) =

B

Br

[
x2

B 2w

Bx2
+ αx

Bw

Bx
+

(α ´ 1)2

4
w
]
= 2(r ´ r0)x

r + (r ´ r0)x
r logx .



Since the mixed partial derivatives are continuous for all x, r ‰ 0, we find that B 3w

BrBx2
=

B 3w

Bx2Br
and B 2w

BrBx
=

B 2w

BxBr
; thus

0 =
B

Br

ˇ

ˇ

ˇ

r=r0
L[w(r, ¨)](x) =

[
x2

B 3w

Bx2Br
+ αx

B 2w

BxBr
+

(α ´ 1)2

4

Bw

Br

]
(r0, x)

= L
[Bw

Br
(r0, ¨)

]
(x) .

In other words, Bw

Br
(r0, ¨) is also a solution to the Euler equation. Since Bw

Br
(r, x) = xr logx,

we find that another linearly independent solution to the Euler equation (when the indicial
equation has a double root) is given by xr0 logx.

7.6 Series Solutions Near a Regular Singular Point: Part I

Suppose that x0 is a regular singular point of the ODE

P (x)y 11 +Q(x)y 1 +R(x)y = 0 x ą x0 ; (7.2)

that is, P (x0) = 0, and both limits

lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and lim

xÑx0

(x ´ x0)
2R(x)

P (x)

exist. Suppose that the functions p(x) ” (x´ x0)
Q(x)

P (x)
and q(x) ” (x´ x0)

2R(x)

P (x)
are analytic at x0;

that is,

(x ´ x0)
Q(x)

P (x)
=

8
ÿ

k=0

pk(x ´ x0)
k and (x ´ x0)

2R(x)

P (x)
=

8
ÿ

k=0

qk(x ´ x0)
k

in some interval (x0 ´ R, x0 + R). Then by multiplying both side of (7.2) by (x ´ x0)
2

P (x)
, we obtain

that
(x ´ x0)

2y 11 + (x ´ x0)p(x)y
1 + q(x)y

= (x ´ x0)
2y 11 + (x ´ x0)

( 8
ÿ

k=0

pk(x ´ x0)
k
)
y 1 +

( 8
ÿ

k=0

qk(x ´ x0)
k
)
y = 0 .

(7.7)

We note that if x0 = 0 and pk = qk = 0 for all k P N, the equation above is the Euler equation

x2y 11 + p0xy
1 + q0y = 0 (7.8)

that we discussed in previous section. Therefore, for x near 0, it is “reasonable” to expect that the
solution to (7.7) will behave like the solution to the Euler equation

x2y 11 + p0xy
1 + q0y = 0 .

The idea due to Frobenius of solving (7.7) is that the solution of (7.7) should be of the form xr times
an analytic function.

To be more precise, the method of Frobenius provides a way to derive a series solution to (7.2)
about the regular singular point x0:



1. Suppose that a series solution can be written as

y(x) = (x ´ x0)
r

8
ÿ

k=0

ak(x ´ x0)
k =

8
ÿ

k=0

ak(x ´ x0)
k+r

for some r and taku8
k=0 to be determined. Substitute y into (7.2) to obtain an equation of the

form
A0(x ´ x0)

r+J + A1(x ´ x0)
r+J+1 + A2(x ´ x0)

r+J+2 + ¨ ¨ ¨ = 0 .

2. Set A0 = A1 = A2 = ¨ ¨ ¨ = 0. Note that A0 = 0 should correspond to the indicial equation

F (r) = r(r ´ 1) + p0r + q0 = 0 ,

where p0 = lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and q0 = lim

xÑx0

(x ´ x0)
2R(x)

P (x)
.

3. Use the system of equations A0 = A1 = A2 = ¨ ¨ ¨ = 0 to find a recurrence relation involving ak
and a0, a1, ¨ ¨ ¨ , ak´1.

W.L.O.G., we can assume that x0 = 0 (otherwise make a change of variable rx = x ´ x0), and
only focus the discussion of the solution in the region x ą 0. Due to the method of Frobenius, we
look for solutions of (7.7) of the form

y(x) = xr
8
ÿ

k=0

akx
k =

8
ÿ

k=0

akx
k+r , x ą 0 , (7.9)

where a0 is assumed to be non-zero (otherwise we replace r by 1 + r if a1 ‰ 0). Since

y 1(x) = rxr´1
8
ÿ

k=0

akx
k + xr

8
ÿ

k=0

kakx
k´1 =

8
ÿ

k=0

(k + r)akx
k+r´1

and accordingly,

y 11(x) =
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r´2 ,

we obtain
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r)akx
k+r

)
+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

akx
k+r

)
= 0 ,

or cancelling xr,
8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r)akx
k
)
+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

akx
k
)
= 0 .

Using the Cauchy product, we further conclude that

8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k +

8
ÿ

k=0

( k
ÿ

j=0

(j + r)ajpk´j

)
xk +

8
ÿ

k=0

( k
ÿ

j=0

qk´jaj

)
xk = 0 .



Therefore, we obtain the following recurrence relation:

(k + r)(k + r ´ 1)ak +
k
ÿ

j=0

(j + r)ajpk´j +
k
ÿ

j=0

qk´jaj = 0 @ k P N Y t0u . (7.10)

Therefore, with F denoting the function F (r) = r(r ´ 1) + rp0 + q0, we have

F (r + k)ak +
k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj = 0 @ k P N . (7.11)

The case k = 0 in (7.10) induces the following

Definition 7.25. If x0 is a regular singular point of (7.2), then the indicial equation for the
regular singular point x0 is

r(r ´ 1) + p0r + q0 = 0 , (7.12)

where p0 = lim
xÑx0

(x ´ x0)
Q(x)

P (x)
and q0 = lim

xÑx0

(x ´ x0)
2R(x)

P (x)
. The roots of the indicial equation are

called the exponents (indices) of the singularity x0.

Now assume that r1, r2 are roots of the indicial equations for a regular singular point x0.

1. If r1, r2 P R and r1 ą r2. Since F only has two roots, F (k + r1) ‰ 0 for all k P N. Therefore,
for r = r1, (7.11) indeed is a recurrence relation which implies that ak depends on a0, ¨ ¨ ¨ , ak´1

and this, in principle, provides a series solution

y1(x) = xr1
[
1 +

8
ÿ

k=1

ak(r1)

a0
xk
]

(7.13)

to (7.7), in which ak(r1) denotes the coefficients when r = r1.

(a) If in addition r2 ‰ r1 and r1 ´ r2 R N, the F (k + r2) ‰ 0 for all k P N; thus for r = r2,
(7.11) is also a recurrence relation, and this provides another series solution

y2(x) = xr2
[
1 +

8
ÿ

k=1

ak(r2)

a0
xk
]
. (7.14)

(b) If r1 = r2 or r1 ´ r2 P N, we will discuss later in the next section.

2. If r1, r2 are complex roots, then r1 ´ r2 R N and F (k + r) ‰ 0 for all k P N for r = r1, r2. Since

xa+bi = xa ¨ xbi = xaeib logx = xa
[

cos(b logx) + i sin(b logx)
]
,

(7.13) and (7.14) provide two solutions of (7.7) or equivalently, the general solution to (7.2) in
series form is given by

y(x) = C1(x ´ x0)
a
[

cos(b log(x ´ x0)) + i sin(b log(x ´ x0))
] 8
ÿ

k=0

ak(r1)(x ´ x0)
k

+ C2(x ´ x0)
a
[

cos(b log(x ´ x0)) ´ i sin(b log(x ´ x0))
] 8
ÿ

k=0

ak(r2)(x ´ x0)
k .



In the following discussion, we will only focus on the case that the indicial equation has only real
roots.

Example 7.26. Solve the differential equation

2x2y 11 ´ xy 1 + (1 + x)y = 0 x ą 0 . (7.15)

We note that 0 is a regular singular point of the ODE above; thus we look for a series solution to
the ODE above of the form

y(x) = xr
8
ÿ

k=0

akx
k .

Then r satisfies the indicial equation for 0

2r(r ´ 1) ´ r + 1 = 0

which implies that r = 1 or r = 1

2
. Since

y 1(x) =
8
ÿ

k=0

(k + r)akx
k+r´1 and y 11(x) =

8
ÿ

k=0

(k + r)(k + r ´ 1)akx
k+r´2 ,

we obtain that
8
ÿ

k=0

[
2(k + r)(k + r ´ 1) ´ (k + r) + 1

]
akx

k+r +
8
ÿ

k=0

akx
k+r+1 = 0

or cancelling xr,
8
ÿ

k=0

[
2(k + r)(k + r ´ 1) ´ (k + r) + 1

]
akx

k +
8
ÿ

k=1

ak´1x
k = 0 .

Therefore,
ak = ´

ak´1

2(k + r)(k + r ´ 1) ´ (k + r) + 1
@ k P N .

1. r = 1: ak = ´
ak´1

k(2k + 1)
for all k P N. Therefore,

ak = ´
ak´1

k(2k + 1)
=

ak´2

k(k ´ 1)(2k + 1)(2k ´ 1)
= ´

ak´3

k(k ´ 1)(k ´ 2)(2k + 1)(2k ´ 1)(2k ´ 3)

=
(´1)k

k!(2k + 1)(2k ´ 1) ¨ ¨ ¨ 1
a0 =

(2k)(2k ´ 2)(2k ´ 4) ¨ ¨ ¨ 2(´1)k

k!(2k + 1)!
a0 =

(´1)k2k

(2k + 1)!
a0 .

This provides a series solution y1(x) =
8
ř

k=0

(´1)k2k

(2k + 1)!
xk+1 whose radius of convergence is 8.

2. r = 1

2
: ak = ´

ak´1

k(2k ´ 1)
for all k P N. Therefore,

ak = ´
ak´1

k(2k ´ 1)
=

ak´2

k(k ´ 1)(2k ´ 1)(2k ´ 3)
= ´

ak´3

k(k ´ 1)(k ´ 2)(2k ´ 1)(2k ´ 3)(2k ´ 5)

=
(´1)k

k!(2k ´ 1)(2k ´ 3) ¨ ¨ ¨ 1
a0 =

(´1)k(2k)(2k ´ 2) ¨ ¨ ¨ 2

k!(2k)!
a0 =

(´1)k2k

(2k)!
a0 .

This provides a series solution y2(x) =
8
ř

k=0

(´1)k2k

(2k)!
xk+

1
2 whose radius of convergence is 8.



Therefore, the general solution to (7.15) in the series form is y = C1y1(x) + C2y2(x).

Example 7.27. Find a series solution about the regular singular point x = 0 of

(x+ 2)x2y 11(x) ´ xy 1(x) + (1 + x)y(x) = 0 , x ą 0 .

Let p(x) = ´
1

x+ 2
and q(x) =

1 + x

x+ 2
. Then

p(x) = ´
1

2

1

1 ´
´x

2

= ´
1

2

8
ÿ

k=0

(´x)k

2k
=

8
ÿ

k=0

(´1)k+1xk

2k+1
= ´

1

2
+

8
ÿ

k=1

(´1)k+1xk

2k+1
,

q(x) =
x+ 1

x+ 2
= 1 ´

1

2

1

1 ´
´x

2

= 1 ´

8
ÿ

k=0

(´1)kxk

2k+1
=

1

2
+

8
ÿ

k=1

(´1)k+1xk

2k+1
.

Therefore, (p0, q0) =
(

´
1

2
,
1

2

)
, and pk = qk =

(´1)k+1

2k+1
for all k P N. The indicial equation for 0 is

r(r ´ 1) ´
1

2
r +

1

2
= 0

which implies that r = 1 or r = 1

2
.

1. r = 1: Suppose the series solution to the ODE is y = x
8
ř

k=0

akx
k =

8
ř

k=0

akx
k+1. Then

(x+ 2)x2
8
ÿ

k=0

(k + 1)kakx
k´1 ´ x

8
ÿ

k=0

(k + 1)akx
k + (1 + x)

8
ÿ

k=0

akx
k+1 = 0

ñ

8
ÿ

k=0

(k2 + k + 1)akx
k+2 +

8
ÿ

k=0

(2k2 + k)akx
k+1 = 0

ñ

8
ÿ

k=1

(
[(k ´ 1)2 + (k ´ 1) + 1]ak´1 + (2k2 + k)ak

)
xk+1 = 0 .

Therefore, ak = ´
k2 ´ k + 1

(2k + 1)k
ak´1 for all k P N. Note that

lim
kÑ8

ˇ

ˇ

ˇ

ak
ak´1

ˇ

ˇ

ˇ
= lim

kÑ8

ˇ

ˇ

ˇ

k2 ´ k + 1

k(2k + 1)

ˇ

ˇ

ˇ
=

1

2
;

thus the radius of convergence of the series solution y =
8
ř

k=0

akx
k+1 is 2.

2. r = 1

2
: Suppose the series solution to the ODE is y = x

1
2

8
ř

k=0

akx
k =

8
ř

k=0

akx
k+ 1

2 . Then

(x+ 2)
8
ÿ

k=0

(
k +

1

2

)(
k ´

1

2

)
akx

k+ 1
2 ´

8
ÿ

k=0

(
k +

1

2

)
akx

k+ 1
2 +

8
ÿ

k=0

akx
k+ 1

2 +
8
ÿ

k=0

akx
k+ 3

2 = 0

ñ

8
ÿ

k=0

(
k2 +

3

4

)
akx

k+ 3
2 +

8
ÿ

k=0

(2k2 ´ k)akx
k+ 1

2 = 0

ñ

8
ÿ

k=0

((
(k ´ 1)2 +

3

4

)
ak´1 + (2k2 ´ k)ak

)
xk+

1
2 = 0 .

Therefore, ak = ´
(k ´ 1)2 + 3/4

k(2k ´ 1)
ak´1 for all k P N. The radius of convergence of this series

solution is also 2.



7.7 Series Solutions Near a Regular Singular Point: Part II

Suppose that r1 and r2 are the roots of the indicial equation for a regular singular point. In this
section, we discuss how a linearly independent solution y2 is obtained if r1 ´ r2 P N Y t0u. In the
following, we let N (r1, r2) denote the discrete set

N (r1, r2) =
␣

r ´ k
ˇ

ˇ r = r1 or r2, k P N
(

.

Then F (k + r) ‰ 0 for all k P N and r R N (r1, r2); thus for some given a0 the recurrence relation

F (k + r)ak(r) = ´

k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj(r) @ k P N (7.16)

can be used to determine a sequence
␣

ak(r)
(8

k=1
.

7.7.1 The case the indicial equation has a double root

Suppose that r1 = r2. For r R N (r1, r2), we define

φ(r, x) = xr
8
ÿ

k=0

ak(r)x
k ,

where
␣

ak(r)
(8

k=1
satisfies the recurrence relation (7.16). Then the computation leading to the

recurrence relation (7.11) also yields that

x2φxx(r, x) + xp(x)φx(r, x) + q(x)φ(r, x)

= a0F (r)x
r +

8
ÿ

k=1

[
F (k + r)ak(r) +

k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj(r)

]
xk+r

= a0(r ´ r1)
2xr ,

where φx and φxx denote the first and the second partial derivatives of φ w.r.t.x. Differentiating the
equation above w.r.t. r variable at r = r1, we find that

x2φxxr(r, x) + xp(x)φxr(r, x) + q(x)φr(r, x) =
[
2a0(r ´ r1)

2xr + a0(r ´ r1)
2xr logx

]ˇ
ˇ

ˇ

r=r1
= 0 .

If B

Br
φxx =

(Bφ

Br

)
xx

and B

B r
φx =

(Bφ

Br

)
x

(which in general is not true since it involves exchange of
orders of limits), then the equation above implies that

x2
d2

dx2

(Bφ

Br
(r1, ¨)

)
+ xp(x)

d

dx

(Bφ

B r
(r1, x)

)
+ q(x)

Bφ

Br
(r1, x) = 0 .

In other words, assuming that B

B r
φxx =

(Bφ

Br

)
xx

and B

B r
φx =

(Bφ

Br

)
x
, y =

Bφ

Br
(r1, x) is also a solution

to the ODE (7.7). Formally, we switch the order of the differentiation in r and the infinite sum to
obtain that

Bφ

Br
(r1, x) = xr1 logx

( 8
ÿ

k=0

ak(r1)x
k
)
+ xr1

8
ÿ

k=0

a 1
k(r1)x

k = y1(x) logx+
8
ÿ

k=0

a 1
k(r1)x

k+r1 .



In other words, under the assumptions that

B

Br
φxx =

(Bφ

Br

)
xx
,

B

Br
φx =

(Bφ

Br

)
x

and B

Br

ˇ

ˇ

ˇ

r=r1

8
ÿ

k=0

ak(r)x
k =

8
ÿ

k=0

a 1
k(r1)x

k , (7.17)

the function y2 given by

y2(x) = y1(x) logx+
8
ÿ

k=0

a 1
k(r1)x

k+r1 (7.18)

is indeed a solution to (7.7). In general, it is hard to verify those assumptions in (7.17); however, we
can still verify whether (7.18) provides a series solution to (7.7) or not. Let us show that y2 given by
(7.18) is indeed a solution to (7.7) if the radius of convergence of the power series

8
ř

k=0

a 1
k(r)x

k is not

zero. We note that y2 satisfies

xy 1
2(x) = xy 1

1(x) logx+ y1(x) +
8
ÿ

k=0

(k + r1)a
1
k(r)x

k+r1 ,

x2y 11
2 (x) = x2y 11

1 (x) logx+ 2xy 1(x) ´ y1(x) +
8
ÿ

k=0

(k + r1)(k + r1 ´ 1)a 1
k(r1)x

k+r1 .

Moreover, differentiating (7.16) in r at r = r1, we find that

[
2(k + r1) ´ 1

]
ak(r1) +

k
ÿ

j=0

pk´jaj(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1) = 0 @ k P N Y t0u .

Therefore, by the fact that y1 is a solution to (7.7), we have

x2y 11
2 + xp(x)y 1

2 + q(x)y2

= x2y 11
1 (x) logx+ 2xy 1

1(x) ´ y1(x) +
8
ÿ

k=0

(k + r1)(k + r ´ 1)a 1
k(r1)x

k+r1

+ xp(x)y 1
1(x) logx+ p(x)y1(x) +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r1)a
1
k(r1)x

k+r1
)

+ q(x)y1(x) logx+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

a 1
k(r1)x

k+r1
)

=
8
ÿ

k=0

[
2(k + r1) ´ 1

]
ak(r1)x

k+r1 +
8
ÿ

k=0

( k
ÿ

j=0

pk´jaj(r1)
)
xk+r1

+
8
ÿ

k=0

(
(k + r1)(k + r ´ 1)a 1

k(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1)

)
xk+r1 = 0 ;

thus y2(x) is a solution to (7.7) if the radius of convergence of the power series
8
ř

k=0

a 1
k(r)x

k is not
zero.

Finally, we verify that ty1, y2u forms a linearly independent set of solutions to (7.7) (or (7.2)).
This relies on making sure of that the Wronskian of y1 and y2 does not vanish. So we compute the



Wronskian of y1 and y2 and obtain that

W [y1, y2](x) =

ˇ

ˇ

ˇ

ˇ

y1(x) y2(x)

y 1
1(x) y 1

2(x)

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1(x) y1(x) logx+
8
ř

k=0

a 1
k(r1)x

k+r1

y 1
1(x) y 1

1(x) logx+ y1(x)

x
+

8
ř

k=0

(k + r1)a
1
k(r1)x

k+r´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
y21(x)

x
+ y1(x)

8
ÿ

k=0

(k + r1)a
1
k(r1)x

k+r´1 ´ y 1
1(x)

8
ÿ

k=0

a 1
k(r1)x

k+r1

=
y21(x)

x
+

8
ÿ

k=0

k
ÿ

j=0

[
ak´j(r1)(j + r1)a

1
j(r1) ´ (k ´ j + r1)ak´j(r1)a

1
j(r1)

]
xk+2r´1

=
8
ÿ

k=0

( k
ÿ

j=0

[
aj(r1) + (2j ´ k)a 1

j(r1)
]
ak´j(r1)

)
xk+2r´1

=
[
a20 +

8
ÿ

k=1

( k
ÿ

j=0

[
aj(r1) + (2j ´ k)a 1

j(r1)
]
ak´j(r1)

)
xk
]
x2r´1 .

Since a0 ‰ 0, ty1, y2u is a linear independent set of solutions to (7.7) (or (7.2)).

Example 7.28. Find the first few terms in the series expansion about the regular singular point
x0 = 0 for two linearly independent solutions to

x2y 11 ´ xy 1 + (1 ´ x)y = 0 x ą 0 .

The indicial equation to the ODE above is

r(r ´ 1) ´ r + 1 = 0

and it has a double root r1 = 1. With p(x) = ´1 and q(x) = 1 ´ x in mind, we have p0 = ´1 and
pk = 0 for all k P N, and q0 = 1, q1 = ´1 and qk = 0 for all k ě 2; thus the recurrence relation (7.11)
for

␣

ak(r)
(8

k=1
is given by

(k + r ´ 1)2ak(r) = ´

k´1
ÿ

j=0

[
(j + r)pk´j + qk´1

]
aj(r) = ak´1(r) . (7.19)

For r = 1, with the choice of a0 = 1 we have

ak(1) =
1

k2
ak´1(1) =

1

k2(k ´ 1)2
ak´2(1) = ¨ ¨ ¨ =

1

(k!)2
;

thus a series solution to the ODE is given by

y1(x) = x
[
1 +

8
ÿ

k=1

1

(k!)2
xk
]
=

8
ÿ

k=0

1

(k!)2
xk+1 .

Moreover, (7.19) implies that

(k + r ´ 1)2a 1
k(r) + 2(k + r ´ 1)ak(r) = a 1

k´1(r) ;



thus k2a 1
k(1) = a 1

k´1(1) ´ 2kak(1) = a 1
k´1(1) ´

2k

(k!)2
which implies that

a 1
k(1) =

1

k2

[
a 1
k´1(1) ´

2k

(k!)2

]
.

Take a0 = 1, we find that

a 1
1(1) = ´2 , a 1

2(1) =
1

22
(´2 ´ 1) = ´

3

4
, a 1

3(1) =
1

32
(

´
3

4
´

1

6

)
= ´

11

108
, ¨ ¨ ¨ .

Since |a 1
k(1)| ď 1 for k ě 2 (this can be shown by induction), lim sup

kÑ8

|a 1
k(1)|

1
k ď 1; thus the radius of

convergence for the series
8
ř

k=1

a 1
k(1)x

k+1 is at least 1. Therefore, another linearly independent solution
is given by

y2(x) =
8
ÿ

k=0

1

(k!)2
xk+1 logx+

(
´2x2 ´

3

4
x3 ´

11

108
x4 + ¨ ¨ ¨

)
.

7.7.2 The case that the difference between two real roots is an integer

Suppose that r1 ´ r2 = N P N. Using the recurrence relation (7.16) for r = r2, by the fact that
F (r2 + N) = F (r1) = 0 we cannot find aN(r2) so that aN+1(r2), aN+2(r2) and so on cannot be
determined. In this case, we note that for each k P N, ak(r) is a rational function of r. In fact, we
can show by induction that

ak(r) =
pk(r)

F (k + r)F (k ´ 1 + r) ¨ ¨ ¨F (1 + r)
r R N (r1, r2)

for some polynomial pk(r) (of degree at most k).

1. Suppose that
N´1
ř

j=0

[
(j + r)pN´j + qN´j

]
aj(r) is divisible by r ´ r2 = r + N ´ r1. Since (7.11)

implies that

(r ´ r2)(r +N ´ r2)aN(r) = ´

N´1
ÿ

j=0

[
(j + r)pN´j + qN´j

]
aj(r) .

we can compute aN(r2) by

aN(r2) = lim
rÑr2

aN(r) = ´
1

N
lim
rÑr2

N´1
ř

j=0

[
(j + r)pN´j + qN´j

]
aj(r)

r ´ r2
;

thus the recurrence relation can be used to determine aN+1(r2), aN+2(r2) and so on. In such a
case, another solution can be written by (7.14) as well.

2. What if the rational function
N´1
ř

j=0

[
(j+r)pN´j+qN´j

]
aj(r) is not divisible by r´r2? Note that

then (7.16) implies that aN(r) is unbounded as r approaches r2, and (r ´ r2)aN(r) is bounded
in a neighborhood of r2. In this case, we let rak(r) = (r ´ r2)ak(r) and

ψ(r, x) = (r ´ r2)x
r

8
ÿ

k=0

ak(r)x
k = xr

8
ÿ

k=0

rak(r)x
k ,



where ak(r) satisfies the recurrence relation (7.11). Then

x2ψxx(r, x) + xp(x)ψx(r, x) + q(x)ψ(r, x) = a0(r ´ r1)(r ´ r2)
2xr .

Differentiating in r variable at r = r2, we find that

x2ψxxr(r2, x) + xp(x)ψxr(r2, x) + q(x)ψr(r2, x) = 0 ,

which, as discussed before, we expect that

ψr(r2, x) =
B

Br

8
ÿ

k=0

rak(r)x
k+r

or to be more precise,

y2(x) =
8
ÿ

k=0

rak(r2)x
k+r2 logx+

8
ÿ

k=0

ra 1
k(r2)x

k+r2 (7.20)

is also a solution to (7.7), where rak(r2) ” lim
rÑr2

rak(r). Note that ra0(r2) = 0, and if N ‰ 1, the
recurrence relation (7.11) implies that

lim
rÑr2

(r ´ r2)a1(r) = ´ lim
rÑr2

(
rp1 + q1

)
(r ´ r2)a0

F (r + 1)
= 0 .

Similarly, for k ă N ,

lim
rÑr2

(r ´ r2)ak(r) = ´ lim
rÑr2

k´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)
= 0 .

In other words, rak(r2) = 0 for 0 ď k ď N ´ 1. Now we consider lim
rÑr2

(r ´ r2)aN(r). Since
F (r +N) = (r ´ r2)(r +N ´ r2), we have

(r ´ r2)aN(r) = ´

N´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)

(r +N ´ r2)
;

thus

raN(r2) ” lim
rÑr2

(r ´ r2)aN(r) = ´
1

N

N´1
ÿ

j=0

[
(j + r2)pk´j + qk´j

]
aj(r2)

which exists and does not vanish
(
since

N´1
ř

j=0

[
(j+r)pN´j+qN´j

]
aj(r) is not divisible by r´r2

)
.

Then for k ą N , we have

rak(r2) = lim
rÑr2

(r ´ r2)ak(r) = ´ lim
rÑr2

k´1
ř

j=0

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)

= ´ lim
rÑr2

k´1
ř

j=N

[
(j + r)pk´j + qk´j

]
aj(r)(r ´ r2)

F (k + r)
= ´

k´1
ř

j=N

[
(j + r2)pk´j + qk´j

]
raj(r2)

F (k + r2)

= ´

k´N´1
ř

j=0

[
(j + r1)pk´j´N + qk´j´N

]
raj+N(r2)

F (k ´ N + r1)
.



Let bj = raj+N(r2). Then the identity above implies that the sequence tbju
8
j=0 satisfies

F (k + r1)bk +
k´1
ÿ

j=0

[
(j + r1)pk´j + qk´j

]
bj = 0 @ k P N .

In other words, tbku8
k=0 satisfies the same recurrence relation as

␣

ak(r1)
(8

k=0
. By the fact that

ak(r)

a0
is independent of a0, we must have bk

b0
=

ak(r1)

a0
. As a consequence, (7.20) implies that

y2(x) =
8
ÿ

k=N

rak(r2)x
k+r2 logx+

8
ÿ

k=0

ra 1
k(r2)x

k+r2 =
8
ÿ

k=0

bkx
k+r1 logx+

8
ÿ

k=0

ra 1
k(r2)x

k+r2

=
b0
a0

8
ÿ

k=0

ak(r1)x
k+r1 logx+

8
ÿ

k=0

ra 1
k(r2)x

k+r2

=
b0
a0
y1(x) logx+

8
ÿ

k=0

ckx
k+r2 , (7.21)

where b0 = lim
rÑr2

(r ´ r2)aN(r) and ck =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).

Remark 7.29. We note that (7.21) is also a solution even if
N´1
ř

j=0

[
(j+r)pN´j+qN´j

]
aj(r) is divisible

by r ´ r2. In fact, if
N´1
ř

j=0

[
(j + r)pN´j + qN´j

]
aj(r) is divisible by r ´ r2, then b0 = 0 which implies

that all bk’s are zeros for all k. Moreover, in this case ak(r2) exists; thus

ck =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r) = ak(r2)

which implies that (7.21) agrees with (7.14).

Example 7.30. Find the general series solution about the regular singular point x0 = 0 of

xy 11 + 3y 1 ´ xy = 0 x ą 0 .

Rewrite the equation above as

x2y 11 + 3xy 1 ´ x2y = 0 ,

and let p(x) = 3 and q(x) = ´x2. Then x2y 11 + xp(x)y 1 + q(x)y = 0, where we note that

1. p0 = 3 and pj = 0 for all j P N. 2. q2 = ´1, qj for all j P N Y t0u and j ‰ 2.

The indicial equation of the ODE above is F (r) = r(r ´ 1) + 3r = 0 which has two distinct roots
r1 = 0 and r2 = ´2.

Using (7.11), we find that tak(r1)u
8
k=1 satisfies the recurrence relation

2a1(r1) = 0 and k(k + 2)ak(r1) ´ ak´2(r1) = 0 @ k ě 2 .



Therefore, a1(r1) = a3(r1) = ¨ ¨ ¨ = a2n+1(r1) = 0 and

a2n =
1

2n(2n+ 2)
a2n´2 =

1

2n(2n+ 2)(2n ´ 2)2n
a2n´4 = ¨ ¨ ¨ =

1

22nn!(n+ 1)!
a0 @n P N ;

thus a series solution (with a0 = 1) is given by

y1(x) = 1 +
8
ÿ

k=1

1

22kk!(k + 1)!
x2k =

8
ÿ

k=0

1

22kk!(k + 1)!
x2k .

Now we look for a second series solution as discussed above. Note that N = r1 ´ r2 = 2. Since
a0 = 1, using (7.11) we obtain that

(r + 3)(r + 1)a1(r) = 0

(k + r + 2)(k + r)ak(r) ´ ak´2(r) = 0 @ k ě 2 .

Therefore,
a1(r) = a3(r) = a5(r) = ¨ ¨ ¨ = a2k´1(r) = 0 for r « ´2 and k P N (7.22)

and
(r + 2)ak(r) =

1

(k + r + 2)(k + r)
(r + 2)ak´2(r) @ k ě 2 . (7.23)

We first compute b0. By definition,

b0 = lim
rÑr2

(r ´ r2)aN(r) = lim
rÑ´2

(r + 2)a2(r) = lim
rÑ´2

1

r + 4
=

1

2
.

Now we compute ck(r2). With rak(r) ” (r + 2)ak(r), the recurrence relation (7.23) implies that
ra2k´1(r) = 0 for all k P N. Moreover,

ra0(r) = (r + 2)a0 = r + 2

and for k P N,

ra2k(r) =
1

(2k + r + 2)(2k + r)
ra2k´2(r) =

1

(2k + r + 2)(2k + r)2(2k + r ´ 2)
ra2k´4(r) = ¨ ¨ ¨

=
1

(2k + r + 2)(2k + r)2(2k + r ´ 2)2 ¨ ¨ ¨ (4 + r)2(2 + r)
ra0

=
1

(2k + r + 2)(2k + r)2(2k + r ´ 2)2 ¨ ¨ ¨ (4 + r)2
;

thus

logra2k(r) = ´ log(2k + r + 2) ´ 2
[

log(2k + r) + log(2k + r ´ 2) + ¨ ¨ ¨ + log(4 + r)
]

k P N .

Differentiating ra2k at r = ´2, we obtain that c0(´2) = ra0(´2) = 1 and for all k P N,

c2k(´2) = ra 1
2k(´2) = ´

[ 1

2k
+ 2

( 1

2k ´ 2
+

1

2k ´ 4
+ ¨ ¨ ¨ +

1

2

)]
ra2k(´2)

= ´

[ 1

2k
+
( 1

k ´ 1
+

1

k ´ 2
+ ¨ ¨ ¨ +

1

1

)] 1

(2k)(2k ´ 2)2(2k ´ 4)2 ¨ ¨ ¨ 22

= ´
1

22k´1k!(k ´ 1)!

(
Hk ´

1

2k

)
,



where Hk =
k
ř

ℓ=1

1

ℓ
is the k-th partial sum of the harmonic series. Therefore,

y2(x) =
1

2
y1(x) logx+ x´2 ´

8
ÿ

k=1

1

22k´1k!(k ´ 1)!

(
Hk ´

1

2k

)
x2k´2

=
1

2
y1(x) logx+ x´2 ´

1

4
´

5

64
x2 ¨ ¨ ¨ ´

5

1152
x4 + ¨ ¨ ¨ ,

and the general series solution is given by

y(x) = C1y1(x) + C2y2(x) = C1y1(x) + C2

[
1

2
y1(x) logx+ x´2 ´

1

4
´

5

64
x2 ¨ ¨ ¨ ´

5

1152
x4 + ¨ ¨ ¨

]
.

We summarize the discussions above into the following

Theorem 7.31. Let x0 be a regular singular point for

(x ´ x0)
2y 11 + (x ´ x0)p(x)y

1 + q(x)y = 0 x ą x0 ,

and let r1, r2 be the roots of the associated indicial equation r(r ´ 1) + p(x0)r + q(x0) = 0, where
Re(r1) ě Re(r2).

1. If r1 ´ r2 is not an integer, then there exist two linearly independent solutions of the form

y1(x) =
8
ÿ

k=0

ak(x ´ x0)
k+r1 , a0 ‰ 0 ,

y2(x) =
8
ÿ

k=0

bk(x ´ x0)
k+r2 , b0 ‰ 0 .

2. If r1 = r2, then there exists two linearly independent solutions of the form

y1(x) =
8
ÿ

k=0

ak(x ´ x0)
k+r1 , a0 ‰ 0 ,

y2(x) = y1(x) log(x ´ x0) +
8
ÿ

k=0

bk(x ´ x0)
k+r2 .

3. If r1 ´ r2 P N, then there exists two linearly independent solutions of the form

y1(x) =
8
ÿ

k=0

ak(x ´ x0)
k+r1 , a0 ‰ 0 ,

y2(x) = Cy1(x) log(x ´ x0) +
8
ÿ

k=0

bk(x ´ x0)
k+r2 , b0 ‰ 0 ,

where C is a constant that could be zero.

Example 7.32. Let us use Theorem 7.31 to find solutions

xy 11 + 3y 1 ´ xy = 0 x ą 0



in the form of series about the regular singular point x0 = 0.
Following Example 7.30, the indicial equation of the ODE above has two distinct roots r1 = 0

and r2 = ´2. Therefore, by Theorem 7.31 there exists two linearly independent solutions:

y1(x) =
8
ÿ

k=0

akx
k and y2(x) = Cy1(x) logx+

8
ÿ

k=0

bkx
k´2 ,

where taku8
k=1 satisfies the recurrence relation

2a1 = 0 and k(k + 2)ak ´ ak´2 = 0 @ k ě 2

and, by taking a0 = 1, is given by a2n =
1

22nn!(n+ 1)!
and a2n´1 = 0 for all n P N.

Now we determine the constant C and the sequence tbku8
k=0. Since y2 is also a solution and

y 1
2(x) = Cy 1

1(x) logx+ C
y1(x)

x
+

8
ÿ

k=0

(k ´ 2)bkx
k´3

= Cy 1
1(x) logx+ C

8
ÿ

k=0

akx
k´1 +

8
ÿ

k=0

(k ´ 2)bkx
k´3 ,

y 11
2 (x) = Cy 11

1 (x) logx+ C
y 1
1(x)

x
+ C

8
ÿ

k=0

(k ´ 1)akx
k´2 +

8
ÿ

k=0

(k ´ 2)(k ´ 3)bkx
k´4

= Cy 11
1 (x) logx+ C

8
ÿ

k=0

(2k ´ 1)akx
k´2 +

8
ÿ

k=0

(k ´ 2)(k ´ 3)bkx
k´4 ,

we have (with a0 = 1 in mind)

0 = xy 11
2 + 3y 1

2 ´ xy2

= C
8
ÿ

k=0

(2k + 2)akx
k´1 +

8
ÿ

k=0

k(k ´ 2)bkx
k´3 ´

8
ÿ

k=0

bkx
k´1

= 2Cx´1 ´ b1x
´2 ´ b0x

´1 + C
8
ÿ

k=0

(2k + 4)ak+1x
k +

8
ÿ

k=0

[
(k + 3)(k + 1)bk+3 ´ bk+1

]
xk

= ´b1x
´2(2C ´ b0)x

´1 +
8
ÿ

k=0

[
(k + 3)(k + 1)bk+3 ´ bk+1 + C(2k + 4)ak+1

]
xk .

Therefore, b0 = 2C, b1 = 0 and

(k + 3)(k + 1)bk+3 ´ bk+1 + C(2k + 4)ak+1 = 0 .

If C = 0, then bk = 0 for all k P N Y t0u; thus for y2 being non-trivial C ‰ 0. W.L.O.G. we can
assume that C =

1

2
. Since a2k´1 = 0 for all k P N and b1 = 0, we find that b2k´1 = 0 for all k P N;

thus

2n(2n+ 2)b2n+2 ´ b2n + C(4n+ 2)a2n = 2n(2n+ 2)b2n+2 ´ b2n +
(2n+ 1)

22nn!(n+ 1)!
= 0 @n P N .

This implies that
b4 =

b2
8

´
3

64
, b6 =

b4
24

´
5

24 ¨ 192
=

b2
192

´
7

2304
,



and this further implies that

y2(x) =
1

2
y1(x) logx+ x´2 + b2 + b4x

2 + b6x
4 + ¨ ¨ ¨

=
(
1

2
y1(x) logx+ x´2 ´

3

64
x2 ´

7

2304
x4 + ¨ ¨ ¨

)
+ b2

(
1 +

1

8
x2 +

1

192
x4 + ¨ ¨ ¨

)
.

We note that y2 in Example 7.30 is given by b2 = ´
1

4
in the expression above.

7.7.3 The radius of convergence of series solutions

The radius of convergence of the series solution (7.9) cannot be guaranteed by Theorem 7.17; however,
we have the following

Theorem 7.33 (Frobenius). If x0 is a regular singular point of ODE (7.2), then there exists at least
one series solution of the form

y(x) = (x ´ x0)
r

8
ÿ

k=0

ak(x ´ x0)
k ,

where r is the largest root or any complex root of the associated indicial equation. Moreover, the
series solution converges for all x P 0 ă x ´ x0 ă R, where R is the distance from x0 to the nearest
other singular point (real or complex) of (7.2).

7.8 Special Functions
7.8.1 Bessel’s Equation

We consider three special cases of Bessel’s equation

x2y 11 + xy 1 + (x2 ´ ν2)y = 0 , (7.24)

where ν is a constant. It is easy to see that x = 0 is a regular singular point of (7.24) since

lim
xÑ0

x ¨
x

x2
= 1 = p0 and lim

xÑ0
x2 ¨

x2 ´ ν2

x2
= ´ν2 = q0 .

Therefore, the indicial equation for the regular singular point x = 0 is

r(r ´ 1) + r ´ ν2 = 0

which implies that r = ˘ν. The ODE (7.24) is called Bessel’s equation of order ν.
To find series solution to (7.24), we first note that in the case of Bessel’s equation of order ν,

F (r) = r2 ´ ν2, p(x) = 1 (which implies that p0 = 1 while pk = 0 for all k P N) and q(x) = x2 ´ ν2

(which implies that q0 = ´ν2 and q2 = 1 and qk = 0 otherwise). Therefore, the recurrence relation
(7.11) implies that [

(k + r)2 ´ ν2
]
ak(r) +

k´1
ÿ

j=0

qk´jaj(r) = 0 @ k P N .



This implies that [
(1 + r)2 ´ ν2

]
a1(r) = 0 (7.25a)[

(k + r)2 ´ ν2
]
ak(r) + ak´2(r) = 0 @ k ě 2 (7.25b)

‚ Bessel’s Equation of Order Zero: Consider the case ν = 0. Then the roots of the indicial
equation are identical: r1 = r2 = 0. Using (7.25a), a1(r) ” 0 (in a small neighborhood of 0) and
(7.25b) implies that

ak(r) = ´
1

(k + r)2
ak´2(r) @ k ě 2 ; (7.26)

thus a3(r) = a5(r) = ¨ ¨ ¨ = a2m+1(r) = ¨ ¨ ¨ = 0 for all m P N. Note that a2m´1(r) = 0 for all m P N
also implies that a 1

2m´1(r) = 0 for all m P N.
On the other hand, recurrence relation (7.26) also implies that

a2m(r) = ´
1

(2m+ r)2
a2m´2(r) =

1

(2m+ r)2(2m+ r ´ 2)2
a2m´4(r)

= ¨ ¨ ¨ =
(´1)m´1

(2m+ r)2(2m+ r ´ 2)2 ¨ ¨ ¨ (4 + r)2
a2(r)

=
(´1)m

(2m+ r)2(2m+ r ´ 2)2 ¨ ¨ ¨ (4 + r)2(2 + r)2
a0 ;

thus a2m(0) =
(´1)m

22m(m!)2
a0 and rearranging terms, we obtain that

log (´1)ma2m(r)

a0
= ´2

[
log(2m+ r) + log(2m+ r ´ 2) + ¨ ¨ ¨ + log(4 + r) + log(2 + r)

]
.

Differentiating both sides above in r,

a 1
2m(r)

a2m(r)
= ´2

[ 1

2m+ r
+

1

2m+ r ´ 2
+ ¨ ¨ ¨ +

1

4 + r
+

1

2 + r

]
,

and evaluating the equation above at r = 0 we conclude that

a 1
2m(0) = ´Hma2m(0) =

(´1)m+1Hm

22m(m!)2
a0 ,

where Hm =
m
ř

k=1

1

k
. As a consequence, the first series solution is given by

y1(x) =
8
ÿ

k=0

a2k(0)x
2k = a0

[
1 +

8
ÿ

k=1

(´1)kx2k

22k(k!)2

]
,

and the second solution is given by

y2(x) = a0

[
J0(x) logx+

8
ÿ

k=1

(´1)k+1Hkx
2k

22k(k!)2

]
,

where J0 = a´1
0 y1 is called the Bessel function of the first kind of order zero. We note that

y1 and y2 can be defined for all x ą 0 since the radius of convergence of the series involved in y1 and
y2 are infinite.



Any linear combinations of y1 and y2 is also a solution to Bessel’s equation (7.24) of order zero.
Consider the Bessel function of the second kind of order zero

Y0(x) =
2

π

[ 1

a0
y2(x) + (γ ´ log 2)J0(x)

]
, (7.27)

where γ = lim
kÑ8

(Hk ´ log k) « 0.5772 is called the Euler-Máscheroni constant. Substituting for
y2 in (7.27), we obtain

Y0(x) =
2

π

[(
γ + log x

2

)
J0(x) +

8
ÿ

k=1

(´1)k+1Hk

22k(k!)2
x2k

]
, x ą 0 . (7.28)

A general solution to Bessel’s equation (7.24) of order zero then can be written as

y(x) = C1J0(x) + C2Y0(x) .

‚ Bessel’s Equation of Order One-Half: Now suppose that ν =
1

2
(thus r1 =

1

2
and r2 = ´

1

2
).

To obtain solutions to Bessel’s equation (7.24) of order one-half, we need to compute the coefficients
ak(r) for all k P N (given a0), and b0 = lim

rÑ´ 1
2

(r ´ r2)a1(r) as well as ck =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).

Using (7.25b), we find that

ak(r) =
´1

(k + r)2 ´ 1
4

ak´2(r) =
´1

(k + r + 1
2
)(k + r ´ 1

2
)
ak´2(r) @ k ě 2 ,

while if r « r1 =
1

2
, (7.25a) implies that a1(r) = 0 which further implies that a3(r) = a5(r) = ¨ ¨ ¨ =

a2m´1(r) = ¨ ¨ ¨ = 0 for all m P N if r «
1

2
. In particular, we have

a2m(
1

2
) =

(´1)ma0
(2m+ 1)!

and a2m´1(
1

2
) = 0 @m P N ;

thus a series solution of (7.24) is

y1(x) = a0x
1
2

8
ÿ

k=0

(´1)kx2k

(2k + 1)!
= a0x

´ 1
2

8
ÿ

k=0

(´1)kx2k+1

(2k + 1)!
= a0

sinx
?
x
.

The Bessel function of the first kind of order one-half is defined by (letting a0 =
b

2

π
in

the expression of y1 above)

J 1
2
(x) =

c

2

π

sinx
?
x

=

c

2

πx
sinx .

Now we compute the limit of (r ´ r2)a1(r) as r approaches r2. Since (7.25a) implies that (r +
3

2
)(r +

1

2
)a1(r) = 0, we have (r ´ r2)a1(r) = 0 for all r « r2 = ´

1

2
. Therefore,

b0 = lim
rÑr2

(r ´ r2)a1(r) = 0

which implies that there will be no logarithmic term in the second solution y2 given by (7.14).



Now we compute B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r). Since

a2m(r) =
´1

(2m+ r + 1
2
)(2m+ r ´ 1

2
)
a2m´2(r) = ¨ ¨ ¨

=
(´1)m

(2m+ r + 1
2
)(2m+ r ´ 1

2
) ¨ ¨ ¨ (2 + r + 1

2
)(2 + r ´ 1

2
)
a0

=
(´1)m

(2m+ r + 1
2
)(2m+ r ´ 1

2
) ¨ ¨ ¨ (r + 5

2
)(r + 3

2
)
a0

which implies that |a 1
2m(r2)| ă 8. Therefore,

c2m(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a2m(r) = a2m(r2) =

(´1)m

(2m)!
a0 .

On the other hand, using (7.25a) again, we find that a1(r2) is not necessary zero; thus we let a1
be a free constant and use (7.25b) to obtain that

a2m+1(r) =
(´1)m

(2m+ 1 + r + 1
2
)(2m+ 1 + r ´ 1

2
) ¨ ¨ ¨ (3 + r + 1

2
)(3 + r ´ 1

2
)
a1 .

Since |a 1
2m+1(r2)| ă 8, we find that

c2m+1(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a2m+1(r) = a2m(r2) =

(´1)m

(2m+ 1)!
a1 .

Therefore,

y2(x) =
8
ÿ

k=0

ck(r2)x
k+r2 = x´ 1

2

[
a0

8
ÿ

k=1

(´1)m

(2k)!
x2k + a1

8
ÿ

k=1

(´1)k

(2k ´ 1)!
x2k´1

]
= a0

cosx
?
x

+ a1
sinx
?
x
.

This produces the Bessel function of the second kind of order one-half

J´ 1
2
(x) =

c

2

πx
cosx ,

and the general solution of Bessel’s equation of order one-half can be written as y = C1J 1
2
(x) +

C2J´ 1
2
(x).

‚ Bessel’s Equation of Order One: Now we consider the case that ν = 1 (thus r1 = 1 and
r2 = ´1). Again, we need to compute

␣

ak(r1)
(8

k=1
, lim
rÑr2

(r´r2)a2(r) and ck(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r´r2)ak(r).

Note that (7.25a) implies that a1(r1) = 0 (which implies that a2m´1(r1) = 0 for all m P N).
Moreover,

a2m(r1) =
´1

(2m+ 2)2m
a2m´2(r) =

1

(2m+ 2)(2m)2(2m ´ 2)
a2m´4(r)

= ¨ ¨ ¨ =
(´1)m

(2m+ 2)(2m)2(2m ´ 4)2 ¨ ¨ ¨ 42 ¨ 2
a0 =

(´1)m

22m(m+ 1)!m!
a0 ;

thus
y1(x) = a0x

8
ÿ

k=0

(´1)k

22k(k + 1)!k!
x2k .



Now we focus on finding b0 and
␣

ck(r2)
(8

k=0
. Note that by (7.25a),

F (2 + r)a2(r) = ´a0 ;

thus (r + 1)a2(r) = ´
1

2(r + 3)
which implies that b0 = lim

rÑr2
(r ´ r2)a2(r) = ´

a0
2

.

To compute
␣

ck(r2)
(8

k=0
, we first note that (7.25a) implies that a1(r) ” 0; thus we use (7.25b) to

conclude that a2m´1(r) = 0 for all m P N and r « r2. This implies that c2m´1(r2) = 0 for all m P N.
On the other hand, for m P N and r « r2,

a2m(r) =
(´1)m

(2m+ r + 1)(2m+ r ´ 1)2 ¨ ¨ ¨ (r + 3)2(r + 1)
a0 ;

thus
(r ´ r2)a2m(r) =

(´1)m

(2m+ r + 1)(2m+ r ´ 1)2 ¨ ¨ ¨ (r + 3)2
a0 .

Therefore, using the formula d

dr
f(r) = f(r)

d

dr
log f(r) if f(r) ą 0, we find that

c2m(r2) =
(´1)m+1a0

(2m)(2m ´ 2)2 ¨ ¨ ¨ 22

[ 1

2m+ r + 1
+

2

2m+ r ´ 1
+ ¨ ¨ ¨ +

2

r + 3

]ˇ
ˇ

ˇ

r=r2

=
(´1)m+1a0

22m´1m!(m ´ 1)!

[ 1

2m
+

2

2m ´ 2
+ ¨ ¨ ¨ +

2

2

]
=

(´1)m+1a0
22mm!(m ´ 1)!

[ 1

m
+

2

m ´ 1
+ ¨ ¨ ¨ +

2

1

]
=

(´1)m+1
(
Hm +Hm´1

)
22mm!(m ´ 1)!

a0 .

Moreover, c0(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)a0 = a0. Then the second solution to Bessel’s equation of order

one is

y2(x) =
b0
a0
y1(x) logx+

8
ÿ

k=0

ck(r2)x
k+r2 = ´J1(x) logx+ x´1

[
a0 +

8
ÿ

k=1

c2k(r2)x
2k
]

= ´
1

2
y1(x) logx+ a0

x

[
1 ´

8
ÿ

k=1

(´1)k(Hk +Hk´1)

22kk!(k ´ 1)!
x2k

]
.

This produces the Bessel function of the first kind of order one:

J1(x) ”
1

2
y1(x) =

x

2

8
ÿ

k=0

(´1)k

22k(k + 1)!k!
x2k

and the Bessel function of the second kind of order one:

Y1(x) ”
2

π

[
´ y2(x) + (γ ´ log 2)J1(x)

]
,

where γ is again the Euler-Máscheroni constant. The general solution to Bessel’s equation of order
one then can be written as

y = C1J1(x) + C2Y1(x) .

‚ The General Case: In general, we have the following



Definition 7.34 (Bessel’s function of the first kind). For ν ě 0, the Bessel function of the first
kind of order ν, denoted by Jν , is defined as the series solution

8
ř

k=0

ak(ν)x
k+ν to the Bessel equation

of order ν
x2y 11 + xy 1 + (x2 ´ ν2)y = 0 (7.24)

with a specific a0(ν) =
1

Γ(ν + 1)2ν
, where Γ : (0,8) Ñ R is the Gamma-function. In other words,

the Bessel function of the first kind of order ν is the series solution to (7.24) of the form Jν(x) =

xν
[

1

Γ(ν + 1)2ν
+

8
ř

k=1

ak(ν)x
k
]
.

For Jν(x) to be a solution to (7.24), the coefficients tak(ν)u
8
k=1 must satisfy (7.25) (with r = ν)

and this implies that

F (1 + ν)a1(ν) = 0 ,

F (k + ν)ak(ν) + ak´2(ν) = 0 @ k ě 2 .

Therefore, we conclude that a1(ν) = 0 and

ak(ν) =
´1

(k + ν ´ ν)(k + ν + ν)
ak´2(ν) =

´1

k(k + 2ν)
ak´2(ν) @ k ě 2 ;

thus a2m+1(ν) = 0 for all m P N Y t0u and

a2k(ν) =
1

2k(2k + 2ν)(2k ´ 2)(2k ´ 2 + 2ν)
a2k´4(ν) = ¨ ¨ ¨

=
(´1)k

2k(2k ´ 2)(2k ´ 4) ¨ ¨ ¨ 2(2k + 2ν)(2k + 2ν ´ 2) ¨ ¨ ¨ (2 + 2ν)
a0 (7.29)

=
(´1)k

22kk!(k + ν)(k + ν ´ 1) ¨ ¨ ¨ (ν + 1)
¨

1

Γ(ν + 1)2ν
.

Using the property that Γ(x+ 1) = xΓ(x) for all x ą 0, we find that

(k + ν)(k + ν ´ 1) ¨ ¨ ¨ (ν + 1)Γ(ν + 1) = Γ(k + ν + 1) ;

thus
a2k(ν) =

(´1)kΓ(ν + 1)

22kk!Γ(k + ν + 1)
¨

1

Γ(ν + 1)2ν
=

(´1)k

22k+νk!Γ(k + ν + 1)
.

Therefore,

Jν(x) =
8
ÿ

k=0

(´1)k

22k+νk! Γ(k + ν + 1)
x2k+ν =

8
ÿ

k=0

(´1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν

.

A second solution may be found using reduction of order, but it is not of the same form as a
Bessel function of the first kind. Therefore, we refer to it as a Bessel function of the second
kind, which is also known as a Neumann function or Weber function.

When 2ν R N, discussion in Section 7.7 shows that

y2(x) =
8
ÿ

k=0

a2k(´ν)x
2k´ν



is a linearly independent (w.r.t. Jν) solution to Bessel’s equation of order ν, where a2k(´ν) is given
by (7.29). Let Γ : Czt0,´1,´2, ¨ ¨ ¨ u Ñ C be the analytic continuation of Γ : R+ Ñ R satisfying
Γ(z + 1) = zΓ(z) for ´z R N Y t0u (and 1/Γ(z) = 0 for all ´z P N Y t0u). The function J´ν is the
function y2 with the choice of a0 =

1

2´νΓ(1 ´ ν)
; that is,

J´ν(x) =
8
ÿ

k=0

(´1)k

k! Γ(k ´ ν + 1)
x2k´ν .

We note that when ν P N Y t0u, using the property that 1/Γ(z) = 0 for all ´z P N Y t0u, we have

J´ν(x) =
8
ÿ

k=ν

(´1)k

k! Γ(k ´ ν + 1)

(x
2

)2k´ν

=
8
ÿ

k=0

(´1)k+ν

(k + ν)! Γ(k + 1)

(x
2

)2k+ν

= (´1)ν
8
ÿ

k=0

(´1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν

= (´1)νJν(x) .

Definition 7.35 (Bessel’s function of the second kind).

1. For ν R N Y t0u, the Bessel function of the second kind of order ν is the function Yν

defined as the following linear combination of Jν and J´ν :

Yν(x) =
cos(νπ)Jν(x) ´ J´ν(x)

sin(νπ) .

2. For m P N Y t0u, the Bessel function of the second kind of order m is the function Ym
defined by

Ym(x) = lim
νÑm

cos(νπ)Jν(x) ´ J´ν(x)

sin(νπ) .

‚ Properties of Bessel’s functions: Here we lists some properties of Bessel’s functions.

1. Some recurrence relation: Using the series representation of Bessel’s function Jν , it is not
difficult to show that Jν satisfies

d

dx
[xνJν(x)] = xνJν´1(x) ,

d

dx
[x´νJν(x)] = ´x´νJν+1(x) ,

Jν+1(x) =
2ν

x
Jν(x) ´ Jν´1(x) , Jν+1(x) = Jν´1(x) ´ 2J 1

ν(x) .

2. Some asymptotic behaviors:

Jν(x) «

c

2

πx
cos

(
x ´

νπ

2
´
π

4

)
x " 1 ,

Yν(x) «

c

2

πx
sin

(
x ´

νπ

2
´
π

4

)
x " 1 .



8 Matrix Methods for Linear Systems
8.1 Introduction

There are several reasons that we should consider system of first order ODEs, and here we provide
two of them.

1. In real life, a lot of phenomena can be modelled by system of first order ODE. For example,
the Lotka–Volterra equation or the predator-prey equation:

p1 = γp ´ αpq ,

q1 = βq + δpq .

in Example 1.9 can be used to described a predator-prey system. Let x ” (x1, x2) = (p, q)T and
F(t,x) = (γx1 ´ αx1x2, βx2 + δx1x2)

T. Then the Lotka-Volterra equation can also be written
as

x 1(t) = F
(
t,x(t)

)
. (8.1)

2. Suppose that we are considering a scalar n-th order ODE

y(n)(t) = f
(
t, y(t), y 1(t), ¨ ¨ ¨ , y(n´1)(t)

)
.

Let x1(t) = y(t), x2(t) = y 1(t), ¨ ¨ ¨ , xn(t) = y(n´1)(t). Then (x1, ¨ ¨ ¨ , xn) satisfies

x 1
1(t) = x2(t) , (8.2a)
x 1
2(t) = x3(t) , (8.2b)
... =

... (8.2c)
x 1
n(t) = f

(
t, x1(t), x2(t), ¨ ¨ ¨ , xn(t)

)
. (8.2d)

Let x = (x1, ¨ ¨ ¨ , xn)
T be an n-vector, and F(t,x) =

(
x2, x3, ¨ ¨ ¨ , xn, f(t, x1, x2, ¨ ¨ ¨ , xn)

)T be a
vector-valued function. Then (8.2) can also be written as (8.1).

Definition 8.1. The system of ODE (8.1) is said to be linear if F is of the form

F(t,x) = P(t)x + g(t)

for some matrix-valued function P =
[
pij(t)

]
nˆn

. (8.1) is said to be homogeneous if g(t) = 0.

Example 8.2. Consider the second order ODE

y 11 ´ y 1 ´ 2y = sin t . (8.3)

Let x1(t) = y(t) and x2(t) = y 1(t). Then x = (x1, x2)
T satisfies

x1(t) =

[
0 1
2 1

]
x(t) +

[
0

sin t

]
. (8.4)



Therefore, the second order linear ODE (8.3) corresponds to a system of first order linear ODE (8.4).
Review: to solve (8.3), we use the method of variation of parameters and assume that the solution
to (8.3) can be written as

y(t) = u1(t)e
2t + u2(t)e

´t ,

where te2t, e´tu is a fundamental set of (8.3). By the additional assumption u 1
1(t)e

2t + u 1
2(t)e

´t = 0,
we find that [

e2t e´t

2e2t ´e´t

] [
u 1
1

u 1
2

]
=

[
0

sin t

]
.

Therefore, with W (t) denoting the Wronskian of te2t, e´tu, we have

u 1
1(t) =

1

W (t)
det

([
0 e´t

sin t ´e´t

])
=

´e´t sin t
´3et

=
1

3
e´2t sin t

and
u 1
2(t) =

1

W (t)
det

([
e2t 0
2e2t sin t

])
=
e2t sin t
´3et

= ´
1

3
et sin t

which further implies that a particular solution is

y(t) = ´
2e´2t sin t+ e´2t cos t

15
e2t +

et cos t ´ et sin t
6

e´t

= ´
2 sin t+ cos t

15
+

cos t ´ sin t
6

=
cos t ´ 3 sin t

10
.

This particular solution provides a particular solution to (8.4):

x(t) =
[
y(t)
y 1(t)

]
=

 cos t ´ 3 sin t

10

´
sin t+ 3 cos t

10

 .

Example 8.3. The ODE
x 1 =

[
1 1
4 1

]
x (8.5)

is a system of first order linear homogeneous ODE. Suppose the initial condition is given by x(0) =
(x10, x20)

T.

1. Let x = (x1, x2)
T. Then

x 1
1(t) = x1(t) + x2(t) , (8.6a)
x 1
2(t) = 4x1(t) + x2(t) . (8.6b)

Note that (8.6a) implies x2 = x 1
1 ´ x1; thus replacing x2 in (8.6) by x2 = x 1

1 ´ x1 we find that

x 11
1 ´ x1

1 = 4x1 + x 1
1 ´ x1 or x 11

1 ´ 2x 1
1 ´ 3x1 = 0 .

Therefore, x1(t) = C1e
3t + C2e

´t and this further implies that x2(t) = 2C1e
3t ´ 2C2e

´t; thus
the solution to (8.5) can be expressed as

x(t) =
[
x1(t)
x2(t)

]
= C1

[
1
2

]
e3t + C2

[
1

´2

]
e´t .



2. Let xh(k) « x(kh) = (x1(kh), x2(kh))
T be the approximated value of x at the k-th step. Since

x((k + 1)h) « x(kh) + h

[
1 1
4 1

]
xh(k) ,

we consider the (explicit) Euler scheme

xh(k + 1) = xh(k) + h

[
1 1
4 1

]
xh(k) =

(
Id + h

[
1 1
4 1

])k
[
x10
x20

]
,

and we expect that for t ą 0 and k = t/h, then xh(k) Ñ x(t) as h Ñ 0.

To compute the k-th power of the matrix Id+h
[
1 1
4 1

]
, we diagonize the matrix and obtain

that
Id + h

[
1 1
4 1

]
=

[
1 + h h
4h 1 + h

]
=

[
1 1

´2 2

] [
1 ´ h 0
0 1 + 3h

] [
1 1

´2 2

]´1

;

thus (
Id + h

[
1 1
4 1

])k

=

[
1 1

´2 2

] [
(1 ´ h)k 0

0 (1 + 3h)k

] [
1 1

´2 2

]´1

.

As a consequence, using the limit (1 ´ h)
t
h Ñ e´t and (1 + 3h)

t
h Ñ e3t as t Ñ 0, we find that

x(t) = lim
hÑ0

xh

( t

h

)
=

[
1 1

´2 2

] [
e´t 0
0 e3t

] [
1 1

´2 2

]´1 [
x10
x20

]
=

1

4

[
1 1

´2 2

] [
e´t 0
0 e3t

] [
2 ´1
2 1

] [
x10
x20

]
=

1

4

[
2e´t + 2e3t ´e´t + e3t

´4e´t + 4e3t 2e´t + 2e3t

] [
x10
x20

]
=

1

4

[
2x10 + x20
4x10 + 2x20

]
e3t +

1

4

[
2x10 ´ x20

´4x10 + 2x20

]
e´t .

Choose x0 = (1, 2)T and x0 = (1,´2)T, we find that

x1(t) =

[
1
2

]
e3t and x2(t) =

[
1

´2

]
e´t

are both solution to (8.5).

Remark 8.4. For a, b, c, d P R being given constants, suppose that x1 and x2 satisfy the system of
first order linear ODE

x 1
1 = ax1 + bx2 , (8.7a)
x 1
2 = cx1 + dx2 . (8.7b)

Using (8.7a), we have bx2 = x 1
1 ´ ax2; thus (8.7b) implies that x1 satisfies

x 11
1 ´ (a+ d)x 1

1 + (ad ´ bc)x1 = 0 .

We note that the characteristic equation for the ODE above is exactly the characteristic equation of
the matrix

[
a b
c d

]
.



Moreover, suppose that λ1 ‰ λ2 are distinct zeros of the characteristic equation, then

x1(t) = C1e
λ1t + C2e

λ2t .

Similarly, x2(t) = C3e
λ1t + C4e

λ2t for some C3, C4 satisfying

λ1C1e
λ1t + λ2C2e

λ2t = (aC1 + bC3)e
λ1t + (aC2 + bC4)e

λ2t ,

λ1C3e
λ1t + λ2C2e

λ2t = (cC1 + dC3)e
λ1t + (cC2 + dC4)e

λ2t .

Since teλ1t, eλ2tu are linearly independent, we must have that C1, C2, C3, C4 satisfy[
a b
c d

] [
C1

C3

]
= λ1

[
C1

C3

]
and

[
a b
c d

] [
C2

C4

]
= λ2

[
C2

C4

]
.

In other words, (C1, C3)
T and (C2, C4)

T are the eigenvectors of
[
a b
c d

]
associated with eigenvalues

λ1 and λ2, respectively. Therefore,

x(t) =
[
C1e

λ1t + C2e
λ2t

C3e
λ1t + C4e

λ2t

]
=

[
C1

C3

]
eλ1t +

[
C2

C4

]
eλ2t = u1e

λ1t + u2e
λ2t ,

where u1 = (C1, C3)
T and u2 = (C2, C4)

T.

8.2 Basic Theory of Systems of First Order Equations

Similar to Theorem 1.24, we have the following

Theorem 8.5. Let x0 = (x10, x20, ¨ ¨ ¨ , xn0) be a point in Rn, V Ď Rn be an open set containing x0,
and F : (α, β) ˆ V Ñ Rn be a vector-valued function of t and x such that F = (F1, ¨ ¨ ¨ , Fn) and the
partial derivative BFi

Bxj
is continuous in (α, β) ˆ V for all i, j P t1, 2, ¨ ¨ ¨ , nu. Then in some interval

t P (t0 ´ h, t0 + h) Ď (α, β), there exists a unique solution x = φ(t) to the initial value problem

x 1 = F(t,x) x(t0) = x0 . (8.8)

Moreover, if (8.8) is linear and V = Rn, then the solution exists throughout the interval (α, β).

The proof of this theorem is almost the same as the proof of Theorem 1.24 (by simply replacing
| ¨ | with } ¨ }Rn), and is omitted.

Theorem 8.6 (Principle of Superposition). If the vector x1 and x2 are solutions of the linear system
x1 = P(t)x, then the linear combination c1x1 + c2x2 is also a solution for any constants c1 and c2.

Example 8.7. Consider the system of ODE

x 1 =

[
1 1
4 1

]
x (8.5)

and note that x1(t) =

[
e3t

2e3t

]
=

[
1
2

]
e3t and x2(t) =

[
e´t

´2e´t

]
=

[
1

´2

]
e´t are solutions to this ODE;

that is,
x 1
1(t) =

[
3
6

]
e3t =

[
1 1
4 1

] [
1
2

]
e3t =

[
1 1
4 1

]
x1(t)



and
x 1
2(t) =

[
´1
2

]
e´t =

[
1 1
4 1

] [
1

´2

]
e´t =

[
1 1
4 1

]
x2(t) .

Therefore, y = c1x1(t) + c2x2(t) is also a solution to (8.5).

Theorem 8.8. Let Mnˆn denote the space of nˆn real matrices, and P : (α, β) Ñ Mnˆn be a matrix-
valued function. If the vector-valued functions x1,x2, ¨ ¨ ¨ ,xn are linearly independent solutions to

x 1(t) = P(t)x(t) (8.9)

then each solution x = φ(t) to (8.9) can be expressed as a linear combination of x1, ¨ ¨ ¨ ,xn in exact
one way; that is, there exists a unique vector (c1, ¨ ¨ ¨ , cn) such that

φ(t) = c1x1(t) + ¨ ¨ ¨ + cnxn(t) . (8.10)

Proof. By Theorem 8.5, for each ei = (0, ¨ ¨ ¨ , 0
looomooon

(i ´ 1) slots

, 1, 0, ¨ ¨ ¨ , 0), there exists a unique solution x = φi(t)

to (8.9) satisfying the initial data x(0) = ei. The set tφ1,φ2, ¨ ¨ ¨ ,φnu are linearly independent for
otherwise there exists a non-zero vector (c1, ¨ ¨ ¨ , cn) such that

c1φ1(t) + c2φ2(t) + ¨ ¨ ¨ + cnφn(t) = 0

which, by setting t = 0, would imply that (c1, c2, ¨ ¨ ¨ , cn) = 0, a contradiction.
We note that every solution x(t) to (8.9) can be uniquely expressed by

x(t) = x1(0)φ1(t) + x2(0)φ2(t) + ¨ ¨ ¨ + xn(0)φn(t) . (8.11)

In fact, x(t) and x1(0)φ1(t) + ¨ ¨ ¨ + xn(0)φn(t) are both solutions to (8.9) satisfying the initial data

x(0) =
(
x1(0), ¨ ¨ ¨ , xn(0)

)T
;

thus by uniqueness of the solution, (8.11) holds.
Now, since x1, ¨ ¨ ¨ ,xn are solution to (8.9), we find that

span(x1, ¨ ¨ ¨ ,xn) Ď span(φ1, ¨ ¨ ¨ ,φn) .

Since tx1, ¨ ¨ ¨ ,xnu are linearly independent, dim
(
span(x1, ¨ ¨ ¨ ,xn)

)
= n; thus by the fact that

dim
(
span(φ1, ¨ ¨ ¨ ,φn)

)
= n, we must have

span(x1, ¨ ¨ ¨ ,xn) = span(φ1, ¨ ¨ ¨ ,φn) .

Therefore, every solution x = φ(t) of (8.9) can be (uniquely) expressed by (8.10). ˝

Definition 8.9. Let P(t) P Mnˆn, and x1, ¨ ¨ ¨ ,xn be linearly independent solutions to (8.9). Then
tx1, ¨ ¨ ¨ ,xnu is called a fundamental set of (8.9), the matrix Ψ(t) =

[
[x1(t)]

... [x2(t)]
... ¨ ¨ ¨

... [xn(t)]
]

is called the fundamental matrix of (8.9), and φ(t) = c1x1(t)+ ¨ ¨ ¨+ cnxn(t) is called the general
solution of (8.9).



Theorem 8.10. Let P : (α, β) Ñ Mnˆn be continuous matrix-valued function, xp be a particular
solution to the non-homogeneous system

x 1(t) = P(t)x(t) + g(t) (8.12)

on (α, β), and tx1,x2, ¨ ¨ ¨ ,xnu be a fundamental set of the ODE x 1(t) = P(t)x(t). Then every
solution to (8.12) can be expressed in the form

x(t) = C1x1(t) + C2x2(t) + ¨ ¨ ¨ + Cnxn(t) + xp(t) .

Theorem 8.11. If φ1,φ2, ¨ ¨ ¨ ,φn are solutions to (8.9), then

det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
)

is either identically zero or else never vanishes.

Recall Theorem 5.4 that for a collection of solutions tφ1, ¨ ¨ ¨ , φnu to a n-th order ODE

y(n) + pn´1(t)y
(n´1) + ¨ ¨ ¨ + p1y

1 + p0y = 0 ,

the derivative of Wronskian W (t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1 φ2 ¨ ¨ ¨ φn

φ 1
1 φ 1

2 ¨ ¨ ¨ φ 1
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

satisfies d

dt
W (t) = ´pn´1(t)W (t)

which can be used to show that W (t) is identically zero or else never vanishes. We use the same idea
and try to find the derivative of the determinant W(t) ” det(

[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
).

Proof. Let W(t) ” det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
), P = [pij]nˆn, and the i-th component of φj be φ(i)

j ;
that is, [

φj

]
=

[
φ
(1)
j , ¨ ¨ ¨ , φ

(n)
j

]T
.

Since φ(i)1
j =

n
ř

k=1

pikφ
(k)
j , using the properties of the determinants we find that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

φ
(j)1
1 φ

(j)1
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j)1
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

n
ř

k=1

pjkφ
(k)
1

n
ř

k=1

pjkφ
(k)
2 ¨ ¨ ¨ ¨ ¨ ¨

n
ř

k=1

pjkφ
(k)
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“row operations”
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(1)
n

... ... ...
φ
(j´1)
1 φ

(j´1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j´1)
n

pjjφ
(j)
1 pjjφ

(j)
2 ¨ ¨ ¨ ¨ ¨ ¨ pjjφ

(j)
n

φ
(j+1)
1 φ

(j+1)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(j+1)
n

... ... ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= pjjW .



Therefore,

d

dt
W =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)1
1 φ

(1)1
2 ¨ ¨ ¨ φ

(1)1
n

φ
(2)
1 φ

(2)
2 ¨ ¨ ¨ φ

(2)
n

... . . . ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ φ

(1)
n

φ
(2)1
1 φ

(2)1
2 ¨ ¨ ¨ φ

(2)1
n

φ
(3)
1 φ

(3)
2 ¨ ¨ ¨ φ

(3)
n

... . . . ...
φ
(n)
1 φ

(n)
2 ¨ ¨ ¨ φ

(n)
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ
(1)
1 φ

(1)
2 ¨ ¨ ¨ φ

(1)
n

φ
(2)
1 φ

(2)
2 ¨ ¨ ¨ φ

(2)
n

... . . . ...
φ
(n´1)
1 φ

(n´1)
2 ¨ ¨ ¨ φ

(n´1)
n

φ
(n)1
1 φ

(n)1
2 ¨ ¨ ¨ φ

(n)1
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (p11 + ¨ ¨ ¨ + pnn)W = tr(P)W ;

thus
W(t) = exp

( ż t

t0

tr(P)(s) ds
)

W(t0)

which implies that W is identically zero (if W(t0) is zero) or else never vanishes (if W(t0) ‰ 0). ˝

Definition 8.12. If φ1,φ2, ¨ ¨ ¨ ,φn are n solutions to (8.9), the determinant

W(φ1, ¨ ¨ ¨ ,φn)(t) ” det(
[[
φ1

] ...
[
φ2

] ... ¨ ¨ ¨
...
[
φn

]]
)

is called the Wronskian of tφ1, ¨ ¨ ¨ ,φnu.

Theorem 8.13. Let u, v : (α, β) Ñ Rn be real vector-valued functions. If x(t) = u(t) + iv(t) is a
solution to (8.9), so are u and v.

Proof. Since x(t) = u(t) + iv(t) is a solution to (8.9), x1(t) ´ P(t)x(t) = 0; thus

0 = u 1(t) + iv 1(t) ´ P(t)
(
u(t) + iv(t)

)
= u 1(t) + iv 1(t) ´ P(t)u(t) ´ iP(t)v(t)

= u 1(t) ´ P(t)u(t) + i
(
v 1(t) ´ P(t)v(t)

)
.

Since u 1(t) ´ P(t)u(t) and v 1(t) ´ P(t)v(t) are both real vectors, we must have

u 1(t) ´ P(t)u(t) = v 1(t) ´ P(t)v(t) = 0 .

Therefore, u and v are both solutions to (8.9). ˝

8.3 Homogeneous Linear Systems with Constant Coefficients

In this section, we consider the equation

x 1(t) = Ax(t) , (8.13)

where A is a constant n ˆ n matrix.

8.3.1 The case that A has n linearly independent eigenvectors

By Remark 8.4, it is natural to first look at the eigenvalues and eigenvectors of A. Suppose that A has
real eigenvalues λ1, ¨ ¨ ¨ , λn with corresponding eigenvectors v1, ¨ ¨ ¨ , vn such that v1, ¨ ¨ ¨ , vn are lin-



early independent. Let Λ = diag(λ1, λ2, ¨ ¨ ¨ , λn) =


λ1

λ2
. . .

λn

 and P =
[
[v1]

... [v2]
... ¨ ¨ ¨

... [vn]
]
.

Then A = PΛP´1 which implies that

x 1(t) = PΛP´1x(t) .

Therefore, with y(t) denoting the vector P´1x(t), by the fact that y 1(t) = Px 1(t) (since P is a
constant matrix), we have

y 1(t) = Λy(t) . (8.14)

In components, we obtain that for 1 ď j ď n,

y 1
j(t) = λjyj(t)

if y(t) =
(
y1(t), ¨ ¨ ¨ , yn(t)

)T. As a consequence, if y(t0) = y0 = (y01, ¨ ¨ ¨ , y0n)
T is given, we obtain

that the solution to (8.14) (with initial data y(t0) = y0) can be written as

y(t) =


eλ1(t´t0)y01
eλ2(t´t0)y02

...
eλn(t´t0)y0n

 =


eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)

y0 ;

thus the solution of (8.13) with initial data x(t0) = x0 (which implies that y0 = P´1x0) can be
written as

x(t) = Py(t) = P


eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)

P´1x0 . (8.15)

Defining the exponential of an n ˆ n matrix M by

eM = Inˆn + M +
1

2!
M 2 +

1

3!
M 3 + ¨ ¨ ¨ +

1

k!
Mk + ¨ ¨ ¨ =

8
ÿ

k=0

1

k!
Mk ,

by the fact that (tΛ)k =

(λ1t)
k

. . .
(λnt)

k

, we find that

etΛ =


8
ř

k=0

1

k!
(λ1t)

k

. . .
8
ř

k=0

1

k!
(λnt)

k

 =

e
λ1t

. . .
eλnt

 .

Therefore, (8.15) implies that the solution to (8.13) with initial data x(t0) = x0 can be expressed as

x(t) = Pe(t´t0)ΛP´1x0 .



Moreover, (8.15) also implies that the solution to (8.13) with initial data x(t0) = x0 can be written
as

x(t) =
[
[v1]

... ¨ ¨ ¨
... [vn]

]
eλ1(t´t0)

eλ2(t´t0)

. . .
eλn(t´t0)


y01...
y0n



=
[
eλ1(t´t0)[v1]

... ¨ ¨ ¨
... eλn(t´t0)[vn]

]y01...
y0n


= y01e

λ1(t´t0)v1 + y02e
λ2(t´t0)v2 + ¨ ¨ ¨ + y0ne

λn(t´t0)vn . (8.16)

In other words, solutions to (8.13) are linear combination of vectors
␣

eλ1(t´t0)v1, ¨ ¨ ¨ , eλn(t´t0)vn

(

.
On the other hand, using that tA = P(tΛ)P´1, we have (tA)k = P(tΛ)kP´1; thus the definition

of exponential of matrices provides that

e(t´t0)A =
8
ÿ

k=0

1

k!

(
(t ´ t0)A

)k
=

8
ÿ

k=0

1

k!

(
P((t ´ t0)Λ)kP´1

)
= P

[ 8
ÿ

k=0

1

k!

(
(t ´ t0)Λ

)k]P´1

= Pe(t´t0)ΛP´1 .

Therefore, the solution to (8.13) with initial data x(t0) = x0 can also be expressed as

x(t) = e(t´t0)Ax0 . (8.17)

We remark that in contrast the solution to x 1(t) = ax(t), where a is a constant, can be written as

x(t) = ea(t´t0)x0 ,

where x0 = x(t0) is the initial condition.

8.3.2 The case that A has complex eigenvalues

Now we consider the system x 1 = Ax when A has complex eigenvalues.

Example 8.14. Find a fundamental set of real-valued solution of the system

x 1 =

[
´1/2 1
´1 ´1/2

]
x . (8.18)

We first diagonalize the matrix A ”

[
´1/2 1
´1 ´1/2

]
and find that

[
´1/2 1
´1 1/2

]
=

[
1 1
i ´i

] [
´1/2 + i 0

0 ´1/2 ´ i

] [
1 1
i ´i

]´1

.

Therefore, Remark 8.4 implies that

x1(t) =

[
1
i

]
e(´1/2+i)t =

[
1
i

]
e´ t

2 (cos t+ i sin t) =
[
e´ t

2 cos t
´e´ t

2 sin t

]
+ i

[
e´ t

2 sin t
e´ t

2 cos t

]



and
x2(t) =

[
1

´i

]
e(´1/2´i)t =

[
1

´i

]
e´ t

2 (cos t ´ i sin t) =
[
e´ t

2 cos t
´e´ t

2 sin t

]
´ i

[
e´ t

2 sin t
e´ t

2 cos t

]
are both solutions to the ODE. By Theorem 8.13, φ1(t) =

[
e´ t

2 cos t
´e´ t

2 sin t

]
and φ2(t) =

[
e´ t

2 sin t
e´ t

2 cos t

]
are

also solutions to (8.18).
To see the linear independence of φ1 and φ2, we note that the Wronskian of φ1 and φ2 is

W(t) =

ˇ

ˇ

ˇ

ˇ

e´ t
2 cos t e´ t

2 sin t
´e´ t

2 sin t e´ t
2 cos t

ˇ

ˇ

ˇ

ˇ

= e´t

which never vanishes. Therefore, tφ1,φ2u is a fundamental set of (8.18).

In general, if the constant matrix A has complex eigenvalues r˘ = λ ˘ iµ with corresponding
eigenvectors u˘. Then

(A ´ r˘I)u˘ = 0 ô (A ´ Ďr˘I)Ďu˘ = 0 ô (A ´ r¯I)Ďu˘ = 0 .

Therefore, u´ could be chosen as the complex conjugate of u+. Let u+ = a+ ib and u´ = a ´ ib be
eigenvectors associated with r+ and r´, respective, where a, b are real vectors. Let x1(t) = u+e

r+t

and x2(t) = u´e
r´t. Then x1,x2 are both solutions to x 1 = Ax since

x 1
1(t) = r+u+e

r+t = er+t(Au+) = Ax1(t) ,

x 1
2(t) = r´u´e

r´t = er´t(Au´) = Ax2(t) .

On the other hand, using the Euler identity we have

x1(t) = (a + ib)e(λ+iµ)t = (a + ib)eλt(cosµt+ i sinµt)
= (a cosµt ´ b sinµt)eλt + i(a sinµt+ b cosµt)eλt ,

x2(t) = (a ´ ib)e(λ´iµ)t = (a ´ ib)eλt(cosµt ´ i sinµt)
= (a cosµt ´ b sinµt)eλt ´ i(a sinµt+ b cosµt)eλt .

Therefore, Theorem 8.13 implies that φ1(t) ” (a cosµt´b sinµt)eλt and φ2(t) ” (a sinµt+b cosµt)eλt

are also solutions to x 1 = Ax.
Now suppose that A is an n ˆ n matrix which has k distinct complex eigenvalues denoted by

r
(1)
˘ , r

(2)
˘ , ¨ ¨ ¨ , r

(k)
˘ and n ´ 2k distinct real eigenvalues r2k+1, ¨ ¨ ¨ , rn with corresponding eigenvectors

u(1)
˘ , u(2)

˘ , ¨ ¨ ¨ , u(k)
˘ , u2k+1, ¨ ¨ ¨ ,uk, where

r
(j)
˘ = λj ˘ iµj for some λj, µj P R, and u(j)

+ =
Ěu(j)

´ = a(j) + ib(j) .

Then the general solutions of x 1 = Ax is of the form

x(t) =
k
ÿ

j=1

[
C

(j)
1

(
a(j) cosµjt ´ b(j) sinµjt

)
+ C

(j)
2

(
a(j) sinµjt+ b(j) cosµjt

)]
eλjt +

n
ÿ

j=2k+1

Cjuje
λjt .



If A is a 2 ˆ 2 matrix which has complex eigenvalues, then det(A) ‰ 0; thus 0 is the only
equilibrium of the system x 1 = Ax. Now we check the stability of this equilibrium. Let u, v be given
as above. Then the Wronskian of u, v never vanishes. In fact,

W [u, v](t)

=

ˇ

ˇ

ˇ

ˇ

(a1 cosµt ´ b1 sinµt)eλt (a1 sinµt+ b1 cosµt)eλt
(a2 cosµt ´ b2 sinµt)eλt (a2 sinµt+ b2 cosµt)eλt

ˇ

ˇ

ˇ

ˇ

= e2λt
[
(a1 cosµt ´ b1 sinµt)(a2 sinµt+ b2 cosµt) ´ (a2 cosµt ´ b2 sinµt)(a1 sinµt+ b1 cosµt)

]
= e2λt(a1b2 ´ a2b1) ‰ 0 ;

thus tu, vu is a linearly independent set. Moreover, Theorem 8.8 implies that every solution to
x 1 = Ax can be expressed as a unique linear combination of u and v (thus every solution to
x 1 = Ax can be expressed as a unique linear combination of φ1 and φ2). Therefore, we immediately
find that 0 is an asymptotically stable equilibrium if and only if λ ă 0.

Example 8.15. Consider the two-mass three-spring system

m1
d2x1
dt2

= ´(k1 + k2)x1 + k2x2 + F1(t) ,

m2
d2x2
dt2

= k2x1 ´ (k2 + k3)x2 + F2(t)

which is used to model the motion of two objects shown in the figure below.

Figure 3: A two-mass three-spring system

Letting y1 = x1, y2 = x2, y3 = x 1
1 and y4 = x 1

2, we find that y = (y1, y2, y3, y4)
T satisfies

y 1 =


0 0 1 0
0 0 0 1

´
k1 + k2
m1

k2
m1

0 0

k2
m2

´
k2 + k3
m2

0 0

y +


0
0

F1(t)

m1
F2(t)

m2

 .

Now suppose that F1(t) = F2(t) = 0, and m1 = 2, m2 =
9

4
, k1 = 1, k2 = 3, k3 =

15

4
. Letting

A =


0 0 1 0
0 0 0 1

´2
3

2
0 0

4

3
´3 0 0

, then y 1 = Ay. The eigenvalue r of A satisfies



det(A ´ rI) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´r 0 1 0
0 ´r 0 1

´2
3

2
´r 0

4

3
´3 0 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´r 0 1
3

2
´r 0

´3 0 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ´r 1

´2
3

2
0

4

3
´3 ´r

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´r(´r3 ´ 3r) + (6 ´ 2 + 2r2) = r4 + 5r2 + 4 = 0 .

Therefore, ˘i,˘2i are eigenvalues of A. Let r1 = i, r2 = ´i, r3 = 2i and r4 = ´2i. Corresponding
eigenvectors can be chosen as

u1=


3
2
3i
2i

=

3
2
0
0

+i

0
0
3
2

,u2 =


3
2
0
0

´i


0
0
3
2

,u3 =


3

´4
6i

´8i

=


3
´4
0
0

+i


0
0
6

´8

, and u4 =


3

´4
0
0

´i


0
0
6

´8

.
Therefore, with a, b, c,d denoting the vectors (3, 2, 0, 0)T, (0, 0, 3, 2)T, (3,´4, 0, 0)T and (0, 0, 6,´8)T,
respectively, the general solution to y 1 = Ay is

y(t) = C1(a cos t ´ b sin t) + C2(a sin t+ b cos t) + C3(c cos 2t ´ d sin 2t) + C4(c sin 2t+ d cos 2t) .

In particular,[
x1
x2

]
=

[
y1
y2

]
= C1

[
3 cos t
2 cos t

]
+ C2

[
3 sin t
2 sin t

]
+ C3

[
3 cos 2t

´4 cos 2t

]
+ C4

[
3 sin 2t

´4 sin 2t

]
.

8.3.3 The case that A is not diagonalizable

In this case, there must be at least one eigenvalue λ of A such that the dimension of the eigenspace
␣

v P Cn
ˇ

ˇ (A ´ λI)v = 0
(

is smaller than the algebraic multiplicity of λ.

Example 8.16. Let A =

[
1 ´1
1 3

]
and consider the system x 1 = Ax. We first compute the

eigenvalues (and the corresponding eigenvectors) and find that 2 is the only eigenvalue (with algebraic
multiplicity 2), while u = [1,´1]T is the only eigenvector associated with this eigenvalue. Therefore,
A is not diagonalizable.

Let x = [x, y]T. Then x, y satisfy

x 1 = x ´ y , (8.19a)
y 1 = x+ 3y . (8.19b)

Using (8.19a) we obtain y = x ´ x 1; thus applying this identity to (8.19b) we find that x satisfies

x 1 ´ x 11 = x+ 3(x ´ x 1) or equivalently, x 11 ´ 4x 1 + 4x = 0 .

The characteristic equation to the ODE above is r2 ´ 4r + 4 = 0 (which should be the same as the
characteristic equation for the matrix A); thus 2 is the only zero. From the discussion in Section
4.6, we find that the solution to ODE (that x satisfies) is

x(t) = C1e
2t + C2te

2t .



Using y = x ´ x 1, we find that the general solution to x 1 = Ax is

x =

[
x
y

]
=

[
C1e

2t + C2te
2t

´(C1 + C2)e
2t ´ C2te

2t

]
= C1

[
1

´1

]
e2t + C2

[
0
1

]
e2t + C2

[
1

´1

]
te2t .

Letting v = [0, 1]T, we have x = (C1 + C2t)e
2tu + C2e

2tv.

Given an large non-diagonalizable square matrix A, it is almost impossible to carry out the same
computation as in Example 8.16, so we need to find another systematic way to find the solution to
x 1 = Ax. The following theorem states that x(t) given by (8.17) is always the solution to x 1 = Ax
with initial data x(t0) = x0, even if A is not diagonalizable.

Theorem 8.17. Let A be a square real constant matrix. Then the solution to x 1 = Ax with initial
data x(t0) = x0 is given by

x(t) = e(t´t0)Ax0 . (8.17)

Proof. Let y(t) = e(t´t0)Ax0. Then

y(t) =
(

I + (t ´ t0)A +
(t ´ t0)

2

2!
A2 + ¨ ¨ ¨

)
y0

= y0 + (t ´ t0)Ay0 +
(t ´ t0)

2

2!
A2y0 + ¨ ¨ ¨ +

(t ´ t0)
k

k!
Aky0 + ¨ ¨ ¨ .

Therefore,

y 1(t) = Ay0 + (t ´ t0)Ay0 + ¨ ¨ ¨ +
(t ´ t0)

k´1

k!
Aky0 + ¨ ¨ ¨

= A
(

I + (t ´ t0)A +
(t ´ t0)

2

2!
A2 + ¨ ¨ ¨

)
y0 = Ay

which implies that y is a solution to x 1 = Ax with initial data y(t0) = e0¨Ax0 = x0. By the
uniqueness of the solution, we know that the solution to (8.13) with initial data x(t0) = x0 is given
by (8.17). ˝

Having established Theorem 8.17, we now focus on how to compute the exponential of a square
matrix if it is not diagonizable.

For a 2 ˆ 2 matrix A with repeated eigenvalue λ whose corresponding eigenvector is u (but not
more linearly independent eigenvector), by Example 8.16 we can conjecture that the general solution
to x 1 = Ax is

x(t) = (C1 + C2t)e
λtu + C2e

λtv

for some unknown vector v. Now let us see what role v plays.
Since x 1 = Ax, we must have

λ(C1 + C2t)e
λtu + C2e

λtu + C2λe
λtv = (C1 + C2t)e

λtAu + C2e
λtAv .

By the fact that Au = λu and C2 is a general constant, the identity above implies that

u = (A ´ λI)v .



As a consequence, v satisfies (A ´ λI)2v = 0. Moreover, we must have v ∦ u (for otherwise u = 0)
which implies that u, v are linearly independent.

Let P =
[
u ... v

]
, and Λ =

[
λ 1
0 λ

]
. Then AP = PΛ. Since u, v are linearly independent, P is

invertible; thus
A = PΛP´1 .

Therefore, the same computations used in Section 8.3.1 shows that

e(t´t0)A = Pe(t´t0)ΛP´1 .

Finally, taking t0 = 0 (since the initial time could be translated to 0), then observing that

Λk =

[
λk kλk´1

0 λk

]
, (8.20)

we conclude that

etΛ =
8
ÿ

k=0

tk

k!
Λk =


8
ř

k=0

tk

k!
λk

8
ř

k=1

tk

(k ´ 1)!
λk´1

0
8
ř

k=0

tk

k!
λk

 =

[
eλt teλt

0 eλt

]
. (8.21)

Having obtained the identity above, using (8.17) one immediately see that the general solution to
x 1 = Ax is given by

x(t) =
[
u ... v

] [eλt teλt

0 eλt

] [
C1

C2

]
.

In the following, we develop a general theory to compute e(t´t0)A for a square matrix A.

Definition 8.18. A square matrix A is said to be of Jordan canonical form if

A =


A1 O ¨ ¨ ¨ O
O A2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Aℓ

 , (8.22)

where each O is zero matrix, and each Ai is a square matrix of the form [λ] or

λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . 0 ¨ ¨ ¨
...

... ... . . . . . . . . . 0
...

... ... . . . . . . . . . 1 0

... ... . . . . . . 0 λ 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λ


for some eigenvalue λ of A.



We note that the diagonal elements of different Ai might be the same, and a diagonal matrix is
of Jordan canonical form. Moreover, if A is of Jordan canonical form given by (8.22), then

Ak =


Ak

1 O ¨ ¨ ¨ O
O Ak

2
. . . O

... . . . . . . ...
O ¨ ¨ ¨ O Ak

ℓ

 and etA =


eA1 O ¨ ¨ ¨ O
O eA2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O eAℓ

 . (8.23)

Example 8.19. Let Λ =

λ 0 0
0 λ 1
0 0 λ

. Then Λ is of Jordan canonical form, and using (8.20) and

(8.21) we conclude that

etΛ =

eλt 0 0
0 eλt teλt

0 0 eλt

 .

Example 8.20. Let Λ =

λ 1 0
0 λ 1
0 0 λ

. Then Λ is of Jordan canonical form, and

Λk =

λk kλk´1 k(k ´ 1)

2
λk´2

0 λk kλk´1

0 0 λk

 .

Therefore,

etΛ =



8
ř

k=0

1

k!
tkλk

8
ř

k=1

1

(k ´ 1)!
tkλk´1

8
ř

k=2

1

2(k ´ 2)!
tkλk´1

0
8
ř

k=0

1

k!
tkλk

8
ř

k=1

1

(k ´ 1)!
tkλk´1

0 0
8
ř

k=0

1

k!
tkλk

 =

eλt teλt
1

2
t2eλt

0 eλt teλt

0 0 eλt

 .

In general, if Λ =



λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0
0 λ 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
... 0

. . . . . . 0 ¨ ¨ ¨
...

... ... . . . . . . . . . 0
...

... ... . . . . . . . . . 1 0

... ... . . . . . . 0 λ 1
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λ


is an m ˆ m matrix, then with Ck

m denoting

the number k!

m!(k ´ m)!
(if k ě m, and 0 if k ă m), we have

Λk =



λk kλk´1 Ck
2λ

k´2 ¨ ¨ ¨ ¨ ¨ ¨ Ck
m´1λ

k´m+1

0 λk kλk´1 . . . . . . Ck
m´2λ

k´m+2

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

... ¨ ¨ ¨ ¨ ¨ ¨ 0 λk kλk´1

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λk





(which can be shown by induction using Pascal’s formula). As a consequence,

etΛ =



eλt teλt
1

2
t2eλt ¨ ¨ ¨ ¨ ¨ ¨

tm´1

(m ´ 1)!
eλt

0 eλt teλt
. . . . . . tm´2

(m ´ 2)!
eλt

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

... ¨ ¨ ¨ ¨ ¨ ¨ 0 eλt teλt

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 eλt


. (8.24)

The reason for introducing the Jordan canonical form and computing the exponential of matrices
of Jordan canonical form is because of the following

Theorem 8.21. Every square matrix is similar to a matrix of Jordan canonical form. In other
words, if A P Mnˆn, then there exists an invertible n ˆ n matrix P and a matrix Λ of Jordan
canonical form such that

A = PΛP´1 .

Given a Jordan decomposition A = PΛP´1, we have etA = PetΛP´1 in which the exponential
of etΛ can be obtained using (8.23) and (8.24); thus the computation of the exponential of a general
square matrix A becomes easier as long as we know how to find the decomposition A = PΛP´1.

‚ How to obtain a Jordan decomposition of a square matrix A?

Definition 8.22 (Generalized Eigenvectors). Let A P Mnˆn. A vector v P Cn is called a generalized
eigenvector of A associated with λ if (A ´ λI)pv = 0 for some positive integer p.

If v is a generalized eigenvector of A associated with λ, and p is the smallest positive integer for
which (A ´ λI)pv = 0, then (A ´ λI)p´1v is an eigenvector of A associated with λ. Therefore, λ is
an eigenvalue of A.

Definition 8.23 (Generalized Eigenspaces). Let A P Mnˆn and λ be an eigenvalue of A. The
generalized eigenspace of A associated with λ, denoted by Kλ, is the subset of Cn given by

Kλ ”
␣

v P Cn
ˇ

ˇ (A ´ λI)pv = 0 for some positive integer p
(

.

‚ The construction of Jordan decompositions: Let A P Mnˆn be given.

Step 1: Let λ1, λ2, ¨ ¨ ¨ , λk be all the eigenvalues of A with multiplicity m1, m2, ¨ ¨ ¨ , mk. We first
focus on how to determine the block

Λj =


Λ

(1)
j O ¨ ¨ ¨ O

O Λ
(2)
j

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Λ
(rj)
j

 ,



whose diagonal is a fixed eigenvalue λj with multiplicity mj for some j P t1, 2, ¨ ¨ ¨ , ku, and the
size of Λ(i)

j is not smaller than the size of Λ(i+1)
j for i = 1, ¨ ¨ ¨ , rj ´1. Once all Λ1

js are obtained,
then

Λ =


Λ1 O ¨ ¨ ¨ O
O Λ2

. . . O
... . . . . . . ...

O ¨ ¨ ¨ O Λk

 .

Step 2: Let Ej and Kj denote the eigenspace and the generalized eigenspace associated with λj,
respectively. Then rj = dim(Ej) and mj = dim(Kj). Determine the smallest integer nj such
that

mj = dim
(
Ker(A ´ λjI)nj

)
.

Find the value
p
(ℓ)
j = dim(Ker(A ´ λjI)ℓ

)
for ℓ P t1, 2, ¨ ¨ ¨ , nju

and set p(0)j = 0. Construct an rj ˆ nj matrix whose entries only takes the value 0 or 1 and
for each ℓ P t1, ¨ ¨ ¨ , nju only the first p(ℓ)j ´ p

(ℓ´1)
j components takes value 1 in the ℓ-th column

of this matrix. Let s(i)j be the sum of the i-th row of the matrix just obtained. Then Λ
(i)
j is a

s
(i)
j ˆ s

(i)
j matrix.

Step 3: Next, let us determine matrix P. Suppose that

P =
[
u(1)
1

... ¨ ¨ ¨
... u(m1)

1

... u(1)
2

... ¨ ¨ ¨
... u(m2)

2

... u(1)
3

... ¨ ¨ ¨
... u(n)

k

]
.

Then A
[
u(1)
j

... ¨ ¨ ¨
... u(mj)

j

]
=

[
u(1)
j

... ¨ ¨ ¨
... u(mj)

j

]
Λj . Divide

␣

u(1)
j , ¨ ¨ ¨ ,u(mj)

j

(

into rj groups:

␣

u(1)
j , ¨ ¨ ¨ ,u(s

(1)
j )

j

(

,
␣

u(s
(1)
j +1)

j , ¨ ¨ ¨ ,u(s
(1)
j +s

(2)
j )

j

(

, ¨ ¨ ¨ , and
␣

u(s
(1)
j +¨¨¨+s

(rj´1)

j +1)

j , ¨ ¨ ¨ ,u(mj)
j

(

.

For each ℓ P t1, ¨ ¨ ¨ , rju, we let the ℓ-th group refer to the group of vectors
!

u(s
(1)
j +¨¨¨+s

(ℓ´1)
j +1)

j , ¨ ¨ ¨ ,u(s
(1)
j +¨¨¨+s

(ℓ)
j )

j

)

.

We then set up the first group by picking up an arbitrary non-zero vectors v1 P Ker
(
(A ´

λjI)s
(1)
j zKer

(
(A ´ λjI)s

(1)
j ´1

)
and let

u(i)
j = (A ´ λjI)s

(1)
j ´iv1 for i P t1, ¨ ¨ ¨ , s

(1)
j ´ 1u .

Inductively, once the first ℓ groups of vectors are set up, pick up an arbitrary non-zero vectors
vℓ+1 P Ker

(
(A´λjI)s

(ℓ+1)
j zKer

(
(A´λjI)s

(ℓ+1)
j ´1

)
such that vℓ+1 is not in the span of the vectors

from the first ℓ groups, and define

u(s
(1)
j +¨¨¨+s

(ℓ)
j +i)

j = (A ´ λjI)s
(ℓ+1)
j ´ivℓ+1 for i P t1, ¨ ¨ ¨ , s

(ℓ+1)
j ´ 1u .

This defines the (ℓ + 1)-th group. Keep on doing so for all ℓ ď rj and for j P t1, ¨ ¨ ¨ , ku, we
complete the construction of P.



Example 8.24. Find the Jordan decomposition of the matrix A =


4 ´2 0 2
0 6 ´2 0
0 2 2 0
0 ´2 0 6

.

If λ is an eigenvalue of A, then λ satisfies

0 = det(A ´ λI) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4 ´ λ ´2 0 2
0 6 ´ λ ´2 0
0 2 2 ´ λ 0
0 ´2 0 6 ´ λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (4 ´ λ)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6 ´ λ ´2 0
2 2 ´ λ 0

´2 0 6 ´ λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= (4 ´ λ)
[
(6 ´ λ)2(2 ´ λ) + 4(6 ´ λ)

]
= (6 ´ λ)(4 ´ λ)

[
(6 ´ λ)(2 ´ λ) + 4

]
= (λ ´ 4)3(λ ´ 6) .

Let λ1 = 4, λ2 = 6, m1 = 3 and m2 = 1. Note that

dim
(
Ker(A ´ 4I)

)
= 2 and dim

(
Ker(A ´ 4I)2

)
= 3 .

Therefore, n1 = 2 and p
(1)
1 = 2, p(2)1 = 4. We then construct the matrix according to Step 2 above,

and the matrix is a 2ˆ 2 matrix given by
[
1 1
1 0

]
. This matrix provides that s1 = 2 and s2 = 1; thus

the block associated with the eigenvalue λ = 4, is

4 1 0
0 4 0
0 0 4

 . Therefore, Λ =


4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 6

 .
First, we note that the eigenvector associated with λ = 6 can be chosen as (1, 0, 0, 1)T. Computing

Ker
(
(A ´ 4I)

)
and Ker

(
(A ´ 4I)2

)
, we find that

Ker
(
(A ´ 4I)

)
= span

(
(1, 0, 0, 0)T, (0, 1, 1, 1)T) ,

Ker
(
(A ´ 4I)2

)
= span

(
(1, 0, 0, 0)T, (0, 1, 0, 2)T, (0, 1, 2, 0)T) .

We note that either (0, 1, 0, 2)T or (0, 1, 2, 0)T is in Ker
(
(A ´ 4I)

)
, we can choose v = (0, 1, 0, 2)T.

Then (A ´ 4I)v = (2, 2, 2, 2)T. Finally, for the third column of P we can choose either (1, 0, 0, 0)T or
(0, 1, 1, 1)T (or even their linear combination) since these vectors are not in the span of (2, 2, 2, 2)T

and (0, 1, 0, 2). Therefore,

P =


2 0 1 1
2 1 0 0
2 0 0 0
2 2 0 1

 or P =


2 0 0 1
2 1 1 0
2 0 1 0
2 2 1 1


satisfies A = PΛP´1.

Example 8.25. Let A be given in Example 8.24, and consider the system x 1 = Ax. Let u1 =

(2, 2, 2, 2)T, u2 = (0, 1, 0, 2)T, u3 = (1, 0, 0, 0)T and u4 = (1, 0, 0, 1)T. Then the general solution to



x 1 = Ax is given by

x(t) =
[
u1

... u2
... u3

... u4

]
etΛ(P´1x0)

=
[
u1

... u2
... u3

... u4

] 
e4t te4t 0 0
0 e4t 0 0
0 0 e4t 0
0 0 0 e6t



C1

C2

C3

C4



=
[
u1

... u2
... u3

... u4

] 
C1e

4t + C2te
4t

C2e
4t

C3e
4t

C4e
6t


= (C1e

4t + C2te
4t)u1 + C2e

4tu2 + C3e
4tu3 + C4e

6tu4 ,

where Λ is given in Example 8.24, x0 is the value of x at t = 0 (which can be arbitrarily given), and
(C1, C2, C3, C4)

T = P´1x0.

Example 8.26. Let A =


a 0 1 0 0
0 a 0 1 0
0 0 a 0 1
0 0 0 a 0
0 0 0 0 a

. Then the characteristic equation of A is (a ´ λ)5; thus

λ = a is the only eigenvalue of A. First we compute the kernel of (A ´ aI)p for various p. With
ei = (0, ¨ ¨ ¨ , 0

looomooon

(i ´ 1)-slots

, 1, 0, ¨ ¨ ¨ , 0)T denoting the i-th vector in the standard basis of R5, we find that

Ker((A ´ aI)) =
␣

e1

ˇ

ˇx1, x2 P R
(

= span(e1, e2) ,

Ker((A ´ aI)2) =
␣

(x1, x2, x3, x4, 0)
T ˇ

ˇx1, x2, x3, x4 P R
(

= span(e1, e2, e3, e4) ,

Ker((A ´ aI)3) = R5 = span(e1, e2, e3, e4, e5) .

The matrix obtained by Step 2 is
[
1 1 1
1 1 0

]
which implies that the two Jordan blocks is of size 3ˆ 3

and 2 ˆ 2. Therefore,

Λ =


a 1 0 0 0
0 a 1 0 0
0 0 a 0 0
0 0 0 a 1
0 0 0 0 a

 .
We note that e5 P Ker

(
(A´aI)3

)
zKer

(
(A´aI)2

)
; thus the first three column of P can be chosen

as
P(1 : 3) =

[
(A ´ aI)2e5

... (A ´ aI)e5
... e5

]
=

[
e1

... e3
... e5

]
.

To find the last two columns, we try to find a vector w P Ker
(
(A ´ aI)2

)
zKer

(
(A ´ aI)

)
so that w is

not in the span of te1, e3, e5u. Therefore, we may choose w = e4; thus the last two columns of P is

P(4 : 5) =
[
(A ´ aIe4

... e4

]
=

[
e2

... e4

]



which implies that

P =


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 .
Example 8.27. Let A be given in Example 8.24, and consider the system x 1 = Ax. Following the
procedure in Example 8.25, we find that the general solution to x 1 = Ax is given by

x(t) =
[
e1

... e3
... e5

... e2
... e4

]

eat teat

t2

2
eat 0 0

0 eat teat 0 0
0 0 eat 0 0
0 0 0 eat teat

0 0 0 0 eat



C1

C2

C3

C4

C5


=

(
C1e

at + C2te
at +

C3

2
t2eat

)
e1 + (C2e

at + C3te
at)e3 + C3e

ate5 + (C4e
at + C5te

at)e2 + C5e
ate4 .

8.4 Fundamental Matrices

In Definition 8.9 we have talked about the fundamental matrix of system x 1 = P(t)x. It is defined as
a square matrix whose columns form an linearly independent set of solutions to the ODE x 1 = P(t)x.
Let Ψ be a fundamental matrix of x 1 = P(t)x. Since each column of Ψ is a solution to the ODE,
we must have

Ψ1(t) = P(t)Ψ(t) .

By the linearly independence of columns of Ψ, we must have

Ψ1(t)Ψ(t)´1 = P(t) for all t in the interval of interest. (8.25)

A special kind of fundamental matrix Φ, whose initial value Φ(t0) is the identity matrix, is in
particular helpful for constructing solutions to

x 1 = P(t)x , (8.26a)
x(t0) = x0 . (8.26b)

In fact, if Φ is a fundamental matrix of system x 1 = P(t)x satisfying Φ(t0) = I, then the solution
to (8.26) is given by

x(t) = Φ(t)x0 .

It should be clear to the readers that the i-th column of Φ is the solution to

x 1 = P(t)x ,
x(t0) = ei ,

where ei = (0, ¨ ¨ ¨ , 0
looomooon

(i ´ 1)-slots

, 1, 0, ¨ ¨ ¨ , 0)T is the i-th vector in the standard basis of Rn (here we assume that

the size of P is n ˆ n). Moreover, for each fundamental matrix Ψ of (8.26a), we have the relation

Ψ(t) = Φ(t)Ψ(t0) .



Therefore, given a fundamental matrix Ψ, we can easily construct the fundamental matrix Φ(t) by

Φ(t) = Ψ(t)Ψ(t0)
´1 .

Caution: Based on the discussions above and the information that the solution to the scalar equation

x1 = p(t)x with initial data x(t0) = x0 is x(t) = exp
( ż t

t0

p(s) ds
)
x0, one might start guessing that

the solution to (8.26) is

x(t) = exp
( ż t

t0

P(s) ds
)

x0 . (8.27)

This is in fact NOT TRUE because in general P(s)P(t) ‰ P(t)P(s). Nevertheless, if P(s)P(t) =

P(t)P(s) for all s and t, then the solution to (8.26) is indeed given by (8.27). To see this, we first
notice that

P(t)
( ż t

t0

P(s) ds
)
=

ż t

t0

P(t)P(s) ds =

ż t

t0

P(s)P(t) ds =
( ż t

t0

P(s) ds
)

P(t) ;

thus

d

dt

( ż t

t0

P(s) ds
)k

= P(t)
( ż t

t0

P(s) ds
)k´1

+
( ż t

t0

P(s) ds
)

P(t)
( ż t

t0

P(s) ds
)k´2

+ ¨ ¨ ¨

+
( ż t

t0

P(s) ds
)k´2

P(t)
( ż t

t0

P(s) ds
)
+
( ż t

t0

P(s) ds
)k´1

P(t)

= kP(t)
( ż t

t0

P(s) ds
)k´1

.

Therefore, the function given by (8.27) satisfies that

d

dt
exp

( ż t

t0

P(s) ds
)

x0 =
d

dt

[ 8
ÿ

k=0

1

k!

( ż t

t0

P(s) ds
)k]

x0 =
8
ÿ

k=1

1

(k ´ 1)!
P(t)

( ż t

t0

P(s) ds
)k´1

x0

= P(t)
( 8
ÿ

k=0

1

k!

( ż t

t0

P(s) ds
)k)

x0 = P(t) exp
( ż t

t0

P(s) ds
)
.

On the other hand, x(t0) = x0. As a consequence, x(t) given by (8.27) is the solution to (8.26).
Now suppose that P(t) = A is time-independent. Then by Theorem 8.17 we find that the

fundamental matrix Φ(t) is given by

Φ(t) = Pe(t´t0)ΛP´1 ,

where PΛP´1 is a Jordan decomposition of A. Moreover,

Φ(t)Φ(s) = Φ(s)Φ(t) @ t, s P R . (8.28)

To see this, let t1, t2 be given real number, and x0 P Rn be a vector. By the existence and uniqueness
theorem (Theorem 8.5), the solution to system x 1 = Ax with initial data x(t0) = x0 is given by
x(t) = Φ(t)x0 for all t P R.



On the other hand, again by the uniqueness of the solution, the solution φ1 to

φ 1 = Aφ ,

φ(t0) = x(t1) ,

and the solution φ2 to

φ 1 = Aφ ,

φ(t0) = x(t2) ,

satisfy that φ1(t) = x(t´ t0+ t1) and φ2(t) = x(t´ t0+ t2). Moreover, using the fundamental matrix
Φ we also have φ1(t) = Φ(t)x(t1) and φ2(t) = Φ(t)x(t2). Therefore,

Φ(t2)Φ(t1)x0 = Φ(t2)x(t1) = φ1(t2) = x(t1 + t2 ´ t0) = φ2(t1) = Φ(t1)Φ(t2)x0 .

Since x0 is arbitrary, we must have Φ(t2)Φ(t1) = Φ(t1)Φ(t2); thus (8.28) is concluded.

8.5 Non-homogeneous Linear Systems

Now we consider the non-homogeneous linear system

x 1 = P(t)x + g(t) , (8.29a)
x(t0) = x0 , (8.29b)

for some non-zero vector-valued forcing g. As in Definition 4.14 we said that a vector-valued function
xp(t) is called a particular solution to (8.29a) if xp satisfies (8.29a). As long as a particular solution
to (8.29a) is obtained, then the general solution to (8.29a) is given by

x(t) = Ψ(t)C + xp(t) ,

where Ψ is a fundamental matrix of x 1 = P(t)x, and C is an arbitrary constant vector. to satisfy
the initial data (8.29b), we let C = Ψ(t0)

´1
(
x0 ´ xp(t0)

)
and the solution to (8.29) is

x(t) = Ψ(t)Ψ(t0)
´1
(
x0 ´ xp(t0)

)
+ xp(t) .

To get some insight of solving (8.29), let us first assume that P(t) = A is a time-independent
matrix. In such a case,

e´tAx 1 = e´tA(Ax + g(t)
)

or e´tA(x 1 ´ Ax) = e´tAg(t) .

Since d

dt
e´tA = ´Ae´tA = ´e´tAA, the equality above implies that

(
e´tAx

) 1
= e´tAg(t) ñ e´tAx(t) ´ e´t0Ax(t0) =

ż t

t0

e´sAg(s) ds .

Therefore, the solution to (8.29) is

x(t) = etAe´t0Ax0 +

ż t

t0

etAe´sAg(s) ds .

Using fundamental matrices Ψ of system x 1 = P(t)x, we have the following similar result.



Theorem 8.28. Let Ψ(t) be a fundamental matrix of system x 1 = P(t)x, and φ(t) be the solution
to the non-homogeneous linear system

x 1 = P(t)x + g(t) , (8.30a)
x(t0) = x0 . (8.30b)

Then φ(t) = Ψ(t)Ψ(t0)
´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds.

Proof. We directly check that the solution φ given above satisfies (8.30). It holds trivially that
φ(t0) = x0, so it suffices to show the validity of (8.30a) with φ replacing x.

Differentiating φ and using (8.25), we find that

φ1(t) = Ψ1(t)Ψ(t0)
´1x0 +Ψ(t)Ψ(t)´1g(t) +

ż t

t0

Ψ1(t)Ψ(s)´1g(s) ds

= Ψ1(t)Ψ(t)´1
(
Ψ(t)Ψ(t0)

´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds
)
+ g(t)

= P(t)φ(t) + g(t)

which shows that φ satisfies (8.30a). ˝

‚ Another point of view - variation of parameters: Let Ψ be a fundamental matrix of x 1 = P(t)x.
We look for a particular solution to x 1 = P(t)x + g(t). By the method of variation of parameters we
can assume that a particular solution can be expressed as

x(t) = Ψ(t)u(t)

for some vector-valued function u. Since x is a solution, we must have

Ψ1(t)u(t) +Ψ(t)u 1(t) = P(t)Ψ(t)u(t) + g(t) .

Since Ψ 1 = P(t)Ψ, we obtain that u satisfies

u 1(t) = Ψ(t)´1g(t) . (8.31)

Therefore, we can choose u(t) =
ż

Ψ(t)´1g(t) dt and a particular solution to x 1 = P(t)x + g(t) is
given by

xp(t) = Ψ(t)
( ż

Ψ(t)´1g(t) dt
)
. (8.32)

On the other hand, (8.31) implies that u(t) =
ż t

t0

Ψ(s)´1g(s) ds+u(t0), where u(t0) is the value

of u at the initial time given by u(t0) = Ψ(t0)
´1x(t0); thus the solution to x 1 = P(t)x + g(t) with

initial data x(t0) = x0 is

x(t) = Ψ(t)
( ż t

t0

Ψ(s)´1g(s) ds+ u(t0)
)

= Ψ(t)Ψ(t0)
´1x0 +

ż t

t0

Ψ(t)Ψ(s)´1g(s) ds .



Example 8.29. Let A =

[
´2 1
1 ´2

]
and g(t) =

[
2e´t

3t

]
. Find a particular solution of x 1 = Ax+g(t).

We first find the Jordan decomposition of A. The characteristic equation of A is (´2´r)2´1 = 0

which implies that λ = ´1 and λ = ´3 are eigenvalues of A. The corresponding eigenvectors are
(1, 1)T and (1,´1)T; thus

A =

[
1 1
1 ´1

] [
´1 0
0 ´3

] [
1 1
1 ´1

]T

;

thus
etA =

[
1 1
1 ´1

] [
e´t 0
0 e´3t

] [
1 1
1 ´1

]T

.

The general solution to x 1 = Ax is

x(t) =
[
1 1
1 ´1

] [
e´t 0
0 e´3t

] [
C1

C2

]
= C1e

´t

[
1
1

]
+ C2e

´3t

[
1

´1

]
.

1. To obtain a particular solution, we can use (8.32) and find that

xp(t) =

[
e´t e´3t

e´t ´e´3t

]
ż
[
e´t e´3t

e´t ´e´3t

]´1 [
2e´t

3t

]
dt

=
1

2

[
e´t e´3t

e´t ´e´3t

]
ż
[
et et

e3t ´e3t

] [
2e´t

3t

]
dt

=
1

2

[
e´t e´3t

e´t ´e´3t

]
ż
[

2 + 3tet

2e2t ´ 3te3t

]
dt .

Since
ż

teλt dt =
t

λ
eλt ´

1

λ2
eλt, we obtain that

xp(t) =
1

2

[
e´t e´3t

e´t ´e´3t

][ 2t+ 3(tet ´ et)

e2t ´ (te3t ´
1

3
e3t)

]
=

1

2

2te´t + 3(t ´ 1) + e´t ´ (t ´
1

3
)

2te´t + 3(t ´ 1) ´ e´t + (t ´
1

3
)


2. Without memorizing the formula (8.32) for a particular solution, we can use the method of

variation of parameters by assuming that

xp(t) = C1(t)e
´t

[
1
1

]
+ C2(t)e

´3t

[
1

´1

]
for some scalar functions C1, C2. Then the equation x 1

p = Axp + g(t) implies that

C 1
1(t)e

´t

[
1
1

]
´ C1(t)e

´t

[
1
1

]
+ C 1

2(t)e
´3t

[
1

´1

]
´ 3C2(t)e

´3t

[
1

´1

]
= ´C1(t)e

´t

[
1
1

]
´ 3C2(t)e

´3t

[
1

´1

]
+

[
2e´t

3t

]
.

As a consequence
C 1

1(t)e
´t

[
1
1

]
+ C 1

2(t)e
´3t

[
1

´1

]
=

[
2e´t

3t

]



which implies that [
C 1

1(t)
C 1

2(t)

]
=

[
e´t e´3t

e´t ´e´3t

]´1 [
2e´t

3t

]
.

The computation above (in 1) can be used to conclude that

C1(t) = 2t+ 3(tet ´ et) and C2(t) = e2t ´
(
te3t ´

1

3
e3t

)
;

thus a particular solution is given by

xp(t) =
[
2t+ 3(tet ´ et)

]
e´t

[
1
1

]
+
[
e2t ´

(
te3t ´

1

3
e3t

)]
e´3t

[
1

´1

]
.
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