Differential Equations MA2042 Midterm Exam 2

National Central University, May. 112016

Problem 1. (a) (15%) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be piecewise continuous and of exponential order a for some $a \in \mathbb{R}$, and $F=\mathscr{L}(f)$ be the Laplace transform of f. Assuming the dominated convergence theorem (in which the integrability is equivalent to the existence of the improper integral)

Let $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ be a sequence of integrable functions such that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise to some integrable function f on $[0, \infty)$. Suppose that there is an integrable function g such that $\left|f_{n}(x)\right| \leqslant g(x) \forall x \in[0, \infty)$. Then $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} f(x) d x$.
show that $F^{(n)}(s)=\mathscr{L}\left(g_{n}\right)(s)$ for $s>a$, where $g_{n}(t)=(-t)^{n} f(t)$.
(b) (15%) Let $f:[0, \infty)$ be piecewise continuous and of exponential order a for some $a \in \mathbb{R}$ such that $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}$ exists. Show that

$$
\mathscr{L}\left(\frac{f(t)}{t}\right)(s)=\int_{s}^{\infty} F(y) d y
$$

where $F=\mathscr{L}(f)$ is the Laplace transform of f. (Hint: Consider $\left.\frac{d}{d s} \mathscr{L}\left(\frac{f(t)}{t}\right)(s)\right)$
(c) (10\%) Using part (a) to find the inverse Laplace transform of $F(s)=\ln \frac{s+2}{s-5}$.
(d) (10%) Consider Bessel's equation of order zero

$$
t y^{\prime \prime}+y^{\prime}+t y=0
$$

Let $Y=\mathscr{L}(y)$ be the Laplace transform of a solution y. Show that Y satisfies

$$
\left(1+s^{2}\right) Y^{\prime}(s)+s Y(s)=0
$$

Proof. (a) First we note that

$$
1-t \leqslant e^{-t} \leqslant 1-t+\frac{t^{2}}{2} \quad \forall t \in \mathbb{R}
$$

thus

$$
-\frac{h}{|h|} t \leqslant \frac{e^{-h t}-1}{|h|} \leqslant-\frac{h}{|h|} t+\frac{|h| t^{2}}{2} \quad \forall h \in \mathbb{R} \text { and } t>0 .
$$

Therefore,

$$
\left|\frac{e^{-(s+h) t}-e^{-s t}}{h}\right|=e^{-s t}\left|\frac{e^{-h t}-1}{h}\right| \leqslant\left(t+\frac{t^{2}}{2}\right) e^{-s t} \quad \forall|h| \leqslant 1 \text { and } t>0
$$

Now, since f is piecewise continuous and of exponential order a, there exists $M>0$ such that $|f(t)| \leqslant M e^{a t}$ for all $t>0$. Let $g(t)=M e^{(a-s) t}\left(t+\frac{t^{2}}{2}\right)$. Then for $s>a, g$ is integrable (that
is, $\left.\int_{0}^{\infty} g(t) d t<\infty\right)$ and $\left|\frac{e^{-(s+h) t}-e^{-s t}}{h} f(t)\right| \leqslant g(t)$; thus the dominated convergence theorem implies that for $s>a$,

$$
\begin{aligned}
F^{\prime}(s) & =\lim _{h \rightarrow 0} \int_{0}^{\infty} \frac{e^{-(s+h) t}-e^{-s t}}{h} f(t) d t=\int_{0}^{\infty} \lim _{h \rightarrow 0} \frac{e^{-(s+h) t}-e^{-s t}}{h} f(t) d t=\int_{0}^{t} \frac{\partial}{\partial s} e^{-s t} f(t) d t \\
& =\int_{0}^{t}(-t) e^{-s t} f(t) d t=\mathscr{L}(-t f(t))(s)=\mathscr{L}\left(g_{1}\right)(s)
\end{aligned}
$$

Moreover, g_{1} is of exponential order b as long as $b>a$; thus for $s>a, s>b$ for some $b>a$ and using what we just established we find that

$$
\frac{d^{2}}{d s^{2}} F(s)=\frac{d}{d s} \mathscr{L}\left(g_{1}\right)(s)=\mathscr{L}\left(-t g_{1}(t)\right)(s)=\mathscr{L}\left(g_{2}\right)(s)
$$

By induction, we conclude that $F^{(n)}(s)=\mathscr{L}\left(g_{n}\right)(s)$ for $s>a$.
(b) Since $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}$ exists and f is a piecewise continuous function of exponential order a, the function $g(t)=\frac{f(t)}{t}$ is also piecewise continuous and of exponential order a. Therefore, the Laplace transform of g exists and using (a),

$$
\frac{d}{d s} \mathscr{L}(g)(s)=\mathscr{L}(-f)(s)=-F(s)
$$

Therefore, $\mathscr{L}\left(\frac{f(t)}{t}\right)(s)=\mathscr{L}\left(\frac{f(t)}{t}\right)(a)-\int_{s}^{a} F(y) d y$.
(c) Suppose that $\mathscr{L}(f)=F$. Since $F^{\prime}(s)=\frac{1}{s+2}-\frac{1}{s-5}$, using (a) we find that

$$
\mathscr{L}(-t f(t))(s)=F^{\prime}(s)=\frac{1}{s+2}-\frac{1}{s-5}=\mathscr{L}\left(e^{-2 t}\right)(s)-\mathscr{L}\left(e^{5 t}\right)(s)
$$

thus $f(t)=\frac{e^{5 t}-e^{-2 t}}{t}$.
(d) Using (a),

$$
\begin{aligned}
\mathscr{L}\left(t y^{\prime \prime}+y^{\prime}+t y\right)(s) & =-\frac{d}{d s} \mathscr{L}\left(y^{\prime \prime}\right)(s)+\mathscr{L}\left(y^{\prime}\right)(s)-\frac{d}{d s} \mathscr{L}(y)(s) \\
& =-\frac{d}{d s}\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+[s Y(s)-y(0)]-Y^{\prime}(s) \\
& =-\left(s^{2}+1\right) Y^{\prime}(s)-2 s Y(s)+s Y(s)
\end{aligned}
$$

which implies that $\left(1+s^{2}\right) Y^{\prime}(s)+s Y(s)=0$.

Problem 2. (15\%) Solve the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=t^{2} e^{t}, \quad y(0)=y^{\prime}(0)=0
$$

using the Laplace transform.
Solution: (Method 1): Letting Y be the Laplace transform of y, we find that

$$
Y(s)=\frac{1}{s^{2}-4 s+4} \mathscr{L}\left(t^{2} e^{t}\right)(s)=\frac{1}{(s-2)^{2}} \mathscr{L}\left(t^{2} e^{t}\right)(s) ;
$$

thus by the fact that $\mathscr{L}^{-1}\left(\frac{1}{(s-2)^{2}}\right)(t)=t e^{2 t}$,

$$
y(t)=\left(t e^{2 t}\right) *\left(t^{2} e^{t}\right)(t)=\int_{0}^{t} s^{2} e^{s}(t-s) e^{2(t-s)} d s=t e^{2 t} \int_{0}^{t} s^{2} e^{-s} d s-e^{2 t} \int_{0}^{t} s^{3} e^{-s} d s .
$$

Since

$$
\begin{aligned}
\int_{0}^{t} s^{2} e^{-s} d s & =-\left.s^{2} e^{-s}\right|_{s=0} ^{s=t}+2 \int_{0}^{t} s e^{-s} d s=-t^{2} e^{-t}+2\left[-\left.s e^{-s}\right|_{s=0} ^{s=t}+\int_{0}^{t} e^{-s} d s\right] \\
& =-t^{2} e^{-t}-2 t e^{-t}+2\left(1-e^{-t}\right)=-\left(t^{2}+2 t+2\right) e^{-t}+2
\end{aligned}
$$

we conclude that

$$
\begin{aligned}
y(t) & =t e^{2 t} \int_{0}^{t} s^{2} e^{-s} d s-e^{2 t}\left[-\left.s^{3} e^{-s}\right|_{s=0} ^{s=t}+3 \int_{0}^{t} s^{2} e^{-s} d s\right] \\
& =-t e^{2 t}\left(t^{2}+2 t+2\right) e^{-t}+2 t e^{2 t}+e^{2 t} t^{3} e^{-t}+3 e^{2 t}\left(t^{2}+2 t+2\right) e^{-t}-6 e^{2 t} \\
& =\left(t^{2}+4 t+6\right) e^{t}+2(t-3) e^{2 t} .
\end{aligned}
$$

(Method 2): Letting Y be the Laplace transform of y, we find that

$$
Y(s)=\frac{1}{s^{2}-4 s+4} \mathscr{L}\left(t^{2} e^{t}\right)(s)=\frac{2}{(s-2)^{2}(s-1)^{3}} .
$$

Using partial fraction,

$$
\frac{2}{(s-2)^{2}(s-1)^{3}}=\frac{A}{s-2}+\frac{B}{(s-2)^{2}}+\frac{C}{s-1}+\frac{D}{(s-1)^{2}}+\frac{E}{(s-1)^{3}},
$$

where A, B, C, D, E satisfy

$$
A(s-2)(s-1)^{3}+B(s-1)^{3}+C(s-2)^{2}(s-1)^{2}+D(s-1)(s-2)^{2}+E(s-2)^{2}=2 .
$$

Therefore, $A=-6, B=2, C=6, D=4$ and $E=2$; thus

$$
y(t)=-6 e^{2 t}+2 t e^{2 t}+6 e^{t}+4 t e^{t}+t^{2} e^{t}=\left(t^{2}+4 t+6\right) e^{t}+2(t-3) e^{2 t} .
$$

Problem 3. (15\%) Solve the ODE

$$
y^{\prime \prime}+5 y^{\prime}+6 y=e^{-t} \delta_{2}(t)=e^{-t} \delta(t-2), \quad y(0)=2, \quad y^{\prime}(0)=-5
$$

Hint: You can treat $\delta_{c}(t)=\delta(t-c)$ as a normal function whose Laplace transform is $e^{-c s}$ and apply the properties of the Laplace transforms to compute the Laplace transform of $e^{-t} \delta_{2}(t)$.

Solution: Letting Y be the Laplace transform of y, we find that

$$
\begin{aligned}
Y(s) & =\frac{2(s+5)-5}{s^{2}+5 s+6}+\frac{e^{-2(s+1)}}{s^{2}+5 s+6}=\frac{2 s+5}{(s+2)(s+3)}+e^{-2}\left[\frac{e^{-2 s}}{s+2}-\frac{e^{-2 s}}{s+3}\right] \\
& =\frac{1}{s+2}+\frac{1}{s+3}+e^{-2}\left[\frac{e^{-2 s}}{s+2}-\frac{e^{-2 s}}{s+3}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y(t) & =e^{-2 t}+e^{-3 t}+e^{-2}\left[u_{2}(t) e^{-2(t-2)}-u_{2}(t) e^{-3(t-2)}\right] \\
& =e^{-2 t}+e^{-3 t}+u_{2}(t)\left(e^{-2 t+2}-e^{-3 t+4}\right)
\end{aligned}
$$

Problem 4. The impulse response function for the ODE $y^{\prime \prime}+b y^{\prime}+c y=g(t)$ is the function h whose Laplace transform is given by

$$
\mathscr{L}(h)(s)=\frac{Y(s)}{G(s)},
$$

where Y is the Laplace transform of the solution to $y^{\prime \prime}+b y^{\prime}+c y=g(t)$ with initial condition $y(0)=y^{\prime}(0)=0$, and $G=\mathscr{L}(g)$.
(a) (5%) Show that h is independent of g.
(b) (10%) Show that $h(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if the real part of the roots to $r^{2}+b r+c=0$ are strictly less than zero.

Proof. (a) If Y is the Laplace transform of $y^{\prime \prime}+b y^{\prime}+c y=g(t)$ with initial data $y(0)=y^{\prime}(0)=0$ and G is the Laplace transform of g, then

$$
Y(s)=\frac{G(s)}{s^{2}+b s+c}
$$

Therefore, $\mathscr{L}(h)(s)=\frac{Y(s)}{G(s)}=\frac{1}{s^{2}+b s+c}$ which implies that $\mathscr{L}(h)(s)$ is independent of g.
(b) (1) if $r^{2}+b r+c=0$ has two distinct real roots r_{1} and r_{2}, then

$$
\mathscr{L}(h)(s)=\frac{1}{\left(s-r_{1}\right)\left(s-r_{2}\right)}=\frac{1}{r_{1}-r_{2}}\left[\frac{1}{s-r_{1}}-\frac{1}{s-r_{2}}\right] ;
$$

thus $h(t)=\frac{1}{r_{1}-r_{2}}\left[e^{r_{1} t}-e^{r_{2} t}\right]$ which implies that $h(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if $r_{1}, r_{2}<0$.
(2) if $r^{2}+b r+c=0$ has a double root r_{1}, then

$$
\mathscr{L}(h)(s)=\frac{1}{\left(s-r_{1}\right)^{2}} ;
$$

thus $h(t)=t e^{r_{1} t}$ which implies that $h(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if $r_{1}<0$.
(3) if $r^{2}+b r+c=0$ has two complex roots $\lambda \pm i \mu$, then

$$
\mathscr{L}(h)(s)=\frac{1}{(s-\lambda)^{2}+\mu^{2}}=\frac{1}{\mu} \frac{\mu}{(s-\lambda)^{2}+\mu^{2}} ;
$$

thus $h(t)=\frac{1}{\mu} e^{\lambda t} \sin \mu t$ which implies that $h(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if $\lambda<0$.
In either cases, $h(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if the real part of the roots to $r^{2}+b r+c=0$ are strictly less than zero.

Problem 5. (15\%) Solve the integro-differential equation

$$
\phi^{\prime}(t)+\phi(t)=\int_{0}^{t} \sin (t-\xi) \phi(\xi) d \xi \quad \phi(0)=1
$$

using the Laplace transform.
Solution: Taking the Laplace transform of the integro-differential equation, we find that

$$
s \mathscr{L}(\phi)(s)-\phi(0)+\mathscr{L}(\phi)(s)=\mathscr{L}(\sin t)(s) \mathscr{L}(\phi)(s)
$$

which implies that

$$
(s+1) \mathscr{L}(\phi)(s)-1=\frac{\mathscr{L}(\phi)}{s^{2}+1} .
$$

Therefore,

$$
\left[\left(s^{2}+1\right)(s+1)-1\right] \mathscr{L}(\phi)(s)=s^{2}+1
$$

or equivalently,

$$
\mathscr{L}(\phi)(s)=\frac{s^{2}+1}{s^{3}+s^{2}+s}=\frac{1}{s}-\frac{1}{s^{2}+s+1}=\frac{1}{s}-\frac{2}{\sqrt{3}} \frac{\frac{\sqrt{3}}{2}}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} .
$$

Taking the inverse Laplace transform, we conclude that

$$
\phi(t)=1-\frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin \frac{\sqrt{3} t}{2} .
$$

