
Differential Equations MA2042 Midterm Exam 1
National Central University, Apr. 13 2016

Problem 1. (15%) Let x1 = y, x2 = y 1 and x3 = y 11, then the third order equation

y 12 + p(t)y 11 + q(t)y 1 + r(t)y = 0 (0.1)

corresponds to the system

x 1
1 = x2 , (0.2a)

x 1
2 = x3 , (0.2b)

x 1
3 = ´r(t)x1 ´ q(t)x2 ´ p(t)x3 . (0.2c)

Show that if ty1, y2, y3u and tφ1,φ2,φ3u are fundamental sets of equation (0.1) and (0.2), respectively,
then W [y1, y2, y3](t) = cW[φ1,φ2,φ3](t), where c is a non-zero constant and W and W denote the
Wronskian functions given by

W [y1, y2, y3](t) =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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y 1
1 y 1
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

and W[φ1,φ2,φ3](t) = det
([
φ1

...φ2

...φ3

])
.

Proof. Write (0.2) as x 1 = P(t)x, where P(t) =

 0 1 0
0 0 1

´r(t) ´q(t) ´p(t)

. In the proof of Theorem

6.11 in the lecture note, we have shown that

d

dt
W[φ1,φ2,φ3](t) = tr(P)W[φ1,φ2,φ3](t) = ´p(t)W[φ1,φ2,φ3](t) ,

while Theorem 4.3 shows that

d

dt
W [y1, y2, y3](t) = ´p(t)W [y1, y2, y3](t) .

Therefore, by the fact that W [y1, y2, y3] and W(φ1,φ2,φ3] never vanish (due to the fact that
ty1, y2, y3u and tφ1,φ2,φ3u are fundamental sets of corresponding ODEs), we have

1

W [y1, y2, y3](t)

dW [y1, y2, y2](t)

dt
=

1

W[φ1,φ2,φ3](t)

dW[φ1,φ2,φ3](t)

dt
;

thus logW [y1, y2, y3](t) = log W[φ1,φ2,φ3](t) + C which further implies that W [y1, y2, y3](t) =

cW[φ1,φ2,φ3](t) for some non-zero constant c. ˝



Problem 2. (15%) Let ω ‰ 0 be a real number. Consider the initial value problem

y 11 + ω2y = 0 , y(0) = y0, y 1(0) = y1 .

Let x1 = y and x2 = y 1. For x = (x1, x2)
T, x 1 = Ax. Find the matrix A and solve the initial value

problem by finding exp(At).

Proof. If x = (y, y 1)T, then x 1 =

[
0 1

´ω2 0

]
x ; thus A =

[
0 1

´ω2 0

]
.

1. Computing exp(At) by diagonalization: The two eigenvalues of A are ˘iω and the corre-
sponding eigenvectors are (¯i, ω)T. In other words,

A =

[
´i i
ω ω

] [
iω 0
0 ´iω

] [
´i i
ω ω

]´1

which implies that

exp(At) =

[
´i i
ω ω

] [
eiωt 0
0 e´iωt

] [
´i i
ω ω

]´1

=
´1

2ωi

[
´i i
ω ω

] [
eiωt 0
0 e´iωt

] [
ω ´i

´ω ´i

]
=

´1

2ωi

[
´i i
ω ω

] [
ωeiωt ´ieiωt

´ωe´iωt ´ie´iωt

]
=

´1

2ωi

[
´iω(eiωt + e´iωt) e´iωt ´ eiωt

ω2(eiωt ´ e´iωt) ´iω(eiωt + e´iωt)

]
=

´1

2ωi

[
´2ωi cosωt ´2i sinωt
2iω2 sinωt ´2ωi cosωt

]
= cosωtI + sinωt

ω
A .

2. Computing exp(At) by finding Ak: Observing that

A2 =

[
0 1

´ω2 0

] [
0 1

´ω2 0

]
=

[
´ω2 0
0 ´ω2

]
= ´ω2I ;

thus

exp(At) = I +
8
ÿ

k=1

Aktk

k!
= I +

8
ÿ

k=1

A2kt2k

(2k)!
+

8
ÿ

k=0

A2k+1t2k+1

(2k + 1)!

=
(
1 +

8
ÿ

k=1

(´ω2)kt2k

(2k)!

)
I +

8
ÿ

k=0

(´ω2)kt2k+1

(2k + 1)!
A

=
8
ÿ

k=0

(´1)k(ωt)2k

(2k)!
I + 1

ω

8
ÿ

k=0

(´1)k(ωt)2k+1

(2k + 1)!
A = cosωtI + sinωt

ω
A .

Therefore, the solution to x 1 = Ax with x(0) = x0 = (y0, y1)
T is given by

x(t) = exp(At)x0 =
(

cosωtI + sinωt

ω
A
)

x0 = cosωtx0 +
sinωt

ω
Ax0 =

 y0 cosωt+ y1
sinωt

ω

y1 cosωt ´ ω2y0
sinωt

ω

 .

Therefore, the solution to the ODE is y(t) = y0 cosωt+ y1
sinωt

ω
. ˝



Problem 3. Let A =


0 ´3 1 2

´2 1 ´1 2
´2 1 ´1 2
´2 ´3 1 4

.

1. (15%) Find a Jordan decomposition of A.

2. (10%) Find the general solution to the ODE x 1 = Ax.

Proof. 1. The character equation of A is

0 = det(A ´ λI)

= λ4 ´ (0 + 1 ´ 1 + 4)λ3 +
(ˇ
ˇ

ˇ

ˇ
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1 4

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ
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ˇ

+
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ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

0 2
´2 4

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ
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(ˇˇ
ˇ

ˇ

ˇ

ˇ
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ˇ
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+
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ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ´3 1
´2 1 ´1
´2 1 ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

)
λ+ det(A)

= λ4 ´ 4λ3 + (´6 + 10 + 0 + 4 + 2 ´ 6)λ2 ´ (0 ´ 4 + 4 + 0)λ+ 0 = (λ ´ 2)2λ2 .

Therefore, the eigenvalues of A is 2 and 0, both of them are repeated double roots. Two
eigenvector associated with 2 are v1 = (1, 0, 0, 1)T and v2 = (0, 1, 1, 1)T, while an eigenvector
associated with 0 is (1, 1, 1, 1)T. Since

(A ´ 0I)2 =


0 ´3 1 2

´2 1 ´1 2
´2 1 ´1 2
´2 ´3 1 4




0 ´3 1 2
´2 1 ´1 2
´2 1 ´1 2
´2 ´3 1 4

 =


0 ´8 4 4

´4 0 0 4
´4 0 0 4
´4 ´8 4 8

 ,

v4 = (0,´1,´2, 0)T P Ker
(
(A ´ 0I)2

)
zKer(A ´ 0I). Let v3 = (A ´ 0I)v3 = (1, 1, 1, 1)T. Then

a Jordan decomposition of A is

A =
[
v1

... v2
... v3

... v4

] 
2 0 0 0
0 2 0 0
0 0 0 1
0 0 0 0

 [
v1

... v2
... v3

... v4

]´1
.

2. Using the Jordan decomposition obtained in 1, we have

exp(At) =
[
v1

... v2
... v3

... v4

] 
e2t 0 0 0
0 e2t 0 0
0 0 1 t
0 0 0 1

 [
v1

... v2
... v3

... v4

]´1
;

thus the general solution to x 1 = Ax is

x(t) =
[
v1

... v2
... v3

... v4

] 
e2t 0 0 0
0 e2t 0 0
0 0 1 t
0 0 0 1



C1

C2

C3

C4



=
[
v1

... v2
... v3

... v4

] 
C1e

2t

C2e
2t

C3 + C4t
C4

 = C1v1e
2t + C2v2e

2t + (C3 + C4t)v3 + C4v4 .

˝



Problem 4. Let P(t) =
1

t

[
5 3

´1 1

]
.

1. (15%) Find the solution Φ to Φ 1 = P(t)Φ satisfying the initial condition Φ(1) = I 2, where I 2

is the 2 ˆ 2 identity matrix. (Hint: Consider the Euler equation tx 1 = tP(t)x)

2. (15%) Find the general solution of the ODE x 1 = P(t)x + f (t) , where f (t) is given by

f (t) =
[
4t4

0

]
.

Proof. 1. Let A = tP(t). Then A is a constant matrix. The characteristic equation of A is

0 = det(A ´ λI 2) = (5 ´ λ)(1 ´ λ) + 3 = λ2 ´ 6λ+ 8 = (λ ´ 4)(λ ´ 2) ;

thus the eigenvalues of A is λ1 = 4 and λ2 = 2. An eigenvector associated with λ1 is v1 =

(3,´1)T, and and eigenvector associated with λ2 is v2 = (1,´1)T. Therefore, the general
solution to tx 1 = Ax (which is equivalent to that x 1 = P(t)x when t ‰ 0) can be written as

x(t) = C1v1t
λ1 + C2v2t

λ2 = C1

[
3

´1

]
t4 + C2

[
1

´1

]
t2 .

A fundamental matrix Ψ of the ODE x 1 = P(t)x is

Ψ(t) =
[
v1t

4 ... v2t
2
]
=

[
3t4 t2

´t4 ´t2

]
;

thus the desired matrix Φ is obtained by

Φ(t) = Ψ(t)Ψ(1)´1 =

[
3t4 t2

´t4 ´t2

] [
3 1

´1 ´1

]´1

=
1

2

[
3t4 ´ t2 3t4 ´ 3t2

´t4 + t2 ´t4 + 3t2

]
.

2. (a) Method 1 (Variation of Parameters): Assume that a particular solution to x 1 =

P(t)x + f (t) is
xp(t) = u1(t)v1t

4 + u2(t)v2t
2 .

Then (u1, u2) satisfies [
v1t

4 ... v2t
2
] [u 1

1(t)
u 1
2(t)

]
= Ψ(t)

[
u 1
1(t)

u 1
2(t)

]
= f (t) ;

thus [
u 1
1(t)

u 1
2(t)

]
=

1

2

[
t´4 t´4

´t´2 ´3t´2

] [
4t4

0

]
=

[
2

´2t2

]
.

Therefore, a particular solution is

xp(t) = 2tv1t
4 ´

2

3
t3v2t

2 ,

and the general solution is given by

x(t) = (C1 + 2t)v1t
4 +

(
C2 ´

2

3
t3
)
v2t

2 .



(b) Method 2 (Using the representation formula): Using the representation formula for
the solution to non-homogeneous equations, we find that the solution to x 1 = P(t)x+ f (t)
with initial condition x(1) = x0 can be written as

x(t) = Ψ(t)Ψ(1)´1x0 +

ż t

1

Ψ(t)Ψ(s)´1f (s) ds

=
[
v1t

4 ... v2t
2
] [ rC1

rC2

]
+

1

2

[
v1t

4 ... v2t
2
] ż t

1

[
s´4 s´4

´s´2 ´3s´2

] [
4s4

0

]
ds

= rC1v1t
4 + rC2v2t

2 +
[
v1t

4 ... v2t
2
] ż t

1

[
2

´2s2

]
ds

= rC1v1t
4 + rC2v2t

2 +
[
v1t

4 ... v2t
2
] [ 2(t ´ 1)

´
2

3
(t3 ´ 1)

]
= (C1 + 2t)v1t

4 +
(
C2 ´

2

3
t3
)
v2t

2 ,

in which [ rC1, rC2]
T = Ψ(1)´1x0 and C1 = rC1 ´ 2 and C2 = rC2 +

2

3
. ˝



Problem 5. To solve a first order equation x 1 = f(t, x) with initial condition x(t0) = x0 numerically,
one can use the improved Euler method which is the iteration method given by the

xn+1 = xn +
h

2

[
f(tn, xn) + f

(
tn+1, xn + hf(tn, xn)

)]
,

where with h denoting the step size, tn = t0 + nh.

1. (15%) Use the improved Euler method to solve x 1 = x + 1 with x(0) = x0 and show that for
each fixed t = nh (which implies that n Ñ 8 as the step size h Ñ 0), one has xn Ñ (x0+1)et´1

as h Ñ 0.

2. (10%) Compute the local truncation error τn(h) and show that

|τn(h)| ď
eT |x0 + 1|

6
h2 @n P

␣

0, 1, ¨ ¨ ¨ ,
T

h
´ 1

(

. (0.3)

(Note: You cannot apply the theorem taught in class since the corresponding Φ here is not bounded
on R. Write down the numerical scheme and see if the sequence txnuNn=1 produced by the scheme
converges.)

Proof. 1. Let T ą 0 be given, and N = T/h. Since f(y) = y + 1, using the improved Euler we have

xn+1 = xn +
h

2

[
(xn + 1) + xn + h(xn + 1) + 1

]
= xn +

h

2
(2 + h)(xn + 1)

=
(
1 + h+

h2

2

)
xn +

h(2 + h)

2
.

As a consequence,

xn =
(
1 + h+

h2

2

)
xn´1 +

h(2 + h)

2
,(

1 + h+
h2

2

)
xn´1 =

(
1 + h+

h2

2

)2

xn´2 +
h(2 + h)

2

(
1 + h+

h2

2

)
,(

1 + h+
h2

2

)2

xn´2 =
(
1 + h+

h2

2

)3

xn´3 +
h(2 + h)

2

(
1 + h+

h2

2

)2

,

... =
...(

1 + h+
h2

2

)n´1

x1 =
(
1 + h+

h2

2

)n

x0 +
h(2 + h)

2

(
1 + h+

h2

2

)n

.

Summing all the equalities above, we find that

xn =
(
1 + h+

h2

2

)n

x0 +
h(2 + h)

2

n
ÿ

k=0

(
1 + h+

h2

2

)k

=
(
1 + h+

h2

2

)n

x0 +
h(2 + h)

2

(
1 + h+

h2

2

)n+1

´ 1

h+
h2

2

=
(
1 + h+

h2

2

)n

x0 +
(
1 + h+

h2

2

)n+1

´ 1 . (0.4)



Since

lim
hÑ0

(
1 + h+

h2

2

)n

= lim
hÑ0

(
1 + h+

h2

2

)T
h
= lim

hÑ0

(
1 + h+

h2

2

) T
h+h2/2

(1+h/2)

= eT ,

we conclude that lim
hÑ0

xn = etx0 + et ´ 1 = (x0 + 1)et ´ 1.

2. From the previous problem, we know that the exact solution to the ODE x 1 = x + 1 with
initial data x(0) = x0 is x(t) = (x0 + 1)et ´ 1. We note that the improved Euler method can
be written as

xn+1 = xn + hΦ(h, tn, xn) ,

where Φ(h, t, x) =
(2 + h)(x+ 1)

2
.

By the definition of the local truncation error,

τn(h) =
x((n+ 1)h) ´ x(nh) ´ hΦ

(
h, nh, x(nh)

)
h

= (x0 + 1)
e(n+1)h ´ enh

h
´

2 + h

2
(x0 + 1)enh

= (x0 + 1)enh
[eh ´ 1

h
´ 1 ´

h

2

]
.

The Taylor theorem implies that

eh ´ 1

h
´ 1 ´

h

2
=

h2

6
eξ

for some ξ P (0, h); thus
ˇ

ˇ

ˇ

eh ´ 1

h
´ 1 ´

h

2

ˇ

ˇ

ˇ
ď

h2

6
eh which further implies that (0.3). ˝


