Differential Equations MA2042 Midterm Exam 1

National Central University, Apr. 132016

Problem 1. (15\%) Let $x_{1}=y, x_{2}=y^{\prime}$ and $x_{3}=y^{\prime \prime}$, then the third order equation

$$
\begin{equation*}
y^{\prime \prime \prime}+p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0 \tag{0.1}
\end{equation*}
$$

corresponds to the system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \tag{0.2a}\\
& x_{2}^{\prime}=x_{3}, \tag{0.2b}\\
& x_{3}^{\prime}=-r(t) x_{1}-q(t) x_{2}-p(t) x_{3} . \tag{0.2c}
\end{align*}
$$

Show that if $\left\{y_{1}, y_{2}, y_{3}\right\}$ and $\left\{\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right\}$ are fundamental sets of equation (0.1) and (0.2), respectively, then $W\left[y_{1}, y_{2}, y_{3}\right](t)=c \mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)$, where c is a non-zero constant and W and W denote the Wronskian functions given by

$$
W\left[y_{1}, y_{2}, y_{3}\right](t)=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| \quad \text { and } \quad \mathrm{W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)=\operatorname{det}\left(\left[\boldsymbol{\varphi}_{1} \vdots \boldsymbol{\varphi}_{2} \vdots \boldsymbol{\varphi}_{3}\right]\right) .
$$

Proof. Write (0.2) as $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}$, where $\boldsymbol{P}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -r(t) & -q(t) & -p(t)\end{array}\right]$. In the proof of Theorem 6.11 in the lecture note, we have shown that

$$
\frac{d}{d t} \mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)=\operatorname{tr}(\boldsymbol{P}) \mathrm{W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)=-p(t) \mathrm{W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t),
$$

while Theorem 4.3 shows that

$$
\frac{d}{d t} W\left[y_{1}, y_{2}, y_{3}\right](t)=-p(t) W\left[y_{1}, y_{2}, y_{3}\right](t)
$$

Therefore, by the fact that $W\left[y_{1}, y_{2}, y_{3}\right]$ and $\mathrm{W}\left(\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right]$ never vanish (due to the fact that $\left\{y_{1}, y_{2}, y_{3}\right\}$ and $\left\{\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right\}$ are fundamental sets of corresponding ODEs), we have

$$
\frac{1}{W\left[y_{1}, y_{2}, y_{3}\right](t)} \frac{d W\left[y_{1}, y_{2}, y_{2}\right](t)}{d t}=\frac{1}{\mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)} \frac{d \mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)}{d t}
$$

thus $\log W\left[y_{1}, y_{2}, y_{3}\right](t)=\log \mathrm{W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)+C$ which further implies that $W\left[y_{1}, y_{2}, y_{3}\right](t)=$ $c \mathrm{~W}\left[\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \boldsymbol{\varphi}_{3}\right](t)$ for some non-zero constant c.

Problem 2. (15%) Let $\omega \neq 0$ be a real number. Consider the initial value problem

$$
y^{\prime \prime}+\omega^{2} y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} .
$$

Let $x_{1}=y$ and $x_{2}=y^{\prime}$. For $\boldsymbol{x}=\left(x_{1}, x_{2}\right)^{\mathrm{T}}, \boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$. Find the matrix \boldsymbol{A} and solve the initial value problem by finding $\exp (\boldsymbol{A} t)$.
Proof. If $\boldsymbol{x}=\left(y, y^{\prime}\right)^{\mathrm{T}}$, then $\boldsymbol{x}^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -\omega^{2} & 0\end{array}\right] \boldsymbol{x}$; thus $\boldsymbol{A}=\left[\begin{array}{cc}0 & 1 \\ -\omega^{2} & 0\end{array}\right]$.

1. Computing $\exp (\boldsymbol{A} t)$ by diagonalization: The two eigenvalues of \boldsymbol{A} are $\pm i \omega$ and the corresponding eigenvectors are $(\mp i, \omega)^{\mathrm{T}}$. In other words,

$$
\boldsymbol{A}=\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]\left[\begin{array}{cc}
i \omega & 0 \\
0 & -i \omega
\end{array}\right]\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]^{-1}
$$

which implies that

$$
\begin{aligned}
\exp (\boldsymbol{A} t) & =\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]\left[\begin{array}{cc}
e^{i \omega t} & 0 \\
0 & e^{-i \omega t}
\end{array}\right]\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]^{-1}=\frac{-1}{2 \omega i}\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]\left[\begin{array}{cc}
e^{i \omega t} & 0 \\
0 & e^{-i \omega t}
\end{array}\right]\left[\begin{array}{cc}
\omega & -i \\
-\omega & -i
\end{array}\right] \\
& =\frac{-1}{2 \omega i}\left[\begin{array}{cc}
-i & i \\
\omega & \omega
\end{array}\right]\left[\begin{array}{cc}
\omega e^{i \omega t} & -i e^{i \omega t} \\
-\omega e^{-i \omega t} & -i e^{-i \omega t}
\end{array}\right]=\frac{-1}{2 \omega i}\left[\begin{array}{cc}
-i \omega\left(e^{i \omega t}+e^{-i \omega t}\right) & e^{-i \omega t}-e^{i \omega t} \\
\omega^{2}\left(e^{i \omega t}-e^{-i \omega t}\right) & -i \omega\left(e^{i \omega t}+e^{-i \omega t}\right)
\end{array}\right] \\
& =\frac{-1}{2 \omega i}\left[\begin{array}{cc}
-2 \omega i \cos \omega t & -2 i \sin \omega t \\
2 i \omega^{2} \sin \omega t & -2 \omega i \cos \omega t
\end{array}\right]=\cos \omega t \mathbf{I}+\frac{\sin \omega t}{\omega} \boldsymbol{A} .
\end{aligned}
$$

2. Computing $\exp (\boldsymbol{A} t)$ by finding \boldsymbol{A}^{k} : Observing that

$$
\boldsymbol{A}^{2}=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
-\omega^{2} & 0 \\
0 & -\omega^{2}
\end{array}\right]=-\omega^{2} \mathbf{I} ;
$$

thus

$$
\begin{aligned}
\exp (\boldsymbol{A} t) & =\mathbf{I}+\sum_{k=1}^{\infty} \frac{\boldsymbol{A}^{k} t^{k}}{k!}=\mathbf{I}+\sum_{k=1}^{\infty} \frac{\boldsymbol{A}^{2 k} t^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} \frac{\boldsymbol{A}^{2 k+1} t^{2 k+1}}{(2 k+1)!} \\
& =\left(1+\sum_{k=1}^{\infty} \frac{\left(-\omega^{2}\right)^{k} t^{2 k}}{(2 k)!}\right) \mathbf{I}+\sum_{k=0}^{\infty} \frac{\left(-\omega^{2}\right)^{k} t^{2 k+1}}{(2 k+1)!} \boldsymbol{A} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}(\omega t)^{2 k}}{(2 k)!} \mathbf{I}+\frac{1}{\omega} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\omega t)^{2 k+1}}{(2 k+1)!} \boldsymbol{A}=\cos \omega t \mathbf{I}+\frac{\sin \omega t}{\omega} \boldsymbol{A} .
\end{aligned}
$$

Therefore, the solution to $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ with $\boldsymbol{x}(0)=\boldsymbol{x}_{0}=\left(y_{0}, y_{1}\right)^{\mathrm{T}}$ is given by

$$
\boldsymbol{x}(t)=\exp (\boldsymbol{A} t) \boldsymbol{x}_{0}=\left(\cos \omega t \mathbf{I}+\frac{\sin \omega t}{\omega} \boldsymbol{A}\right) \boldsymbol{x}_{0}=\cos \omega t \boldsymbol{x}_{0}+\frac{\sin \omega t}{\omega} \boldsymbol{A} \boldsymbol{x}_{0}=\left[\begin{array}{c}
y_{0} \cos \omega t+y_{1} \frac{\sin \omega t}{\omega} \\
y_{1} \cos \omega t-\omega^{2} y_{0} \frac{\sin \omega t}{\omega}
\end{array}\right] .
$$

Therefore, the solution to the ODE is $y(t)=y_{0} \cos \omega t+y_{1} \frac{\sin \omega t}{\omega}$.

Problem 3. Let $\boldsymbol{A}=\left[\begin{array}{cccc}0 & -3 & 1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & -3 & 1 & 4\end{array}\right]$.

1. (15%) Find a Jordan decomposition of \boldsymbol{A}.
2. (10%) Find the general solution to the ODE $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$.

Proof. 1. The character equation of \boldsymbol{A} is

$$
\begin{aligned}
0= & \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \\
= & \lambda^{4}-(0+1-1+4) \lambda^{3}+\left(\begin{array}{cc}
-1 & 2 \\
1 & 4
\end{array}\left|+\left|\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right|+\left|\begin{array}{cc}
0 & 2 \\
-2 & 4
\end{array}\right|+\left|\begin{array}{cc}
0 & 1 \\
-2 & -1
\end{array}\right|+\left|\begin{array}{cc}
0 & -3 \\
-2 & 1
\end{array}\right|\right) \lambda^{2}\right. \\
& -\left(\left|\begin{array}{ccc}
1 & -1 & 2 \\
1 & -1 & 2 \\
-3 & 1 & 4
\end{array}\right|+\left|\begin{array}{ccc}
0 & 1 & 2 \\
-2 & -1 & 2 \\
-2 & 1 & 4
\end{array}\right|+\left|\begin{array}{ccc}
0 & -3 & 2 \\
-2 & 1 & 2 \\
-2 & -3 & 4
\end{array}\right|+\left|\begin{array}{ccc}
0 & -3 & 1 \\
-2 & 1 & -1 \\
-2 & 1 & -1
\end{array}\right|\right) \lambda+\operatorname{det}(\boldsymbol{A}) \\
& =\lambda^{4}-4 \lambda^{3}+(-6+10+0+4+2-6) \lambda^{2}-(0-4+4+0) \lambda+0=(\lambda-2)^{2} \lambda^{2} .
\end{aligned}
$$

Therefore, the eigenvalues of \boldsymbol{A} is 2 and 0 , both of them are repeated double roots. Two eigenvector associated with 2 are $\boldsymbol{v}_{1}=(1,0,0,1)^{\mathrm{T}}$ and $\boldsymbol{v}_{2}=(0,1,1,1)^{\mathrm{T}}$, while an eigenvector associated with 0 is $(1,1,1,1)^{\mathrm{T}}$. Since

$$
(\boldsymbol{A}-0 \boldsymbol{I})^{2}=\left[\begin{array}{cccc}
0 & -3 & 1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & -3 & 1 & 4
\end{array}\right]\left[\begin{array}{cccc}
0 & -3 & 1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & 1 & -1 & 2 \\
-2 & -3 & 1 & 4
\end{array}\right]=\left[\begin{array}{cccc}
0 & -8 & 4 & 4 \\
-4 & 0 & 0 & 4 \\
-4 & 0 & 0 & 4 \\
-4 & -8 & 4 & 8
\end{array}\right],
$$

$\boldsymbol{v}_{4}=(0,-1,-2,0)^{\mathrm{T}} \in \operatorname{Ker}\left((\boldsymbol{A}-0 \boldsymbol{I})^{2}\right) \backslash \operatorname{Ker}(\boldsymbol{A}-0 \boldsymbol{I})$. Let $\boldsymbol{v}_{3}=(\boldsymbol{A}-0 \boldsymbol{I}) \boldsymbol{v}_{3}=(1,1,1,1)^{\mathrm{T}}$. Then a Jordan decomposition of \boldsymbol{A} is

$$
\boldsymbol{A}=\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]^{-1}
$$

2. Using the Jordan decomposition obtained in 1 , we have

$$
\exp (\boldsymbol{A} t)=\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]\left[\begin{array}{cccc}
e^{2 t} & 0 & 0 & 0 \\
0 & e^{2 t} & 0 & 0 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right]\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]^{-1} ;
$$

thus the general solution to $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ is

$$
\begin{aligned}
\boldsymbol{x}(t) & =\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]\left[\begin{array}{cccc}
e^{2 t} & 0 & 0 & 0 \\
0 & e^{2 t} & 0 & 0 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4}
\end{array}\right] \\
& =\left[\boldsymbol{v}_{1} \vdots \boldsymbol{v}_{2} \vdots \boldsymbol{v}_{3} \vdots \boldsymbol{v}_{4}\right]\left[\begin{array}{c}
C_{1} e^{2 t} \\
C_{2} e^{2 t} \\
C_{3}+C_{4} t \\
C_{4}
\end{array}\right]=C_{1} \boldsymbol{v}_{1} e^{2 t}+C_{2} \boldsymbol{v}_{2} e^{2 t}+\left(C_{3}+C_{4} t\right) \boldsymbol{v}_{3}+C_{4} \boldsymbol{v}_{4} .
\end{aligned}
$$

Problem 4. Let $\boldsymbol{P}(t)=\frac{1}{t}\left[\begin{array}{cc}5 & 3 \\ -1 & 1\end{array}\right]$.

1. (15%) Find the solution $\boldsymbol{\Phi}$ to $\boldsymbol{\Phi}^{\prime}=\boldsymbol{P}(t) \boldsymbol{\Phi}$ satisfying the initial condition $\boldsymbol{\Phi}(1)=\boldsymbol{I}_{2}$, where \boldsymbol{I}_{2} is the 2×2 identity matrix. (Hint: Consider the Euler equation $\left.t \boldsymbol{x}^{\prime}=t \boldsymbol{P}(t) \boldsymbol{x}\right)$
2. (15\%) Find the general solution of the ODE $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}+\boldsymbol{f}(t)$, where $\boldsymbol{f}(t)$ is given by

$$
\boldsymbol{f}(t)=\left[\begin{array}{c}
4 t^{4} \\
0
\end{array}\right]
$$

Proof. 1. Let $\boldsymbol{A}=t \boldsymbol{P}(t)$. Then \boldsymbol{A} is a constant matrix. The characteristic equation of \boldsymbol{A} is

$$
0=\operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{2}\right)=(5-\lambda)(1-\lambda)+3=\lambda^{2}-6 \lambda+8=(\lambda-4)(\lambda-2) ;
$$

thus the eigenvalues of \boldsymbol{A} is $\lambda_{1}=4$ and $\lambda_{2}=2$. An eigenvector associated with λ_{1} is $\boldsymbol{v}_{1}=$ $(3,-1)^{\mathrm{T}}$, and and eigenvector associated with λ_{2} is $\boldsymbol{v}_{2}=(1,-1)^{\mathrm{T}}$. Therefore, the general solution to $t \boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ (which is equivalent to that $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}$ when $t \neq 0$) can be written as

$$
\boldsymbol{x}(t)=C_{1} \boldsymbol{v}_{1} t^{\lambda_{1}}+C_{2} \boldsymbol{v}_{2} t^{\lambda_{2}}=C_{1}\left[\begin{array}{c}
3 \\
-1
\end{array}\right] t^{4}+C_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] t^{2} .
$$

A fundamental matrix $\boldsymbol{\Psi}$ of the $\mathrm{ODE} \boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}$ is

$$
\boldsymbol{\Psi}(t)=\left[\boldsymbol{v}_{1} t^{4}: \boldsymbol{v}_{2} t^{2}\right]=\left[\begin{array}{cc}
3 t^{4} & t^{2} \\
-t^{4} & -t^{2}
\end{array}\right] ;
$$

thus the desired matrix $\boldsymbol{\Phi}$ is obtained by

$$
\boldsymbol{\Phi}(t)=\boldsymbol{\Psi}(t) \boldsymbol{\Psi}(1)^{-1}=\left[\begin{array}{cc}
3 t^{4} & t^{2} \\
-t^{4} & -t^{2}
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & -1
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}
3 t^{4}-t^{2} & 3 t^{4}-3 t^{2} \\
-t^{4}+t^{2} & -t^{4}+3 t^{2}
\end{array}\right] .
$$

2. (a) Method 1 (Variation of Parameters): Assume that a particular solution to $\boldsymbol{x}^{\prime}=$ $\boldsymbol{P}(t) \boldsymbol{x}+\boldsymbol{f}(t)$ is

$$
\boldsymbol{x}_{p}(t)=u_{1}(t) \boldsymbol{v}_{1} t^{4}+u_{2}(t) \boldsymbol{v}_{2} t^{2} .
$$

Then $\left(u_{1}, u_{2}\right)$ satisfies

$$
\left[\boldsymbol{v}_{1} t^{4} \vdots \boldsymbol{v}_{2} t^{2}\right]\left[\begin{array}{l}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t)
\end{array}\right]=\boldsymbol{\Psi}(t)\left[\begin{array}{l}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t)
\end{array}\right]=\boldsymbol{f}(t) ;
$$

thus

$$
\left[\begin{array}{l}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t)
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
t^{-4} & t^{-4} \\
-t^{-2} & -3 t^{-2}
\end{array}\right]\left[\begin{array}{c}
4 t^{4} \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 t^{2}
\end{array}\right] .
$$

Therefore, a particular solution is

$$
\boldsymbol{x}_{p}(t)=2 t \boldsymbol{v}_{1} t^{4}-\frac{2}{3} t^{3} \boldsymbol{v}_{2} t^{2}
$$

and the general solution is given by

$$
\boldsymbol{x}(t)=\left(C_{1}+2 t\right) \boldsymbol{v}_{1} t^{4}+\left(C_{2}-\frac{2}{3} t^{3}\right) \boldsymbol{v}_{2} t^{2}
$$

(b) Method 2 (Using the representation formula): Using the representation formula for the solution to non-homogeneous equations, we find that the solution to $\boldsymbol{x}^{\prime}=\boldsymbol{P}(t) \boldsymbol{x}+\boldsymbol{f}(t)$ with initial condition $\boldsymbol{x}(1)=\boldsymbol{x}_{0}$ can be written as

$$
\begin{aligned}
\boldsymbol{x}(t) & =\boldsymbol{\Psi}(t) \boldsymbol{\Psi}(1)^{-1} \boldsymbol{x}_{0}+\int_{1}^{t} \boldsymbol{\Psi}(t) \boldsymbol{\Psi}(s)^{-1} \boldsymbol{f}(s) d s \\
& =\left[\boldsymbol{v}_{1} t^{4} \vdots \boldsymbol{v}_{2} t^{2}\right]\left[\begin{array}{l}
\widetilde{C}_{1} \\
\widetilde{C}_{2}
\end{array}\right]+\frac{1}{2}\left[\boldsymbol{v}_{1} t^{4} \vdots \boldsymbol{v}_{2} t^{2}\right] \int_{1}^{t}\left[\begin{array}{cc}
s^{-4} & s^{-4} \\
-s^{-2} & -3 s^{-2}
\end{array}\right]\left[\begin{array}{c}
4 s^{4} \\
0
\end{array}\right] d s \\
& =\widetilde{C}_{1} \boldsymbol{v}_{1} t^{4}+\widetilde{C}_{2} \boldsymbol{v}_{2} t^{2}+\left[\boldsymbol{v}_{1} t^{4} \vdots \boldsymbol{v}_{2} t^{2}\right] \int_{1}^{t}\left[\begin{array}{c}
2 \\
-2 s^{2}
\end{array}\right] d s \\
& =\widetilde{C}_{1} \boldsymbol{v}_{1} t^{4}+\widetilde{C}_{2} \boldsymbol{v}_{2} t^{2}+\left[\boldsymbol{v}_{1} t^{4} \vdots \boldsymbol{v}_{2} t^{2}\right]\left[\begin{array}{c}
2(t-1) \\
-\frac{2}{3}\left(t^{3}-1\right)
\end{array}\right] \\
& =\left(C_{1}+2 t\right) \boldsymbol{v}_{1} t^{4}+\left(C_{2}-\frac{2}{3} t^{3}\right) \boldsymbol{v}_{2} t^{2},
\end{aligned}
$$

in which $\left[\widetilde{C}_{1}, \widetilde{C}_{2}\right]^{\mathrm{T}}=\boldsymbol{\Psi}(1)^{-1} \boldsymbol{x}_{0}$ and $C_{1}=\widetilde{C}_{1}-2$ and $C_{2}=\widetilde{C}_{2}+\frac{2}{3}$.

Problem 5. To solve a first order equation $x^{\prime}=f(t, x)$ with initial condition $x\left(t_{0}\right)=x_{0}$ numerically, one can use the improved Euler method which is the iteration method given by the

$$
x_{n+1}=x_{n}+\frac{h}{2}\left[f\left(t_{n}, x_{n}\right)+f\left(t_{n+1}, x_{n}+h f\left(t_{n}, x_{n}\right)\right)\right],
$$

where with h denoting the step size, $t_{n}=t_{0}+n h$.

1. (15%) Use the improved Euler method to solve $x^{\prime}=x+1$ with $x(0)=x_{0}$ and show that for each fixed $t=n h$ (which implies that $n \rightarrow \infty$ as the step size $h \rightarrow 0$), one has $x_{n} \rightarrow\left(x_{0}+1\right) e^{t}-1$ as $h \rightarrow 0$.
2. (10%) Compute the local truncation error $\tau_{n}(h)$ and show that

$$
\begin{equation*}
\left|\tau_{n}(h)\right| \leqslant \frac{e^{T}\left|x_{0}+1\right|}{6} h^{2} \quad \forall n \in\left\{0,1, \cdots, \frac{T}{h}-1\right\} . \tag{0.3}
\end{equation*}
$$

(Note: You cannot apply the theorem taught in class since the corresponding Φ here is not bounded on \mathbb{R}. Write down the numerical scheme and see if the sequence $\left\{x_{n}\right\}_{n=1}^{N}$ produced by the scheme converges.)

Proof. 1. Let $T>0$ be given, and $N=T / h$. Since $f(y)=y+1$, using the improved Euler we have

$$
\begin{aligned}
x_{n+1} & =x_{n}+\frac{h}{2}\left[\left(x_{n}+1\right)+x_{n}+h\left(x_{n}+1\right)+1\right]=x_{n}+\frac{h}{2}(2+h)\left(x_{n}+1\right) \\
& =\left(1+h+\frac{h^{2}}{2}\right) x_{n}+\frac{h(2+h)}{2} .
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
x_{n} & =\left(1+h+\frac{h^{2}}{2}\right) x_{n-1}+\frac{h(2+h)}{2}, \\
\left(1+h+\frac{h^{2}}{2}\right) x_{n-1} & =\left(1+h+\frac{h^{2}}{2}\right)^{2} x_{n-2}+\frac{h(2+h)}{2}\left(1+h+\frac{h^{2}}{2}\right), \\
\left(1+h+\frac{h^{2}}{2}\right)^{2} x_{n-2} & =\left(1+h+\frac{h^{2}}{2}\right)^{3} x_{n-3}+\frac{h(2+h)}{2}\left(1+h+\frac{h^{2}}{2}\right)^{2}, \\
\vdots & \quad \vdots \\
\left(1+h+\frac{h^{2}}{2}\right)^{n-1} x_{1} & =\left(1+h+\frac{h^{2}}{2}\right)^{n} x_{0}+\frac{h(2+h)}{2}\left(1+h+\frac{h^{2}}{2}\right)^{n} .
\end{aligned}
$$

Summing all the equalities above, we find that

$$
\begin{align*}
x_{n} & =\left(1+h+\frac{h^{2}}{2}\right)^{n} x_{0}+\frac{h(2+h)}{2} \sum_{k=0}^{n}\left(1+h+\frac{h^{2}}{2}\right)^{k} \\
& =\left(1+h+\frac{h^{2}}{2}\right)^{n} x_{0}+\frac{h(2+h)}{2} \frac{\left(1+h+\frac{h^{2}}{2}\right)^{n+1}-1}{h+\frac{h^{2}}{2}} \\
& =\left(1+h+\frac{h^{2}}{2}\right)^{n} x_{0}+\left(1+h+\frac{h^{2}}{2}\right)^{n+1}-1 . \tag{0.4}
\end{align*}
$$

Since

$$
\lim _{h \rightarrow 0}\left(1+h+\frac{h^{2}}{2}\right)^{n}=\lim _{h \rightarrow 0}\left(1+h+\frac{h^{2}}{2}\right)^{\frac{T}{h}}=\lim _{h \rightarrow 0}\left(1+h+\frac{h^{2}}{2}\right)^{\frac{T}{h+h^{2} / 2}(1+h / 2)}=e^{T},
$$

we conclude that $\lim _{h \rightarrow 0} x_{n}=e^{t} x_{0}+e^{t}-1=\left(x_{0}+1\right) e^{t}-1$.
2. From the previous problem, we know that the exact solution to the ODE $x^{\prime}=x+1$ with initial data $x(0)=x_{0}$ is $x(t)=\left(x_{0}+1\right) e^{t}-1$. We note that the improved Euler method can be written as

$$
x_{n+1}=x_{n}+h \Phi\left(h, t_{n}, x_{n}\right),
$$

where $\Phi(h, t, x)=\frac{(2+h)(x+1)}{2}$.
By the definition of the local truncation error,

$$
\begin{aligned}
\tau_{n}(h) & =\frac{x((n+1) h)-x(n h)-h \Phi(h, n h, x(n h))}{h} \\
& =\left(x_{0}+1\right) \frac{e^{(n+1) h}-e^{n h}}{h}-\frac{2+h}{2}\left(x_{0}+1\right) e^{n h} \\
& =\left(x_{0}+1\right) e^{n h}\left[\frac{e^{h}-1}{h}-1-\frac{h}{2}\right] .
\end{aligned}
$$

The Taylor theorem implies that

$$
\frac{e^{h}-1}{h}-1-\frac{h}{2}=\frac{h^{2}}{6} e^{\xi}
$$

for some $\xi \in(0, h)$; thus $\left|\frac{e^{h}-1}{h}-1-\frac{h}{2}\right| \leqslant \frac{h^{2}}{6} e^{h}$ which further implies that (0.3).

