Differential Equations M A2041-A Midterm Exam 1
National Central University, Oct. 27 2015
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Problem 1. (15%) Solve the differential equation % + y = tsint with initial condition y(0) = g

Solution: Multiplying both side of the ODE by the integrating factor ¢!, we find that
(ety)/ = te'sint. (0.1)

We need to find the anti-derivative of tefsint in order to solve the ODE. First we find the anti-

derivative of e’sint. Integrating by parts,
f e'sintdt = fsin td(e') dt = e'sint — J e’ costdt = e'sint — Jcos td(e)

=e'sint — [et cost + fetsintdt] = ¢'(sint — cost) — f@tsintdt;
1
thus Jet sintdt = iet(sint — cost). Similarly,

Jetcostdtzjcostd(et):etcost—i-fetsintdt
t 1 t . 1 t .
= e’ cost + 3¢ (sint — cost) = 3¢ (sint 4 cost).
As a consequence,
t .- 1 t . t t . 1 t .
te'sint dt = td(ie (sint — cost)) = ¢ (sint — cost) — 3¢ (sint — cost) dt
t, 1, . 1, .
= 5¢ (sint — cost) — 7€ (sint — cost) + 1€ (sint 4 cost)

t

t 1
= iet(sint —cost) + 3¢ cost,

and (@) implies that

t 1
ely = iet(sint —cost) + iet cost + C'.

Therefore, y(t) = %(Sint —cost) + %cost + Ce™*. Using the initial data, we find that C' = 1; thus
the solution to the ODE we are interested in is

1
y(t):%(sint—cost)—l—icost—i-e_t. o



d
Problem 2. 1. (5%) Consider a first order homogeneous equation d—y = G(g). Show that by
X X
defining v = g, v satisfies the ordinary differential equation .r;l—; = G(v) —v.
X

2. (10%) Solve the ordinary differential equation (y + x sec %)dm — xdy = 0 with initial condition

s
=",
y(l) =&
Solution:
. Y dy dv L. . dv
1. Since v = =, y = xv; thus == = v + x— which implies that x— = G(v) — v.
x dz dx dz

2. Rearranging terms, we find that

d
Ly} + sec = .
der «x x
Letting v = g, then 1 implies that
x
dv
T—— =8eCV + vV — VU =8ecv;
dx

dx
thus cosvdv = —. As a consequence
X

sinv = log|z| + C'.

Since y(1) =1, v(1) = y(1)/1 = %; thus C' = sin% = % Finally,

y(z) = xv(x) = xarcsin (% + log|z|) . D



Problem 3. 1. (10%) Let M, N : R* — R be continuous functions. Suppose that

Nx(xvy) - My(a:,y)

tM(z,y) —yN(z,y) hley)

for some continuous function h : R — R. Show that the ordinary differential equation Mdx +

Ndy = 0 has an integrating factor of the form p(z,y) = z(zy). Give the general formula for 2.
2. (10%) Solve (3y + 2zy*)dz + (z + 22%y)dy = 0 with initial data y(1) = 1.
Solution:

1. Consider an integrating factor of the form u(x,y) = g(xy). Then
(uM)y — (uN)e = 0= p(M, — Np) + py M — p1, N = 0.
Since p,(z,y) = ¢ (zy)zr and p,(x,y) = ¢'(ry)y, we conclude that
g(M, — N,)+ ¢ (xM —yN)=0.

Therefore, ¢’ — hg = 0. Let H be an anti-derivative of h, then (e"#g)’ = 0 which implies that

g = e can be an integrating factor.

2. Let M(x,y) = 3y + 2xy? and N(z,y) = x + 22%y. Then

N, — M, 1+ 4zy — (3 + 4zy) -1
xM —yN 3wy + 2022 — (vy + 20%2)  wy

Let h(z) = —. Then Y
valid integrating factor. As a consequence, we instead consider

= h(zy); thus 1 implies that g(zy) = e~ '8l®l is a

3 2y 222
Jyt2ey’, L wt2ty,
ry Ty
or

(% +2y>dx+ (; +2x>dy =0.

The ODE above is exact; thus there exists ® such that ®,(x,y) = 3 +2y and @, (z,y) = l—|—2x.
T Y
Such @ has the form
O(x,y) = 3logx + 2zy + logy .

Since y(1) = 1, ®(x,y) = 2 is the integral curve we are looking for.



Problem 4. Suppose that the population y of a certain creature in a given area is described by the

equation

dy

= = —ay’ + by —c, (1)

where a, b, ¢ are positive constants.
1. (5%) Provide the condition the there are two positive equilibriums solutions to (1).

2. (10%) Under condition provided in 1, suppose that the two equilibrium solution is y = p; and
y = pe with p; < ps. Show that y(t) = ps (analytically) is asymptotically unstable equilibrium

solution to (1).
Solution:

1. To have two equilibrium solutions, the equation —aA? + b\ — ¢ = 0 must have two distinct real
roots. Therefore, b*> — 4ac > 0. Moreover, the smaller root must be postive; thus
b—/b?— 4dac

=—>0.
b1 5a

Since a, b, ¢ > 0, the inequality above holds automatically. Therefore, the only requirement for

having two equilibrium solutions is b* — 4ac > 0.

B2
2. Let p _ b vb" —dac b 4ac en
dy dy 1 1
= —ay® + by — :—adts( — )dy:ap—p dt
dt (y—pl)(y—pz) y—p2 Yy—n (b1 =)
=>10g‘ ’—apl po)t + Cy
Yy—n
= ’—y( ‘ _ C«Z€a(p1—p2)t )
y(
Since lim e2P1=P2)t = () we must have hm y( ) = Do o

t—00



Problem 5. (15%) To solve a first order equation y’ = f(¢,y) with initial condition y(ty) = yo, one

can use the improved Euler method which is the iteration method given by the

h
Upt1 = Up T 5 f(tnaun) + f(tn+17un + hf(tna un))] ) Up = Yo

where with A denoting the time step, t,, = tg + nh. Use the improved Euler method to solve y’' =y
with y(0) = yo and show that for each fixed T'= Nh, one has uy — yoel as h — 0.

Proof. Let T'> 0 be given, and N = T'/h. Since f(y) = y, using the improved Euler we have
Upi1 = U +ﬁ(u + U + huy,) = <1+h—|—h2>u
n+l — Un 9 n n n) — 2 n -

As a consequence,
h2\n h2\"

2
thus uy = (1 + h+ %) Yo. Since

=N

r
R

lim <1+h+h22> — lim <1+h+h22

T
> h+h2/2 (1+h/2)
h—0 h—0

= e s

we conclude that uy = ype’. o



Problem 6. (15%) Let p : R — R be a differentiable function. Use the Picard iteration to solve the

ordinary differential equation

dy
e -9
dtﬂ?y P’

with initial condition y(0) = yo.

Solution: The Picard iteration is

¢
Oni1(t) = Yo + J
0

t

(20/(s) = P/ (s)n(s)) ds = yo + 2(p(t) — p(0)) — J P'(s)en(s) ds

0

with initial data o (t) = yo. Letting ¢(t) = p(t) — p(0), we obtain that p’ = ¢’; thus

On+1(t) = yo + 2q(t) f q'( s)ds.
0

Therefore,

%®=%+mw—£%ﬂ@w=%+mw—m«w=%+@—m«m

ww:m+m@—LﬂQM+@—w«mw

=%+@ﬂMW%?;%L@@W“=%+@—%Mﬂ— 5a(t)’

@3(t) = yo +2q(t) — Lt ¢ () [yo + (2 = yo)a(s) — 2 ;yOQ(S)ﬂ ds

:””*2‘%”“*‘L{QE%@@FY—QQﬂ%w@ﬂjﬁ

2-y 2-y
=0 + (2= wo)a(t) — =5 a0 + =57 a(t)’

We observe ¢,, for n = 1,2,3 and conjecture that

wawzym+@—y@«w—2;ﬂ%uﬁ+

n

This conjecture can be proved by induction: we have established the case n = 1, and suppose that
the above identity holds for n = ¢. Then for n = ¢ + 1,

3

per1(t) = yo + 2q(t) — L q'(s) [ t)j} ds
— (2 yo)fo J)Y (_jqu(ty ds
n 1) ) n+1 _1)i ;
=t @) X e = v 2 3
=2-(2- ). (_ﬁ)j A1)



Finally, we pass to the limit as n — o0 and obtain that

y(t) = lim @, (t) =2 — (2 —yo) exp ( — q(t)) =2 — (2 — yo) exp (p(0) — p(¢)) .

n—00



Problem 7. (10%) Let z : R — R be a continuous functions satisfying

t

0<x(t)<1—|—f(52+1)x(s)ds Vt=0.
0

3
Show that x(t) < exp (% + t) for all ¢t > 0.

t /

Proof. Let y(t) = f (s?+1)x(s) ds. The fundamental theorem of Calculus implies that t:g —(lf)l = z(t);
0

thus

Yt) < (P41 + (E+1y(t).
As a consequence,
[exp ( _t —t)y(t)], < (P +1)exp < v —t) ;
3 3 ’
thus by the fact that y(0) =0,

3 3

exp(—%—t)y(t)<1—exp<—%—t>.

3
Therefore, y(t) < exp (% - t) — 1, and this further implies that

3
0<x(t)<1+y(t)<exp<%+t>. o



Problem 8. (10%) Let f : R — R be a twice continuously differentiable function, ¢ = f(c), and
consider the difference equation y,.1 = f(y,) with yo given. Suppose that ‘ f'(c ‘ > 1. Show that
there exists § > 0 and p > 1 such that if 0 < |y, — ¢| < 6, then |y,41 — ¢| = plyn — |

Proof. By that f is twice continuously differentiable,

tim (/@) = 5 _max_|£"(@)]) = [7/(0)] > 1

6—0+ 2 ze[c—6,c+46)

thus there exists § > 0 such that p(d) = |f'(¢)| — g [m%x 5 |f"(x)| > 1. Fix such 6 > 0 and let
x€E|c—0,c+

p=p(d). If 0 < |y, — c| <, then Taylor’s theorem implies that for some d,, in between y, and ¢,

Yot = o) = £+ 1) — ) + 5 () —
= e+ S0 — ) ()3 — )

which further implies that

1
s =l 2 1@l —cl =5 _max_ | @Iy, — cf

= (17l - 5__mas. |f”( >\|yn—c|)|yn—c|

z€(c—

> (171~ 5 _max_|f"@)18) v — el > plye el

z€(c—0,c+9)



