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Formulas:

1. The Cauchy product of two series: inside the interval of convergence,ds

( 8
ÿ

k=0

akx
k
)( 8

ÿ

k=0

bkx
k
)
=

8
ÿ

k=0

( k
ÿ

j=0

ak´jbj

)
xk .

2. The following formula concerns with solving the following ODE

x2y 11 + xp(x)y 1 + q(x)y = 0 x ą 0 , (0.1)

where p(x) =
8
ř

k=0

pkx
k and q(x) =

8
ř

k=0

qkx
k are two power series with non-zero radius of conver-

gence, if y = φ(r, x) =
8
ř

k=0

ak(r)x
k+r is a solution, then

F (k + r)ak(r) +
k´1
ÿ

j=0

(
(j + r)pk´j + qk´j

)
aj(r) = 0 @ k P N , (0.2)

where F (r) = r(r ´ 1) + p0r + q0 and a0 is assumed to be a given constant. Let r1, r2 be two
roots of F (r) = 0, and r1 ą r2 if r1, r2 P R.

(a) If r1 ´ r2 R N Y t0u, then

y1(x) =
8
ÿ

k=0

ak(r1)x
k+r1 and y2(x) =

8
ÿ

k=0

ak(r2)x
k+r2

are solutions to (0.1), where
␣

ak(r1)
(8

k=1
and

␣

ak(r2)u
8
k=1 are given by the recurrence

relation (0.2).

(b) If r1 = r2, then

y1(x) =
8
ÿ

k=0

ak(r1)x
k+r1 and y2(x) given in Problem 4

are solutions to (0.1).

(c) If r1 ´ r2 = N P N, then two solutions of (0.1) are given by

y1(x) =
8
ÿ

k=0

ak(r1)x
k+r1 and y2(x) =

b0
a0

y1(x) log(x) +
8
ÿ

k=0

ck(r2)x
k+r2 ,

where b0 = lim
rÑr2

aN(r) and ck(r2) =
B

Br

ˇ

ˇ

ˇ

r=r2
(r ´ r2)ak(r).



Problem 1. (20%) Assume that a series solution to y 11 ´ 2xy 1 + 10y = 0 satisfying the initial
conditions y(0) = 1 and y 1(0) = 0 is y =

8
ř

ℓ=0

aℓx
ℓ. Show that a2ℓ´1 = 0 for all ℓ P N. Moreover, a2ℓ is

of the form
a2ℓ = c

(2ℓ ´ i)!

(ℓ ´ j)!(2ℓ ´ k)!
@ ℓ P N , ℓ ě 4

for some constant c and integers i, j, ℓ. Find i, j, k as well as c.

Solution: Let y =
8
ř

ℓ=0

aℓx
ℓ be the solution to the ODE above. Then

y 1 =
8
ÿ

ℓ=0

ℓaℓx
ℓ´1 ,

y 11 =
8
ÿ

ℓ=0

ℓ(ℓ ´ 1)aℓx
ℓ´2 =

8
ÿ

ℓ=0

(ℓ+ 2)(ℓ+ 1)aℓ+2x
ℓ ;

thus we have
8
ÿ

ℓ=0

[
(ℓ+ 2)(ℓ+ 1)aℓ+2 + 2(5 ´ ℓ)aℓ

]
xℓ = 0 .

Therefore,
aℓ+2 =

2(ℓ ´ 5)

(ℓ+ 2)(ℓ+ 1)
aℓ @ ℓ P N Y t0u .

Using the initial condition, we find that a0 = 1 and a1 = 0; thus the recurrence relation above implies
that a2ℓ´1 = 0 for all ℓ P N. Moreover,

a2ℓ =
2(2ℓ ´ 2 ´ 5)

(2ℓ)(2ℓ ´ 1)
a2ℓ´2 =

22(2ℓ ´ 2 ´ 5)(2ℓ ´ 4 ´ 5)

(2ℓ)(2ℓ ´ 1)(2ℓ ´ 2)(2ℓ ´ 3)
a2ℓ´4 = ¨ ¨ ¨

=
2ℓ(2ℓ ´ 7)(2ℓ ´ 9) ¨ 1 ¨ ¨ ¨ (´1) ¨ (´3) ¨ (´5)

(2ℓ)!
a0

=
´15 ¨ 2ℓ(2ℓ ´ 7)!

(2ℓ ´ 8)(2ℓ ´ 10) ¨ ¨ ¨ 2 ¨ (2ℓ)!
=

´15 ¨ 2ℓ(2ℓ ´ 7)(2ℓ ´ 8) ¨ ¨ ¨ 1

2ℓ´4(ℓ ´ 4)!(2ℓ)!

= ´240
(2ℓ ´ 7)!

(ℓ ´ 4)!(2ℓ)!
.

Therefore, c = ´240 and (i, j, k) = (7, 4, 0).



Problem 2. Consider the Legendre equation (1 ´ x2)y 11 ´ 2xy 1 + n(n+ 1)y = 0 for some n P N.

1. (5%) Find the recurrence relation of the coefficient taku8
k=0 of a series solution

8
ř

k=0

akx
k about

0 has to satisfy.

2. (10%) Show that for each n P N, there is always a polynomial solution y = pn(x) to the
Legendre equation above (using the recurrence relation obtained in Step 1).

3. (10%) Find the polynomial solution p5(x) of Legendre equation satisfying p5(1) = 1.

Solution:

1. If y =
8
ř

k=0

akx
k be a solution, then

8
ÿ

k=0

[
(k + 2)(k + 1)ak+2 ´ k(k ´ 1)ak ´ 2kak + n(n+ 1)ak

]
xk = 0 .

Therefore, we obtain the following recurrence relation

ak+2 =
k(k + 1) ´ n(n+ 1)

(k + 2)(k + 1)
ak @ k P N Y t0u . (0.3)

2. By the recurrence relation above, we find that an+2 = 0 and this further implies that an+2ℓ = 0

for all ℓ P N. Therefore,

(a) if n is an even number, a polynomial solution is given by

pn(x) = a0 + a2x
2 + a4x

4 + ¨ ¨ ¨ + anx
n ;

(b) if n is an odd number, a polynomial solution is given by

pn(x) = a1x+ a3x
3 + ¨ ¨ ¨ + anx

n ;

in which taku8
k=0 satisfies the recurrence relation (0.3).

3. By the analysis above, we find that

p5(x) = a1x+ a3x
3 + a5x

5 ,

where a3 =
2 ´ 30

6
a1 = ´

14

3
a1 and a5 =

12 ´ 30

20
a3 =

21

5
a1. To satisfy p5(1) = 1, a1 must satisfy

a1 ´
14

3
a1 +

21

5
a1 = 1 ;

thus a1 =
15

8
. Therefore,

p5(x) =
15

8
x ´

35

4
x3 +

63

8
x5 .



Problem 3. Solve the differential equation
sin2(2t)

4
y 11(t) ´ (5 sin3 t cos t+ 3 sin t cos3 t)y 1(t) + 5y(t) = 0 , 0 ă t ă

π

2
(0.4)

following the steps below:

(1) (10%) Let x = tan t and z(x) = y(arctan x). Find the corresponding differential equation that
z satisfies (the function arctan is identical to tan´1).

(2) (10%) Find the general solution to the equation for z, and then use it to find a solution to
(0.4).

Solution:

(1) Let x = tan t and z(x) = y(tan´1 x). Then

z 1(x) = y 1(tan´1 x)
1

1 + x2
and z 11(x) = y 11(tan´1 x)

1

(1 + x2)2
+ y 1(tan´1 x)

´2x

(1 + x2)2
.

Therefore,

y 1(tan´1 x) = (1 + x2)z 1(x) and y 11(tan´1 x) = (1 + x2)2z 11(x) + 2x(1 + x2)z 1(x) .

Letting t = tan´1 x as well as sin t =
x

?
1 + x2

and cos t = 1
?
1 + x2

in the ODE we find that

y 11(tan´1 x)
x2

(1 + x2)2
´ y 1(tan´1 x)

5x3 + 3x

(1 + x2)2
+ 5y(tan´1 t) = 0

thus
x2z 11(x) ´ 3xz 1(x) + 5z(x) = 0 .

(2) Let r satisfy r(r ´ 1)´ 3r+5 = 0. Then r2 ´ 4r+5 = 0 which implies r = 2+ i and r = 2´ i.
Therefore, the general solution of (0.4) is

z(x) = C1x
2 log cos x+ C2x

2 log sin x .

Therefore,
y(t) = z(tan t) = C1 tan2 t log cos(tan t) + C2 tan2 t log sin(tan t) .



Problem 4. (20%) Consider solving the ODE

x2y 11 + xp(x)y 1 + q(x)y = 0 x ą 0 , (0.1)

where p(x) =
8
ř

k=0

pkx
k and q(x) =

8
ř

k=0

qkx
k are two power series with non-zero radius of convergence.

Show that if the indicial equation r(r ´ 1) + rp0 + q0 = 0 has a double root r, then

y2(x) = logx
8
ÿ

k=0

ak(r)x
x+r +

8
ÿ

k=0

a 1
k(r)x

k+r

is a solution to (0.1) as long as the series converges in an interval, where
␣

ak(r)
(8

k=1
is a sequence

satisfying the recurrence relation (0.2).

Proof. Let y1(x) =
8
ř

k=0

ak(r)x
x+r. Then

x2y 11
1 + xp(x)y 1

1 + q(x)y =
8
ÿ

k=0

(k + r)(k + r ´ 1)ak(r)x
k+r +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r)ak(r)x
k+r

)
+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

ak(r)x
k+r

)
=

8
ÿ

k=0

[
(k + r)(k + r ´ 1)ak(r) +

k
ÿ

j=0

pk´j(j + r)aj(r) +
k
ÿ

j=0

qk´jaj(r)
]
xk+r

= F (r)a0 +
8
ÿ

k=1

[
F (k + r)ak(r) +

k´1
ÿ

j=0

[
(j + r)pk´j + qk´j

]
aj(r)

]
xk+r .

Since F (r) = 0, using (0.2) we find that y1 is also a solution to (0.1).
Differentiating (0.2) w.r.t. r variable, we find that[
2(k + r1) ´ 1

]
ak(r1) +

k
ÿ

j=0

pk´jaj(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1) = 0 @ k P N Y t0u .

As a consequence,

x2y 11
2 + xp(x)y 1

2 + q(x)y2

= x2y 11
1 (x) logx+ 2xy 1

1(x) ´ y1(x) +
8
ÿ

k=0

(k + r1)(k + r ´ 1)a 1
k(r1)x

k+r1

+ xp(x)y 1
1(x) logx+ p(x)y1(x) +

( 8
ÿ

k=0

pkx
k
)( 8

ÿ

k=0

(k + r1)a
1
k(r1)x

k+r1
)

+ q(x)y1(x) logx+
( 8
ÿ

k=0

qkx
k
)( 8

ÿ

k=0

a 1
k(r1)x

k+r1
)

=
8
ÿ

k=0

[
2(k + r1) ´ 1

]
ak(r1)x

k+r1 +
8
ÿ

k=0

( k
ÿ

j=0

pk´jaj(r1)
)
xk+r1

+
8
ÿ

k=0

(
(k + r1)(k + r ´ 1)a 1

k(r1) +
k
ÿ

j=0

[
pk´j(j + r1) + qk´j

]
a 1
j(r1)

)
xk+r1 = 0 ;

y2(x) is a solution to (0.1). ˝



Problem 5. (20%) Given a solution J0(x) = 1 +
8
ř

k=1

(´1)kx2k

22k(k!)2
to Bessel’s equation of order zero

x2y 11 + xy 1 + x2y = 0 ,

use the method of reduction of order to show that another solution can be given by

y2(x) = J0(x)

ż

dx

x|J0(x)|2
.

Proof. Suppose that another solution to Bessel’s equation of order zero is y2(x) = J0(x)v(x). Then

x2
(
J0(x)v(x)

) 11
+ x

(
J0(x)v(x)

) 1
+ x2J0(x)v(x) = 0

which can be further reduced to

xJ0(x)v
11(x) +

[
2xJ 1

0(x) + J0(x)
]
v 1(x) = 0

or
v 11(x) +

[
2J 1

0(x)

J0(x)
+

1

x

]
v 1 = 0 .

Therefore, the method of integrating factor shows that(
e2 log J0(x)+logxv 1(x)

) 1

= 0

which further implies that
v 1(x) =

C1

x|J0(x)|2
.

As a consequence,
v(x) = C1

ż

dx

x|J0(x)|2
+ C2

which implies that another independent solution can be given by y2(x) = J0(x)
ż

dx

x|J0(x)|2
. ˝



Problem 6. For ν ě 0, the Bessel function of the first kind of order ν, denoted by Jν , is defined as
the series solution to the Bessel equation of order ν

x2y 11 + xy 1 + (x2 ´ ν2)y = 0

of the form Jν(x) = xν
[

1

Γ(ν + 1)2ν
+

8
ř

k=1

ak(ν)x
k
]
, where Γ : (0,8) Ñ R is the Gamma-function

which has the property that Γ(x+ 1) = xΓ(x) and Γ(1) = 1.

1. (15%) Show that Jν(x) =
8
ř

k=0

(´1)k

k! Γ(k + ν + 1)

(
x

2

)2k+ν

.

2. (10%) Verify that Jν+1(x) =
2ν

x
Jν(x) ´ Jν´1(x).

Proof. 1. Note that if
8
ř

k=0

ak(ν)x
k+ν is a solution to the Bessel equation of order ν, then

ak(ν) =
´1

(k + ν ´ ν))(k + ν + ν)
ak´2(ν) =

´1

k(k + 2ν)
ak´2(ν)

and a1 = 0. Therefore, a2m+1 = 0 for all m P N Y t0u and

a2k(ν) =
1

2k(2k + 2ν)(2k ´ 2)(2k ´ 2 + 2ν)
a2k´4(ν) = ¨ ¨ ¨

=
(´1)k

2k(2k ´ 2)(2k ´ 4) ¨ ¨ ¨ 2(2k + 2ν)(2k + 2ν ´ 2) ¨ ¨ ¨ (2 + 2ν)
a0

=
(´1)k

22kk!(k + ν)(k + ν ´ 1) ¨ ¨ ¨ (ν + 1)
¨

1

Γ(ν + 1)2ν
.

Using the property that Γ(x+ 1) = xΓ(x), we find that

(k + ν)(k + ν ´ 1) ¨ ¨ ¨ (ν + 1)Γ(ν + 1) = Γ(k + ν + 1) ;

thus
a2k(ν) =

(´1)kΓ(ν + 1)

22kk!Γ(k + ν + 1)
¨

1

Γ(ν + 1)2ν
=

(´1)k

22k+νk!Γ(k + ν + 1)
.

Therefore,

Jν(x) =
8
ÿ

k=0

(´1)k

22k+νk!Γ(k + ν + 1)
x2k+ν =

8
ÿ

k=0

(´1)k

k!Γ(k + ν + 1)

(x
2

)2k+ν

.

2. Using the expression of Jν , we have
2ν

x
Jν(x) ´ Jν´1(x) =

8
ÿ

k=0

(´1)kν

k!Γ(k + ν + 1)

(x
2

)2k+ν´1

´

8
ÿ

k=0

(´1)k

k!Γ(k + ν)

(x
2

)2k+ν´1

=
8
ÿ

k=0

[ (´1)kν

k!Γ(k + ν + 1)
´

(´1)k(k + ν)

k!Γ(k + ν + 1)

](x
2

)2k+ν´1

=
8
ÿ

k=0

[ (´1)k+1k

k!Γ(k + ν + 1)

](x
2

)2k+ν´1

=
8
ÿ

k=1

[ (´1)k+1k

k!Γ(k + ν + 1)

](x
2

)2k+ν´1

=
8
ÿ

k=0

(´1)k

k!Γ(k + (ν + 1) + 1)

(x
2

)2k+(ν+1)

= Jν+1(x) .

˝


