Differential Equations MA2041－A Final Exam

National Central University，Jan． 132016

學號： \qquad姓名： \qquad系級班別： \qquad

1	$2(1)$	$2(2)$	$2(3)$	$3(1)$	$3(2)$	4	5	$6(1)$	$6(2)$	Total

Formulas:

1. The Cauchy product of two series: inside the interval of convergence, d

$$
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{k-j} b_{j}\right) x^{k}
$$

2. The following formula concerns with solving the following ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 \quad x>0, \tag{0.1}
\end{equation*}
$$

where $p(x)=\sum_{k=0}^{\infty} p_{k} x^{k}$ and $q(x)=\sum_{k=0}^{\infty} q_{k} x^{k}$ are two power series with non-zero radius of convergence, if $y=\varphi(r, x)=\sum_{k=0}^{\infty} a_{k}(r) x^{k+r}$ is a solution, then

$$
\begin{equation*}
F(k+r) a_{k}(r)+\sum_{j=0}^{k-1}\left((j+r) p_{k-j}+q_{k-j}\right) a_{j}(r)=0 \quad \forall k \in \mathbb{N}, \tag{0.2}
\end{equation*}
$$

where $F(r)=r(r-1)+p_{0} r+q_{0}$ and a_{0} is assumed to be a given constant. Let r_{1}, r_{2} be two roots of $F(r)=0$, and $r_{1}>r_{2}$ if $r_{1}, r_{2} \in \mathbb{R}$.
(a) If $r_{1}-r_{2} \notin \mathbb{N} \cup\{0\}$, then

$$
y_{1}(x)=\sum_{k=0}^{\infty} a_{k}\left(r_{1}\right) x^{k+r_{1}} \quad \text { and } \quad y_{2}(x)=\sum_{k=0}^{\infty} a_{k}\left(r_{2}\right) x^{k+r_{2}}
$$

are solutions to (0.1), where $\left\{a_{k}\left(r_{1}\right)\right\}_{k=1}^{\infty}$ and $\left\{a_{k}\left(r_{2}\right)\right\}_{k=1}^{\infty}$ are given by the recurrence relation (0.2).
(b) If $r_{1}=r_{2}$, then

$$
y_{1}(x)=\sum_{k=0}^{\infty} a_{k}\left(r_{1}\right) x^{k+r_{1}} \quad \text { and } \quad y_{2}(x) \text { given in Problem } 4
$$

are solutions to (0.1).
(c) If $r_{1}-r_{2}=N \in \mathbb{N}$, then two solutions of (0.1) are given by

$$
y_{1}(x)=\sum_{k=0}^{\infty} a_{k}\left(r_{1}\right) x^{k+r_{1}} \quad \text { and } \quad y_{2}(x)=\frac{b_{0}}{a_{0}} y_{1}(x) \log (x)+\sum_{k=0}^{\infty} c_{k}\left(r_{2}\right) x^{k+r_{2}}
$$

where $b_{0}=\lim _{r \rightarrow r_{2}} a_{N}(r)$ and $c_{k}\left(r_{2}\right)=\left.\frac{\partial}{\partial r}\right|_{r=r_{2}}\left(r-r_{2}\right) a_{k}(r)$.

Problem 1. (20%) Assume that a series solution to $y^{\prime \prime}-2 x y^{\prime}+10 y=0$ satisfying the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$ is $y=\sum_{\ell=0}^{\infty} a_{\ell} x^{\ell}$. Show that $a_{2 \ell-1}=0$ for all $\ell \in \mathbb{N}$. Moreover, $a_{2 \ell}$ is of the form

$$
a_{2 \ell}=c \frac{(2 \ell-i)!}{(\ell-j)!(2 \ell-k)!} \quad \forall \ell \in \mathbb{N}, \ell \geqslant 4
$$

for some constant c and integers i, j, ℓ. Find i, j, k as well as c.
Solution: Let $y=\sum_{\ell=0}^{\infty} a_{\ell} x^{\ell}$ be the solution to the ODE above. Then

$$
\begin{aligned}
y^{\prime} & =\sum_{\ell=0}^{\infty} \ell a_{\ell} x^{\ell-1}, \\
y^{\prime \prime} & =\sum_{\ell=0}^{\infty} \ell(\ell-1) a_{\ell} x^{\ell-2}=\sum_{\ell=0}^{\infty}(\ell+2)(\ell+1) a_{\ell+2} x^{\ell} ;
\end{aligned}
$$

thus we have

$$
\sum_{\ell=0}^{\infty}\left[(\ell+2)(\ell+1) a_{\ell+2}+2(5-\ell) a_{\ell}\right] x^{\ell}=0 .
$$

Therefore,

$$
a_{\ell+2}=\frac{2(\ell-5)}{(\ell+2)(\ell+1)} a_{\ell} \quad \forall \ell \in \mathbb{N} \cup\{0\} .
$$

Using the initial condition, we find that $a_{0}=1$ and $a_{1}=0$; thus the recurrence relation above implies that $a_{2 \ell-1}=0$ for all $\ell \in \mathbb{N}$. Moreover,

$$
\begin{aligned}
a_{2 \ell} & =\frac{2(2 \ell-2-5)}{(2 \ell)(2 \ell-1)} a_{2 \ell-2}=\frac{2^{2}(2 \ell-2-5)(2 \ell-4-5)}{(2 \ell)(2 \ell-1)(2 \ell-2)(2 \ell-3)} a_{2 \ell-4}=\cdots \\
& =\frac{2^{\ell}(2 \ell-7)(2 \ell-9) \cdot 1 \cdots(-1) \cdot(-3) \cdot(-5)}{(2 \ell)!} a_{0} \\
& =\frac{-15 \cdot 2^{\ell}(2 \ell-7)!}{(2 \ell-8)(2 \ell-10) \cdots 2 \cdot(2 \ell)!}=\frac{-15 \cdot 2^{\ell}(2 \ell-7)(2 \ell-8) \cdots 1}{2^{\ell-4}(\ell-4)!(2 \ell)!} \\
& =-240 \frac{(2 \ell-7)!}{(\ell-4)!(2 \ell)!} .
\end{aligned}
$$

Therefore, $c=-240$ and $(i, j, k)=(7,4,0)$.

Problem 2. Consider the Legendre equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ for some $n \in \mathbb{N}$.

1. (5%) Find the recurrence relation of the coefficient $\left\{a_{k}\right\}_{k=0}^{\infty}$ of a series solution $\sum_{k=0}^{\infty} a_{k} x^{k}$ about 0 has to satisfy.
2. (10\%) Show that for each $n \in \mathbb{N}$, there is always a polynomial solution $y=p_{n}(x)$ to the Legendre equation above (using the recurrence relation obtained in Step 1).
3. (10%) Find the polynomial solution $p_{5}(x)$ of Legendre equation satisfying $p_{5}(1)=1$.

Solution:

1. If $y=\sum_{k=0}^{\infty} a_{k} x^{k}$ be a solution, then

$$
\sum_{k=0}^{\infty}\left[(k+2)(k+1) a_{k+2}-k(k-1) a_{k}-2 k a_{k}+n(n+1) a_{k}\right] x^{k}=0 .
$$

Therefore, we obtain the following recurrence relation

$$
\begin{equation*}
a_{k+2}=\frac{k(k+1)-n(n+1)}{(k+2)(k+1)} a_{k} \quad \forall k \in \mathbb{N} \cup\{0\} . \tag{0.3}
\end{equation*}
$$

2. By the recurrence relation above, we find that $a_{n+2}=0$ and this further implies that $a_{n+2 \ell}=0$ for all $\ell \in \mathbb{N}$. Therefore,
(a) if n is an even number, a polynomial solution is given by

$$
p_{n}(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n} x^{n} ;
$$

(b) if n is an odd number, a polynomial solution is given by

$$
p_{n}(x)=a_{1} x+a_{3} x^{3}+\cdots+a_{n} x^{n}
$$

in which $\left\{a_{k}\right\}_{k=0}^{\infty}$ satisfies the recurrence relation (0.3).
3. By the analysis above, we find that

$$
p_{5}(x)=a_{1} x+a_{3} x^{3}+a_{5} x^{5},
$$

where $a_{3}=\frac{2-30}{6} a_{1}=-\frac{14}{3} a_{1}$ and $a_{5}=\frac{12-30}{20} a_{3}=\frac{21}{5} a_{1}$. To satisfy $p_{5}(1)=1, a_{1}$ must satisfy

$$
a_{1}-\frac{14}{3} a_{1}+\frac{21}{5} a_{1}=1 ;
$$

thus $a_{1}=\frac{15}{8}$. Therefore,

$$
p_{5}(x)=\frac{15}{8} x-\frac{35}{4} x^{3}+\frac{63}{8} x^{5} .
$$

Problem 3. Solve the differential equation

$$
\begin{equation*}
\frac{\sin ^{2}(2 t)}{4} y^{\prime \prime}(t)-\left(5 \sin ^{3} t \cos t+3 \sin t \cos ^{3} t\right) y^{\prime}(t)+5 y(t)=0, \quad 0<t<\frac{\pi}{2} \tag{0.4}
\end{equation*}
$$

following the steps below:
(1) (10%) Let $x=\tan t$ and $z(x)=y(\arctan x)$. Find the corresponding differential equation that z satisfies (the function arctan is identical to $\tan ^{-1}$).
(2) (10%) Find the general solution to the equation for z, and then use it to find a solution to (0.4).

Solution:

(1) Let $x=\tan t$ and $z(x)=y\left(\tan ^{-1} x\right)$. Then

$$
z^{\prime}(x)=y^{\prime}\left(\tan ^{-1} x\right) \frac{1}{1+x^{2}} \quad \text { and } \quad z^{\prime \prime}(x)=y^{\prime \prime}\left(\tan ^{-1} x\right) \frac{1}{\left(1+x^{2}\right)^{2}}+y^{\prime}\left(\tan ^{-1} x\right) \frac{-2 x}{\left(1+x^{2}\right)^{2}}
$$

Therefore,

$$
y^{\prime}\left(\tan ^{-1} x\right)=\left(1+x^{2}\right) z^{\prime}(x) \quad \text { and } \quad y^{\prime \prime}\left(\tan ^{-1} x\right)=\left(1+x^{2}\right)^{2} z^{\prime \prime}(x)+2 x\left(1+x^{2}\right) z^{\prime}(x)
$$

Letting $t=\tan ^{-1} x$ as well as $\sin t=\frac{x}{\sqrt{1+x^{2}}}$ and $\cos t=\frac{1}{\sqrt{1+x^{2}}}$ in the ODE we find that

$$
y^{\prime \prime}\left(\tan ^{-1} x\right) \frac{x^{2}}{\left(1+x^{2}\right)^{2}}-y^{\prime}\left(\tan ^{-1} x\right) \frac{5 x^{3}+3 x}{\left(1+x^{2}\right)^{2}}+5 y\left(\tan ^{-1} t\right)=0
$$

thus

$$
x^{2} z^{\prime \prime}(x)-3 x z^{\prime}(x)+5 z(x)=0 .
$$

(2) Let r satisfy $r(r-1)-3 r+5=0$. Then $r^{2}-4 r+5=0$ which implies $r=2+i$ and $r=2-i$. Therefore, the general solution of (0.4) is

$$
z(x)=C_{1} x^{2} \log \cos x+C_{2} x^{2} \log \sin x .
$$

Therefore,

$$
y(t)=z(\tan t)=C_{1} \tan ^{2} t \log \cos (\tan t)+C_{2} \tan ^{2} t \log \sin (\tan t)
$$

Problem 4. (20\%) Consider solving the ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 \quad x>0, \tag{0.1}
\end{equation*}
$$

where $p(x)=\sum_{k=0}^{\infty} p_{k} x^{k}$ and $q(x)=\sum_{k=0}^{\infty} q_{k} x^{k}$ are two power series with non-zero radius of convergence. Show that if the indicial equation $r(r-1)+r p_{0}+q_{0}=0$ has a double root r, then

$$
y_{2}(x)=\log x \sum_{k=0}^{\infty} a_{k}(r) x^{x+r}+\sum_{k=0}^{\infty} a_{k}^{\prime}(r) x^{k+r}
$$

is a solution to (0.1) as long as the series converges in an interval, where $\left\{a_{k}(r)\right\}_{k=1}^{\infty}$ is a sequence satisfying the recurrence relation (0.2).
Proof. Let $y_{1}(x)=\sum_{k=0}^{\infty} a_{k}(r) x^{x+r}$. Then

$$
\begin{aligned}
x^{2} y_{1}^{\prime \prime}+x p(x) y_{1}^{\prime}+q(x) y= & \sum_{k=0}^{\infty}(k+r)(k+r-1) a_{k}(r) x^{k+r}+\left(\sum_{k=0}^{\infty} p_{k} x^{k}\right)\left(\sum_{k=0}^{\infty}(k+r) a_{k}(r) x^{k+r}\right) \\
& +\left(\sum_{k=0}^{\infty} q_{k} x^{k}\right)\left(\sum_{k=0}^{\infty} a_{k}(r) x^{k+r}\right) \\
= & \sum_{k=0}^{\infty}\left[(k+r)(k+r-1) a_{k}(r)+\sum_{j=0}^{k} p_{k-j}(j+r) a_{j}(r)+\sum_{j=0}^{k} q_{k-j} a_{j}(r)\right] x^{k+r} \\
= & F(r) a_{0}+\sum_{k=1}^{\infty}\left[F(k+r) a_{k}(r)+\sum_{j=0}^{k-1}\left[(j+r) p_{k-j}+q_{k-j}\right] a_{j}(r)\right] x^{k+r} .
\end{aligned}
$$

Since $F(r)=0$, using (0.2) we find that y_{1} is also a solution to (0.1).
Differentiating (0.2) w.r.t. r variable, we find that

$$
\left[2\left(k+r_{1}\right)-1\right] a_{k}\left(r_{1}\right)+\sum_{j=0}^{k} p_{k-j} a_{j}\left(r_{1}\right)+\sum_{j=0}^{k}\left[p_{k-j}\left(j+r_{1}\right)+q_{k-j}\right] a_{j}^{\prime}\left(r_{1}\right)=0 \quad \forall k \in \mathbb{N} \cup\{0\}
$$

As a consequence,

$$
\begin{aligned}
x^{2} y_{2}^{\prime \prime}+ & x p(x) y_{2}^{\prime}+q(x) y_{2} \\
= & x^{2} y_{1}^{\prime \prime}(x) \log x+2 x y_{1}^{\prime}(x)-y_{1}(x)+\sum_{k=0}^{\infty}\left(k+r_{1}\right)(k+r-1) a_{k}^{\prime}\left(r_{1}\right) x^{k+r_{1}} \\
& +x p(x) y_{1}^{\prime}(x) \log x+p(x) y_{1}(x)+\left(\sum_{k=0}^{\infty} p_{k} x^{k}\right)\left(\sum_{k=0}^{\infty}\left(k+r_{1}\right) a_{k}^{\prime}\left(r_{1}\right) x^{k+r_{1}}\right) \\
& +q(x) y_{1}(x) \log x+\left(\sum_{k=0}^{\infty} q_{k} x^{k}\right)\left(\sum_{k=0}^{\infty} a_{k}^{\prime}\left(r_{1}\right) x^{k+r_{1}}\right) \\
= & \sum_{k=0}^{\infty}\left[2\left(k+r_{1}\right)-1\right] a_{k}\left(r_{1}\right) x^{k+r_{1}}+\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} p_{k-j} a_{j}\left(r_{1}\right)\right) x^{k+r_{1}} \\
& +\sum_{k=0}^{\infty}\left(\left(k+r_{1}\right)(k+r-1) a_{k}^{\prime}\left(r_{1}\right)+\sum_{j=0}^{k}\left[p_{k-j}\left(j+r_{1}\right)+q_{k-j}\right] a_{j}^{\prime}\left(r_{1}\right)\right) x^{k+r_{1}}=0
\end{aligned}
$$

$y_{2}(x)$ is a solution to (0.1).

Problem 5. (20\%) Given a solution $J_{0}(x)=1+\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k!)^{2}}$ to Bessel's equation of order zero

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0,
$$

use the method of reduction of order to show that another solution can be given by

$$
y_{2}(x)=J_{0}(x) \int \frac{d x}{x\left|J_{0}(x)\right|^{2}} .
$$

Proof. Suppose that another solution to Bessel's equation of order zero is $y_{2}(x)=J_{0}(x) v(x)$. Then

$$
x^{2}\left(J_{0}(x) v(x)\right)^{\prime \prime}+x\left(J_{0}(x) v(x)\right)^{\prime}+x^{2} J_{0}(x) v(x)=0
$$

which can be further reduced to

$$
x J_{0}(x) v^{\prime \prime}(x)+\left[2 x J_{0}^{\prime}(x)+J_{0}(x)\right] v^{\prime}(x)=0
$$

or

$$
v^{\prime \prime}(x)+\left[\frac{2 J_{0}^{\prime}(x)}{J_{0}(x)}+\frac{1}{x}\right] v^{\prime}=0 .
$$

Therefore, the method of integrating factor shows that

$$
\left(e^{2 \log J_{0}(x)+\log x} v^{\prime}(x)\right)^{\prime}=0
$$

which further implies that

$$
v^{\prime}(x)=\frac{C_{1}}{x\left|J_{0}(x)\right|^{2}} .
$$

As a consequence,

$$
v(x)=C_{1} \int \frac{d x}{x\left|J_{0}(x)\right|^{2}}+C_{2}
$$

which implies that another independent solution can be given by $y_{2}(x)=J_{0}(x) \int \frac{d x}{x\left|J_{0}(x)\right|^{2}}$.

Problem 6. For $\nu \geqslant 0$, the Bessel function of the first kind of order ν, denoted by J_{ν}, is defined as the series solution to the Bessel equation of order ν

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

of the form $J_{\nu}(x)=x^{\nu}\left[\frac{1}{\Gamma(\nu+1) 2^{\nu}}+\sum_{k=1}^{\infty} a_{k}(\nu) x^{k}\right]$, where $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ is the Gamma-function which has the property that $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma(1)=1$.

1. (15%) Show that $J_{\nu}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k+\nu}$.
2. (10%) Verify that $J_{\nu+1}(x)=\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu-1}(x)$.

Proof. 1. Note that if $\sum_{k=0}^{\infty} a_{k}(\nu) x^{k+\nu}$ is a solution to the Bessel equation of order ν, then

$$
a_{k}(\nu)=\frac{-1}{(k+\nu-\nu))(k+\nu+\nu)} a_{k-2}(\nu)=\frac{-1}{k(k+2 \nu)} a_{k-2}(\nu)
$$

and $a_{1}=0$. Therefore, $a_{2 m+1}=0$ for all $m \in \mathbb{N} \cup\{0\}$ and

$$
\begin{aligned}
a_{2 k}(\nu) & =\frac{1}{2 k(2 k+2 \nu)(2 k-2)(2 k-2+2 \nu)} a_{2 k-4}(\nu)=\cdots \\
& =\frac{(-1)^{k}}{2 k(2 k-2)(2 k-4) \cdots 2(2 k+2 \nu)(2 k+2 \nu-2) \cdots(2+2 \nu)} a_{0} \\
& =\frac{(-1)^{k}}{2^{2 k} k!(k+\nu)(k+\nu-1) \cdots(\nu+1)} \cdot \frac{1}{\Gamma(\nu+1) 2^{\nu}} .
\end{aligned}
$$

Using the property that $\Gamma(x+1)=x \Gamma(x)$, we find that

$$
(k+\nu)(k+\nu-1) \cdots(\nu+1) \Gamma(\nu+1)=\Gamma(k+\nu+1) ;
$$

thus

$$
a_{2 k}(\nu)=\frac{(-1)^{k} \Gamma(\nu+1)}{2^{2 k} k!\Gamma(k+\nu+1)} \cdot \frac{1}{\Gamma(\nu+1) 2^{\nu}}=\frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(k+\nu+1)} .
$$

Therefore,

$$
J_{\nu}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k+\nu} k!\Gamma(k+\nu+1)} x^{2 k+\nu}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k+\nu} .
$$

2. Using the expression of J_{ν}, we have

$$
\begin{aligned}
\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu-1}(x) & =\sum_{k=0}^{\infty} \frac{(-1)^{k} \nu}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k+\nu-1}-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu)}\left(\frac{x}{2}\right)^{2 k+\nu-1} \\
& =\sum_{k=0}^{\infty}\left[\frac{(-1)^{k} \nu}{k!\Gamma(k+\nu+1)}-\frac{(-1)^{k}(k+\nu)}{k!\Gamma(k+\nu+1)}\right]\left(\frac{x}{2}\right)^{2 k+\nu-1} \\
& =\sum_{k=0}^{\infty}\left[\frac{(-1)^{k+1} k}{k!\Gamma(k+\nu+1)}\right]\left(\frac{x}{2}\right)^{2 k+\nu-1}=\sum_{k=1}^{\infty}\left[\frac{(-1)^{k+1} k}{k!\Gamma(k+\nu+1)}\right]\left(\frac{x}{2}\right)^{2 k+\nu-1} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+(\nu+1)+1)}\left(\frac{x}{2}\right)^{2 k+(\nu+1)}=J_{\nu+1}(x) .
\end{aligned}
$$

