Numerical Analysis I MA3021 Midterm

National Central University, May. 06, 2020

Problem 1. Let f be a given real-valued function in $C([a, b])$, and $x_{0}, x_{1}, \cdots, x_{n}$ be $n+1$ distinct numbers in $[a, b]$.

1. (8%) What is the n-th Lagrange interpolating polynomial?
2. (8%) Suppose in addition that f is differentiable on $[a, b]$. What is the $(2 n+1)$-th Hermite interpolating polynomial?

Problem 2. (15%) Let $f:(a, b) \rightarrow \mathbb{R}$ be a twice differentiable function such that $\left|f^{\prime}(x)\right| \geqslant K$ and $\left|f^{\prime \prime}(x)\right| \leqslant M$ for all $x \in(a, b)$, where K, M are positive real numbers. Suppose that $r \in(a, b)$ is a root of f, and the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ defined by $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ for all $n \geqslant 1$ is a subset of (a, b). Show that

$$
\left|x_{n+1}-r\right| \leqslant \frac{M}{2 K}\left|x_{n}-r\right|^{2} \quad \forall n \geqslant 1 .
$$

Problem 3. (15\%) Let f be a given real-valued function in $C^{n+1}([a, b])$, and $x_{0}, x_{1}, \cdots, x_{n}$ be $n+1$ distinct numbers in $[a, b]$. Show that for each x in $[a, b]$, there exists $\xi(x) \in(a, b)$ such that

$$
f(x)=p(x)+\frac{1}{(n+1)!} f^{(n+1)}(\xi(x)) \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

where $p(x)$ is n-th Lagrange interpolating polynomial for the data $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \cdots$, $\left(x_{n}, f\left(x_{n}\right)\right)$.

Problem 4. (15\%) Show that if f is five-times continuously differentiable in the region of interest, then

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{12 h}\left[-25 f\left(x_{0}\right)+48 f\left(x_{0}+h\right)-36 f\left(x_{0}+2 h\right)+16 f\left(x_{0}+3 h\right)-3 f\left(x_{0}+4 h\right)\right]+\mathcal{O}\left(h^{4}\right) .
$$

Problem 5. Let $p_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$ be the Legendre polynomial of degree n. Assume that you know that $\int_{-1}^{1} p(x) p_{n}(x) d x=0$ if $\operatorname{degree}(p)<n$.
(1) (15%) Let $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ be distinct roots of the Legendre polynomial p_{n+1}, and $L_{n, i}$ be the Lagrange polynomial of degree n satisfying $L_{n, i}\left(x_{j}\right)=\delta_{i j}$. If p is a polynomial and degree $(p)<$ $2(n+1)$, then

$$
\int_{-1}^{1} p(x) d x=\sum_{i=0}^{n} c_{i} p\left(x_{i}\right),
$$

where $c_{i}=\int_{-1}^{1} L_{n, i}(x) d x$.
(2) (9\%) Show that $\sum_{i=0}^{n} c_{i}=2$.

Problem 6. (15\%) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ using Simpson's rule so that the difference between the exact value and the approximation you obtained is less than 10^{-8}. Explain the detail of your procedure (without exactly evaluating the integral).

