Exercise Problem 2

Due Nov．23． 2022

Problem 1．Let $b, c \in \mathbb{R}$ ，and assume that $r^{2}+b r+c=0$ has two distinct roots r_{1}, r_{2} ．Solve the IVP

$$
x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=f(t), \quad x(0)=x_{0}, x^{\prime}(0)=x_{1}
$$

by the following steps．
1．Since r_{1}, r_{2} are two distinct roots of $r^{2}+b r+c=0$ ，one has $b=-\left(r_{1}+r_{2}\right)$ and $c=r_{1} r_{2}$ ． Rewrite the IVP as

$$
x^{\prime \prime}(t)-\left(r_{1}+r_{2}\right) x^{\prime}(t)+r_{1} r_{2} x(t)=f(t) \quad x(0)=x_{0}, x^{\prime}(0)=x_{1}
$$

Define $y(t)=x^{\prime}(t)-r_{1} x(t)$ ．Show that y satisfies

$$
y^{\prime}(t)-r_{2} y(t)=f(t), \quad y(0)=x_{1}-r_{1} x_{0}
$$

2．Solve（ \star ）using the method of integrating factor．
3．Solve the IVP

$$
x^{\prime}(t)-r_{1} x(t)=y(t), \quad x(0)=x_{0}
$$

using the method of integrating factor again．
Hint：If you do not know how to express the solution in this general form，try to solve the IVP with the following settings：$b=-3, c=2, f(t)=\sin t$ ，as well as $x_{0}=x_{1}=0$ ．

Solution．見新版 Lecture note（在課程網頁，有與舊版並列）的 31 頁到 32 頁。
Remark：From Problem 1 you should be able to see the reason that one has $\varphi_{1}(t)=e^{r_{1} t}$ and $\varphi_{2}(t)=e^{r_{2} t}$ as a basis of the solution space for the homogeneous case（if you are not told this fact）．

Problem 2．Given one solution $\varphi_{1}(t)=t^{2}$ of the ODE

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=0
$$

solve the IVP

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=t^{3} \ln t, \quad x(1)=-2, x^{\prime}(1)=-5
$$

for $t>0$ ．Do NOT use formula（2．25）in the lecture note to find another solution φ_{2} to（ $\star \star$ ）which is linearly independent of φ_{1} ，but instead try to follow the steps of deriving（2．25）to find such φ_{2} ．

Solution. Suppose that $\varphi_{2}(t)=t^{2} v(t)$ is a solution to the corresponding homogeneous ODE

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=0
$$

Then

$$
\begin{aligned}
& t^{2}\left[t^{2} v(t)\right]^{\prime \prime}-3 t\left[t^{2} v(t)\right]^{\prime}+4 t^{2} v(t)=0 \\
\Rightarrow & t^{2}\left[2 v(t)+4 t v^{\prime}(t)+t^{2} v^{\prime \prime}(t)\right]-3 t\left[2 t v(t)+t^{2} v^{\prime}(t)\right]+4 t^{2} v(t)=0 \\
\Rightarrow & t^{4} v^{\prime \prime}+t^{3} v^{\prime}(t)=0 \Rightarrow t v^{\prime \prime}+v^{\prime}(t)=0 .
\end{aligned}
$$

Let $y(t)=v^{\prime}(t)$. Then $y^{\prime}+\frac{1}{t} y=0$; thus

$$
\frac{d}{d t}\left[\exp \left(\int \frac{1}{t} d t\right) y(t)\right]=0 .
$$

Therefore, $y(t)=\frac{C}{t}$ so that $v(t)=C \ln t$. This shows that $\varphi_{2}(t)=t^{2} \ln t$ is another solution to (\diamond) which is linearly independent of φ_{1}.

Having obtained a basis $\left\{\varphi_{1}, \varphi_{2}\right\}$ of the solution space of the corresponding homogeneous ODE, we apply formula (2.27) in the lecture to find a particular solution x_{p} of ($\star \star$). First we note that the Wronskian $\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right]$ is given by

$$
\mathrm{W}\left[\varphi_{1}, \varphi_{2}\right](t)=\varphi_{1}(t) \varphi_{2}^{\prime}(t)-\varphi_{2}(t) \varphi_{1}^{\prime}(t)=t^{2}(2 t \ln t+t)-t^{2} \ln t \cdot 2 t=t^{3}
$$

Therefore,

$$
x_{p}(t)=-t^{2} \int \frac{t \ln t \cdot t^{2} \ln t}{t^{3}} d t+t^{2} \ln t \int \frac{t \ln t \cdot t^{2}}{t^{3}} d t=-t^{2} \int(\ln t)^{2} d t+t^{2} \ln t \int \ln t d t
$$

Since

$$
\int \ln t d t=t \ln t-t
$$

integrating by parts (with $u=\ln t$ and $d v=\ln t d t$) shows that

$$
\begin{aligned}
\int(\ln t)^{2} d t & =\ln t(t \ln t-t)-\int \frac{t \ln t-t}{t} d t=t(\ln t)^{2}-t \ln t-(t \ln t-t)+t \\
& =t(\ln t)^{2}-2 t \ln t+2 t
\end{aligned}
$$

we conclude that

$$
x_{p}(t)=-t^{2}\left[t(\ln t)^{2}-2 t \ln t+2 t\right]+t^{2} \ln t(t \ln t-t)=t^{3} \ln t-2 t^{3}
$$

so the general solution to the ODE above is

$$
x(t)=C_{1} t^{2}+C_{2} t^{2} \ln t+t^{3} \ln t-2 t^{3} .
$$

By the initial condition $x(1)=-2$ and $x^{\prime}(1)=-5$, we find that $C_{1}=C_{2}=0$; thus the solution to the IVP above is $x(t)=t^{3} \ln t-2 t^{3}$.

