Mathematical Modeling MA3067-* Midterm 2

National Central University, Dec. 62021

Problem 1. (20\%) The speed v of a wave in deep water is determined by its wavelength λ and the acceleration g due to gravity. What does dimension analysis imply regarding the relationship between v, λ and g ? Express v in terms of λ and g using Pi Theorem.

Solution. Choose fundamental dimension L (length) and T (time) so that $[v]=L T^{-1},[\lambda]=L$ and $[g]=L T^{-2}$. Let $q_{1}=v, q_{2}=\lambda$ and $q_{3}=g$. The dimension matrix D (in the order of dimension L, T) is

$$
D=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & -2
\end{array}\right]
$$

Clearly $\operatorname{rank}(D)=2$; thus by Pi Theorem there exist one dimensionless quanty $\pi=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} q_{3}^{\alpha_{3}}$ such that the physical law is given by $\pi=k$ for some constant k. Such $\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]^{\mathrm{T}}$ satisfies

$$
D \boldsymbol{\alpha}=\mathbf{0} \quad \text { or in the full form } \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

A choice of such an α is $\left[1,-\frac{1}{2},-\frac{1}{2}\right]^{\mathrm{T}}$ and the physical law is then equivalent to

$$
\pi=q_{1} q_{2}^{-1 / 2} q_{3}^{-1 / 2}=k
$$

or $v=k \sqrt{\lambda g}$ for some constant k (to be determined by experiment data).
Problem 2. Find a particular solution of $x^{\prime \prime}(t)-3 x^{\prime}(t)-4 x(t)=2 \sin t$ through the following two methods.

1. (20%) Let $y=x^{\prime}-4 x$. Show that $y^{\prime}(t)+y(t)=2 \sin t$, and find a solution y then a solution x (to $x^{\prime}-4 x=y$) using the method of integrating factor.
2. (20%) Make use of the formula

$$
x_{p}(t)=-\varphi_{1}(t) \int \frac{g(t) \varphi_{2}(t)}{W\left[\varphi_{1}, \varphi_{2}\right](t)} d t+\varphi_{2}(t) \int \frac{g(t) \varphi_{1}(t)}{W\left[\varphi_{1}, \varphi_{2}\right](t)} d t
$$

for a particular solution x_{p} to the ODE

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) x(t)=g(t),
$$

where $\left\{\varphi_{1}, \varphi_{2}\right\}$ is a basis for the solution space $\left\{x: I \rightarrow \mathbb{R} \mid x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) x(t)=0\right\}$, and $W\left[\varphi_{1}, \varphi_{2}\right]$ is the Wronskian of φ_{1} and φ_{2}.

In this problem you may need the integration formulas

$$
\begin{aligned}
& \int e^{a t} \sin (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}[a \sin (b t)-b \cos (b t)]+C, \\
& \int e^{a t} \cos (b t) d t=\frac{e^{a t}}{a^{2}+b^{2}}[b \sin (b t)+a \cos (b t)]+C .
\end{aligned}
$$

Note that for a computation of a particular solution you can let $C=0$ in the process of computations.

Solution. 1. If $y=x^{\prime}-4 x$, then

$$
y^{\prime}+y=\left(x^{\prime}-4 x\right)^{\prime}+\left(x^{\prime}-4 x\right)=x^{\prime \prime}-4 x^{\prime}+x^{\prime}-4 x=x^{\prime \prime}-3 x^{\prime}-4 x
$$

so that $y^{\prime}(t)+y(t)=2 \sin t$. Therefore, the method of integrating factor shows that

$$
\frac{d}{d t}\left[e^{t} y(t)\right]=2 e^{t} \sin t
$$

which, with the help of the integration formula, implies that

$$
e^{t} y(t)=e^{t} \sin t-e^{t} \cos t+C
$$

or $y(t)=C e^{-t}+\sin t-\cos t$. Let $C=0$ and solve

$$
x^{\prime}-4 x=\sin t-\cos t
$$

By the method of integrating factor, we find that

$$
\frac{d}{d t}\left[e^{-4 t} x(t)\right]=e^{-4 t}(\sin t-\cos t)
$$

thus the integration formula implies that

$$
\begin{aligned}
e^{-4 t} x(t) & =\frac{1}{17}\left[\left(-4 e^{-4 t} \sin t-e^{-4 t} \cos t\right)-\left(e^{-4 t} \sin t-4 e^{-4 t} \cos t\right)\right]+C \\
& =e^{-4 t}\left(-\frac{5}{17} \sin t+\frac{3}{17} \cos t\right)+C
\end{aligned}
$$

Therefore, a particular solution of the given ODE is given by

$$
x_{p}(t)=-\frac{5}{17} \sin t+\frac{3}{17} \cos t
$$

2. A basis $\left\{\varphi_{1}, \varphi_{2}\right\}$ for the solution space $\left\{x: I \rightarrow \mathbb{R} \mid x^{\prime \prime}(t)-3 x^{\prime}(t)-4 x(t)=0\right\}$ is $\varphi_{1}(t)=e^{-t}$ and $\varphi_{2}(t)=e^{4 t}$ since the characteristic equation $r^{2}-3 r-4=0$ has two distinct zeros $r=4$ and $r=-1$. Then

$$
W\left[\varphi_{1}, \varphi_{2}\right](t)=\varphi_{1}(t) \varphi_{2}^{\prime}(t)-\varphi_{2}(t) \varphi_{1}^{\prime}(t)=e^{-t} \cdot 4 e^{4 t}-e^{4 t} \cdot\left(-e^{-t}\right)=5 e^{3 t}
$$

thus using the formula above we find that a particular solution to the given ODE is given by

$$
x_{p}(t)=-e^{-t} \int \frac{2 e^{4 t} \sin t}{5 e^{3 t}} d t+e^{4 t} \int \frac{2 e^{-t} \sin t}{5 e^{3 t}} d t=-\frac{2}{5} e^{-t} \int e^{t} \sin t d t+\frac{2}{5} e^{4 t} \int e^{-4 t} \sin t d t
$$

Using the integration formula given in the problem we find that

$$
\begin{aligned}
x_{p}(t) & =-\frac{2}{5} e^{-t} \cdot \frac{1}{2}\left(e^{t} \sin t-e^{t} \cos t\right)+\frac{2}{5} e^{4 t} \cdot \frac{1}{17}\left(-4 e^{-4 t} \sin t-e^{-4 t} \cos t\right) \\
& =-\frac{1}{5}(\sin t-\cos t)-\frac{2}{5} \cdot \frac{1}{17}(4 \sin t+\cos t)=-\frac{5}{17} \sin t+\frac{3}{17} \cos t
\end{aligned}
$$

Problem 3. (20\%) Find a solution φ_{2} of to the ODE $(1-t) x^{\prime \prime}(t)+t x^{\prime}(t)-x(t)=0, t \in[0,1)$, so that $\left\{\varphi_{1}, \varphi_{2}\right\}$ spans the solution space of the ODE, where $\varphi_{1}(t)=e^{t}$.

Solution. Suppose that $\varphi_{2}(t)=v(t) \varphi_{1}(t)=v(t) e^{t}$ is a solution to the given ODE. Then

$$
\begin{aligned}
& (1-t)\left[v(t) e^{t}\right]^{\prime \prime}+t\left[v(t) e^{t}\right]^{\prime}-v(t) e^{t}=0 \\
\Rightarrow & (1-t)\left[v^{\prime \prime}(t) e^{t}+2 v^{\prime}(t) e^{t}+v(t) e^{t}\right]+t\left[v^{\prime}(t) e^{t}+v(t) e^{t}\right]-v(t) e^{t}=0 \\
\Rightarrow & (1-t) e^{t} v^{\prime \prime}(t)+(2-t) v^{\prime}(t) e^{t}=0 \\
\Rightarrow & (1-t) v^{\prime \prime}(t)+(2-t) v^{\prime}(t)=0
\end{aligned}
$$

Let $y(t)=v^{\prime}(t)$. Then y satisfies $y^{\prime}(t)+\frac{2-t}{1-t} y(t)=0$. Let $q(t)=\frac{2-t}{1-t}=1+\frac{1}{1-t}$. Then $Q(t)=t-\ln (1-t)$ is an integrating factor so that

$$
\frac{d}{d t}\left[e^{Q(t)} y(t)\right]=0
$$

Therefore, $y(t)=C e^{-Q(t)}=C e^{-t+\ln (1-t)}=C e^{-t}(1-t)$, and (choosing $C=1$) integrating by parts shows that

$$
v(t)=\int y(t) d t=\int e^{-t}(1-t) d t=-e^{-t}(1-t)+\int e^{-t}(-1) d t=e^{-t} t
$$

This implies that $\varphi_{2}(t)=t$ is another solution to the given ODE.
Problem 4. (20\%) Find the solution to the initial value problem

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{f}(t), \quad \boldsymbol{x}(0)=\boldsymbol{x}_{0},
$$

where $\boldsymbol{A}=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right], \boldsymbol{f}(t)=\left[\begin{array}{c}-t^{2} \\ -2 t \\ -2 \\ e^{t} \\ 0\end{array}\right]$ and $\boldsymbol{x}_{0}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right]$.
Solution. Rewrite the ODE as $\boldsymbol{x}^{\prime}(t)-\boldsymbol{A} \boldsymbol{x}(t)=\boldsymbol{f}(t)$. Multiplying both sides by the integrating factor $e^{-t \boldsymbol{A}}$, we have

$$
\frac{d}{d t}\left[e^{-t \boldsymbol{A}} \boldsymbol{x}(t)\right]=e^{-t \boldsymbol{A}} \boldsymbol{f}(t)
$$

Note that

$$
e^{-t A} \boldsymbol{f}(t)=\left[\begin{array}{ccccc}
e^{-2 t} & -t e^{-2 t} & \frac{t^{2}}{2} e^{-2 t} & 0 & 0 \\
0 & e^{-2 t} & -t e^{-2 t} & 0 & 0 \\
0 & 0 & e^{-2 t} & 0 & 0 \\
0 & 0 & 0 & e^{-2 t} & -t e^{-2 t} \\
0 & 0 & 0 & 0 & e^{-2 t}
\end{array}\right]\left[\begin{array}{c}
-t^{2} \\
-2 t \\
-2 \\
e^{t} \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 e^{-2 t} \\
e^{-t} \\
0
\end{array}\right]
$$

Therefore,

$$
\frac{d}{d t}\left[e^{-t \boldsymbol{A}} \boldsymbol{x}(t)\right]=\left[\begin{array}{c}
0 \\
0 \\
-2 e^{-2 t} \\
e^{-t} \\
0
\end{array}\right]
$$

so that

$$
e^{-t \boldsymbol{A}} \boldsymbol{x}(t)-\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0
\end{array}\right]=\int_{0}^{t}\left[\begin{array}{c}
0 \\
0 \\
-2 e^{-2 s} \\
e^{-s} \\
0
\end{array}\right] d s=\left[\begin{array}{c}
0 \\
0 \\
e^{-2 t}-1 \\
1-e^{-t} \\
0
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{x}(t)=e^{t \boldsymbol{A}}\left[\begin{array}{c}
0 \\
0 \\
e^{-2 t} \\
-e^{-t} \\
0
\end{array}\right]=\left[\begin{array}{ccccc}
e^{2 t} & t e^{2 t} & \frac{t^{2}}{2} e^{2 t} & 0 & 0 \\
0 & e^{2 t} & t e^{2 t} & 0 & 0 \\
0 & 0 & e^{2 t} & 0 & 0 \\
0 & 0 & 0 & e^{2 t} & t e^{2 t} \\
0 & 0 & 0 & 0 & e^{2 t}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
e^{-2 t} \\
-e^{-t} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{t^{2}}{2} \\
t \\
1 \\
-e^{t} \\
0
\end{array}\right]
$$

